ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVA: New Tools and Met...A: New Tools and Methods in Experiment and TheoryNEXT

Accurate Potential Energy Surfaces Using Atom-Centered Potentials and Minimal High-Level Data

Cite this: J. Phys. Chem. A 2023, 127, 38, 8015–8024
Publication Date (Web):September 15, 2023
https://doi.org/10.1021/acs.jpca.3c04558
Copyright © 2023 American Chemical Society

    Article Views

    350

    Altmetric

    -

    Citations

    -
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    We demonstrate that a Δ-density functional theory (Δ-DFT) approach based on atom-centered potentials (ACPs) represents a computationally inexpensive and accurate method for representing potential energy surfaces (PESs) for the HONO and HFCO molecules and vibrational frequencies derived therefrom. Using as few as 100 CCSD(T)-F12a reference energies, ACPs developed for use with B3LYP/def2-TZVPP are shown to produce PESs for HONO and HFCO with mean absolute errors of 27.7 and 5.8 cm–1, respectively. Application of the multiconfigurational time-dependent Hartree (MCTDH) method with ACP-corrected B3LYP/def2-TZVPP PESs produces vibrational frequencies for cis- and trans-HONO with mean absolute percent errors (MAPEs) of 0.8 and 1.1, compared to 0.8 obtained for the two isomers with CCSD(T)-F12a/cc-pVTZ-F12/MCTDH. For HFCO, the vibrational frequencies obtained using the present (Δ-DFT)/MCTDH approach give a MAPE of 0.1, which is the error obtained with CCSD(T)-F12a/cc-pVTZ-F12/MCTDH. The ACP approach is therefore successful in representing a PES calculated at a high level of theory (CCSD(T)-F12a) and a promising method for the development of a general protocol for the representation of accurate molecular PESs and the calculation of molecular properties from them.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpca.3c04558.

    • The PES expansions for HFCO and HONO in the form of MCTDH operator files. The “_trans.op” and “_cis.op” files only differ from the 1D cuts of the potential, which are then centered at the trans or cis geometry, respectively. This information is useful for the generation of an initial guess of the vibrational wave function in MCTDH (ZIP)

    • Errors along single-coordinate deformations in the HFCO and HONO PES using ACP(All)-corrected methods; details regarding the adaptive PES fitting method applied in combination with the ACP-corrected approach; and details regarding the MCTDH calculations; the ACP(100) and ACP(All) potentials for both molecules in Gaussian-16 form; the CCSD(T)-F12/cc-pVTZ-F12 and B3LYP/def2-TZVPP-ACP(All) potential energy surfaces for both molecules (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article has not yet been cited by other publications.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect