ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Small Molecules—Big Data

View Author Information
Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112, Hungary
MTA-ELTE Complex Chemical Systems Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
§ Department of Algebra and Number Theory, Institute of Mathematics, Eötvös Loránd University, P.O. Box 120, H-1518 Budapest 112, Hungary
*A. G. Császár. Phone: +36-1-372-2929. E-mail: [email protected]
Cite this: J. Phys. Chem. A 2016, 120, 45, 8949–8969
Publication Date (Web):September 27, 2016
https://doi.org/10.1021/acs.jpca.6b02293
Copyright © 2016 American Chemical Society

    Article Views

    621

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Quantum mechanics builds large-scale graphs (networks): the vertices are the discrete energy levels the quantum system possesses, and the edges are the (quantum-mechanically allowed) transitions. Parts of the complete quantum mechanical networks can be probed experimentally via high-resolution, energy-resolved spectroscopic techniques. The complete rovibronic line list information for a given molecule can only be obtained through sophisticated quantum-chemical computations. Experiments as well as computations yield what we call spectroscopic networks (SN). First-principles SNs of even small, three to five atomic molecules can be huge, qualifying for the big data description. Besides helping to interpret high-resolution spectra, the network-theoretical view offers several ideas for improving the accuracy and robustness of the increasingly important information systems containing line-by-line spectroscopic data. For example, the smallest number of measurements necessary to perform to obtain the complete list of energy levels is given by the minimum-weight spanning tree of the SN and network clustering studies may call attention to “weakest links” of a spectroscopic database. A present-day application of spectroscopic networks is within the MARVEL (Measured Active Rotational–Vibrational Energy Levels) approach, whereby the transitions information on a measured SN is turned into experimental energy levels via a weighted linear least-squares refinement. MARVEL has been used successfully for 15 molecules and allowed to validate most of the transitions measured and come up with energy levels with well-defined and realistic uncertainties. Accurate knowledge of the energy levels with computed transition intensities allows the realistic prediction of spectra under many different circumstances, e.g., for widely different temperatures. Detailed knowledge of the energy level structure of a molecule coming from a MARVEL analysis is important for a considerable number of modeling efforts in chemistry, physics, and engineering.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 35 publications.

    1. Péter Árendás, Tibor Furtenbacher, Attila G. Császár. Verification labels for rovibronic quantum-state energy uncertainties. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-023-46665-0
    2. Roland Tóbiás, Meissa L. Diouf, Frank M. J. Cozijn, Wim Ubachs, Attila G. Császár. All paths lead to hubs in the spectroscopic networks of water isotopologues H216O and H218O. Communications Chemistry 2024, 7 (1) https://doi.org/10.1038/s42004-024-01103-8
    3. Mohammad Taha I. Ibrahim, Dunia Alatoom, Tibor Furtenbacher, Attila G. Császár, Sergei N. Yurchenko, Ala'a A. A. Azzam, Jonathan Tennyson. MARVEL analysis of high‐resolution rovibrational spectra of  13C 16O 2. Journal of Computational Chemistry 2024, 45 (13) , 969-984. https://doi.org/10.1002/jcc.27266
    4. Jonathan Tennyson, Tibor Furtenbacher, Sergei N. Yurchenko, Attila G. Császár. Empirical rovibrational energy levels for nitrous oxide. Journal of Quantitative Spectroscopy and Radiative Transfer 2024, 316 , 108902. https://doi.org/10.1016/j.jqsrt.2024.108902
    5. Péter Árendás, Tibor Furtenbacher, Attila G. Császár. Spectroscopic heat maps reveal how to design experiments to improve the uncertainties of transitions and energy levels present in line-by-line databases. Journal of Quantitative Spectroscopy and Radiative Transfer 2024, 315 , 108878. https://doi.org/10.1016/j.jqsrt.2023.108878
    6. Jonathan Tennyson. Empirical rovibronic energy levels of C 3. Molecular Physics 2023, 109 https://doi.org/10.1080/00268976.2023.2276912
    7. Antonio Castrillo, Eugenio Fasci, Tibor Furtenbacher, Vittorio D'Agostino, Muhammad A. Khan, Stefania Gravina, Livio Gianfrani, Attila G. Császár. On the 12 C 2 H 2 near-infrared spectrum: absolute transition frequencies and an improved spectroscopic network at the kHz accuracy level. Physical Chemistry Chemical Physics 2023, 25 (35) , 23614-23625. https://doi.org/10.1039/D3CP01835K
    8. David Wellnitz, Armin Kekić, Julian Heiss, Michael Gertz, Matthias Weidemüller, Andreas Spitz. A network approach to atomic spectra. Journal of Physics: Complexity 2023, 4 (3) , 03LT01. https://doi.org/10.1088/2632-072X/ace1c3
    9. Gábor Ecseri, Irén Simkó, Tibor Furtenbacher, Balázs Rácsai, Luciano Fusina, Gianfranco Di Lonardo, Kirk A. Peterson, Attila G. Császár. Joint survey of the experimental high-resolution spectra of H16O37Cl and H16O35Cl with a reanalysis of the 2 ν 2 band. Journal of Molecular Spectroscopy 2023, 397 , 111834. https://doi.org/10.1016/j.jms.2023.111834
    10. János Sarka, Bill Poirier. Assigning quantum labels and improving accuracy for the ro-vibrational eigenstates of H3+ calculated using ScalIT. Frontiers in Physics 2022, 10 https://doi.org/10.3389/fphy.2022.996001
    11. Tibor Furtenbacher, Samuel T. Hegedus, Jonathan Tennyson, Attila G. Császár. Analysis of measured high-resolution doublet rovibronic spectra and related line lists of 12 CH and 16 OH. Physical Chemistry Chemical Physics 2022, 24 (32) , 19287-19301. https://doi.org/10.1039/D2CP02240K
    12. Balázs Rácsai, Tibor Furtenbacher, Luciano Fusina, Gianfranco Di Lonardo, Attila G. Császár. MARVEL analysis of the high-resolution rovibrational spectra of H16O35Cl. Journal of Molecular Spectroscopy 2022, 384 , 111561. https://doi.org/10.1016/j.jms.2021.111561
    13. Charles A Bowesman, Meiyin Shuai, Sergei N Yurchenko, Jonathan Tennyson. A high-resolution line list for AlO. Monthly Notices of the Royal Astronomical Society 2021, 508 (3) , 3181-3193. https://doi.org/10.1093/mnras/stab2525
    14. Z.D. Reed, B.J. Drouin, D.A. Long, J.T. Hodges. Molecular transition frequencies of CO2 near 1.6 µm with kHz-level uncertainties. Journal of Quantitative Spectroscopy and Radiative Transfer 2021, 271 , 107681. https://doi.org/10.1016/j.jqsrt.2021.107681
    15. Roland Tóbiás, Kristóf Bérczi, Csaba Szabó, Attila G. Császár. autoECART: Automatic energy conservation analysis of rovibronic transitions. Journal of Quantitative Spectroscopy and Radiative Transfer 2021, 272 , 107756. https://doi.org/10.1016/j.jqsrt.2021.107756
    16. Meissa L. Diouf, Roland Tóbiás, Irén Simkó, Frank M. J. Cozijn, Edcel J. Salumbides, Wim Ubachs, Attila G. Császár. Network-Based Design of Near-Infrared Lamb-Dip Experiments and the Determination of Pure Rotational Energies of H218O at kHz Accuracy. Journal of Physical and Chemical Reference Data 2021, 50 (2) https://doi.org/10.1063/5.0052744
    17. Afaf R. Al-Derzi, Jonathan Tennyson, Sergei N. Yurchenko, Mattia Melosso, Ningjing Jiang, Cristina Puzzarini, Luca Dore, Tibor Furtenbacher, Roland Tóbiás, Attila G. Császár. An improved rovibrational linelist of formaldehyde, H 2 12 C 16 O. Journal of Quantitative Spectroscopy and Radiative Transfer 2021, 266 , 107563. https://doi.org/10.1016/j.jqsrt.2021.107563
    18. Ernesto Quintas-Sánchez, Richard Dawes. Spectroscopy and Scattering Studies Using Interpolated Ab Initio Potentials. Annual Review of Physical Chemistry 2021, 72 (1) , 399-421. https://doi.org/10.1146/annurev-physchem-090519-051837
    19. Roland Tóbiás, Tibor Furtenbacher, Irén Simkó, Attila G. Császár, Meissa L. Diouf, Frank M. J. Cozijn, Joey M. A. Staa, Edcel J. Salumbides, Wim Ubachs. Spectroscopic-network-assisted precision spectroscopy and its application to water. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-15430-6
    20. P. Árendás, T. Furtenbacher, A. G. Császár. From bridges to cycles in spectroscopic networks. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-75087-5
    21. Tibor Furtenbacher, Roland Tóbiás, Jonathan Tennyson, Oleg L. Polyansky, Aleksandra A. Kyuberis, Roman I. Ovsyannikov, Nikolay F. Zobov, Attila G. Császár. The W2020 Database of Validated Rovibrational Experimental Transitions and Empirical Energy Levels of Water Isotopologues. II. H217O and H218O with an Update to H216O. Journal of Physical and Chemical Reference Data 2020, 49 (4) https://doi.org/10.1063/5.0030680
    22. Tibor Furtenbacher, Roland Tóbiás, Jonathan Tennyson, Oleg L. Polyansky, Attila G. Császár. W2020: A Database of Validated Rovibrational Experimental Transitions and Empirical Energy Levels of H216O. Journal of Physical and Chemical Reference Data 2020, 49 (3) https://doi.org/10.1063/5.0008253
    23. Laura K McKemmish, Anna-Maree Syme, Jasmin Borsovszky, Sergei N Yurchenko, Jonathan Tennyson, Tibor Furtenbacher, Attila G Császár. An update to the MARVEL data set and ExoMol line list for 12C2. Monthly Notices of the Royal Astronomical Society 2020, 497 (1) , 1081-1097. https://doi.org/10.1093/mnras/staa1954
    24. Tibor Furtenbacher, Phillip A. Coles, Jonathan Tennyson, Sergei N. Yurchenko, Shanshan Yu, Brian Drouin, Roland Tóbiás, Attila G. Császár. Empirical rovibrational energy levels of ammonia up to 7500 cm − 1 . Journal of Quantitative Spectroscopy and Radiative Transfer 2020, 251 , 107027. https://doi.org/10.1016/j.jqsrt.2020.107027
    25. Tibor Furtenbacher, Mátyás Horváth, Dávid Koller, Panna Sólyom, Anna Balogh, István Balogh, Attila G. Császár. MARVEL Analysis of the Measured High-Resolution Rovibronic Spectra and Definitive Ideal-Gas Thermochemistry of the 16O2 Molecule. Journal of Physical and Chemical Reference Data 2019, 48 (2) https://doi.org/10.1063/1.5083135
    26. Roland Tóbiás, Tibor Furtenbacher, Jonathan Tennyson, Attila G. Császár. Accurate empirical rovibrational energies and transitions of H 2 16 O. Physical Chemistry Chemical Physics 2019, 21 (7) , 3473-3495. https://doi.org/10.1039/C8CP05169K
    27. Nikolai A. Lavrentiev, Alexey I. Privezentsev, Alexander Z. Fazliev. Tabular and Graphic Resources in Quantitative Spectroscopy. 2019, 55-69. https://doi.org/10.1007/978-3-030-23584-0_4
    28. Roland Tóbiás, Tibor Furtenbacher, Attila G. Császár, Olga V. Naumenko, Jonathan Tennyson, Jean-Marie Flaud, Praveen Kumar, Bill Poirier. Critical evaluation of measured rotational–vibrational transitions of four sulphur isotopologues of S16O2. Journal of Quantitative Spectroscopy and Radiative Transfer 2018, 208 , 152-163. https://doi.org/10.1016/j.jqsrt.2018.01.006
    29. Eszter Czinki, Tibor Furtenbacher, Attila G. Császár, André K. Eckhardt, Georg Ch. Mellau. The 1943 K emission spectrum of H216O between 6600 and 7050 cm − 1 . Journal of Quantitative Spectroscopy and Radiative Transfer 2018, 206 , 46-54. https://doi.org/10.1016/j.jqsrt.2017.10.028
    30. Katy L. Chubb, Megan Joseph, Jack Franklin, Naail Choudhury, Tibor Furtenbacher, Attila G. Császár, Glenda Gaspard, Patari Oguoko, Adam Kelly, Sergei N. Yurchenko, Jonathan Tennyson, Clara Sousa-Silva. MARVEL analysis of the measured high-resolution rovibrational spectra of C2H2. Journal of Quantitative Spectroscopy and Radiative Transfer 2018, 204 , 42-55. https://doi.org/10.1016/j.jqsrt.2017.08.018
    31. Jonathan Tennyson, Oleg L Polyansky, Nikolai F Zobov, Alexander Alijah, Attila G Császár. High-accuracy calculations of the rotation-vibration spectrum of ${{\rm{H}}}_{3}^{+}$. Journal of Physics B: Atomic, Molecular and Optical Physics 2017, 50 (23) , 232001. https://doi.org/10.1088/1361-6455/aa8ca6
    32. Stefan Brackertz, Stephan Schlemmer, Oskar Asvany. Searching for new symmetry species of CH 5 + – From lines to states without a model. Journal of Molecular Spectroscopy 2017, 342 , 73-82. https://doi.org/10.1016/j.jms.2017.08.008
    33. Roland Tóbiás, Tibor Furtenbacher, Attila G. Császár. Cycle bases to the rescue. Journal of Quantitative Spectroscopy and Radiative Transfer 2017, 203 , 557-564. https://doi.org/10.1016/j.jqsrt.2017.03.031
    34. Irén Simkó, Tibor Furtenbacher, Jan Hrubý, Nikolai F. Zobov, Oleg L. Polyansky, Jonathan Tennyson, Robert R. Gamache, Tamás Szidarovszky, Nóra Dénes, Attila G. Császár. Recommended Ideal-Gas Thermochemical Functions for Heavy Water and its Substituent Isotopologues. Journal of Physical and Chemical Reference Data 2017, 46 (2) https://doi.org/10.1063/1.4983120
    35. Laura K. McKemmish, Thomas Masseron, Samuel Sheppard, Elizabeth Sandeman, Zak Schofield, Tibor Furtenbacher, Attila G. Császár, Jonathan Tennyson, Clara Sousa-Silva. MARVEL Analysis of the Measured High-resolution Rovibronic Spectra of 48 Ti 16 O. The Astrophysical Journal Supplement Series 2017, 228 (2) , 15. https://doi.org/10.3847/1538-4365/228/2/15

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect