ACS Publications. Most Trusted. Most Cited. Most Read
Computational Studies of Aromatic and Photophysical Properties of Expanded Porphyrins
My Activity

Figure 1Loading Img
    Article

    Computational Studies of Aromatic and Photophysical Properties of Expanded Porphyrins
    Click to copy article linkArticle link copied!

    • Rashid R. Valiev*
      Rashid R. Valiev
      Department of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtanens plats 1, FIN-00014 Helsinki, Finland
      Department of Optics and Spectroscopy, Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russian Federation
      *E-mail: [email protected]
    • Isaac Benkyi
      Isaac Benkyi
      Department of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtanens plats 1, FIN-00014 Helsinki, Finland
      More by Isaac Benkyi
    • Yuri V. Konyshev
      Yuri V. Konyshev
      Department of Optics and Spectroscopy, Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russian Federation
    • Heike Fliegl*
      Heike Fliegl
      Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
      *E-mail: [email protected]
      More by Heike Fliegl
    • Dage Sundholm*
      Dage Sundholm
      Department of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtanens plats 1, FIN-00014 Helsinki, Finland
      Centre for Advanced Study at the Norwegian Academy of Science and Letters, Drammensveien 78, N-0271 Oslo, Norway
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2018, 122, 20, 4756–4767
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpca.8b02311
    Published May 9, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Magnetically induced current densities and ring-current pathways have been calculated at density functional theory (DFT) and second-order Møller–Plesset perturbation theory (MP2) levels of theory for a set of expanded porphyrins consisting of five or six pyrrolic rings. The studied molecules are sapphyrin, cyclo[6]pyrrole, rubyrin, orangarin, rosarin, and amethyrin. Different functionals have been employed to assess the functional dependence of the ring-current strength susceptibility. Vertical singlet and triplet excitation energies have been calculated at the second-order approximate coupled cluster (CC2), expanded multiconfigurational quasi-degenerate perturbation theory (XMC-DPT2), and time-dependent density functional theory levels. The lowest electronic transition of the antiaromatic molecules was found to be pure magnetic transitions providing an explanation for the large paratropic contribution to the total current density. Rate constants for different nonradiative deactivation channels of the lowest excited states have been calculated yielding lifetimes and quantum yields of the lowest excited singlet and triplet states. The calculations show that the spin–orbit interaction between the lowest singlet (S0) and triplet (T1) states of the antiaromatic molecules is strong, whereas for the aromatic molecule the spin–orbit coupling vanishes. The experimentally detected fluorescence from S2 to S0 of amethyrin has been explained. The study shows that there are correlations between the aromatic character and optical properties of the investigated expanded porphyrins.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpca.8b02311.

    • Cartesian coordinates of atoms in the obtained equilibrium geometries. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 45 publications.

    1. Raphael Wilhelmer, Matthias Diez, Johannes K. Krondorfer, Andreas W. Hauser. Molecular Pseudorotation in Phthalocyanines as a Tool for Magnetic Field Control at the Nanoscale. Journal of the American Chemical Society 2024, 146 (21) , 14620-14632. https://doi.org/10.1021/jacs.4c01915
    2. Atif Mahmood, Maria Dimitrova, Dage Sundholm. Current-Density Calculations on Zn-Porphyrin40 Nanorings. The Journal of Physical Chemistry A 2023, 127 (36) , 7452-7459. https://doi.org/10.1021/acs.jpca.3c03564
    3. Carmelo Naim, Pau Besalú-Sala, Robert Zaleśny, Josep M. Luis, Frédéric Castet, Eduard Matito. Are Accelerated and Enhanced Wave Function Methods Accurate to Compute Static Linear and Nonlinear Optical Properties?. Journal of Chemical Theory and Computation 2023, 19 (6) , 1753-1764. https://doi.org/10.1021/acs.jctc.2c01212
    4. Hiroyuki Kawashima, Shusaku Ukai, Ryo Nozawa, Norihito Fukui, Garrett Fitzsimmons, Tim Kowalczyk, Heike Fliegl, Hiroshi Shinokubo. Determinant Factors of Three-Dimensional Aromaticity in Antiaromatic Cyclophanes. Journal of the American Chemical Society 2021, 143 (28) , 10676-10685. https://doi.org/10.1021/jacs.1c04348
    5. Mesías Orozco-Ic, Maria Dimitrova, Jorge Barroso, Dage Sundholm, Gabriel Merino. Magnetically Induced Ring-Current Strengths of Planar and Nonplanar Molecules: New Insights from the Pseudo-π Model. The Journal of Physical Chemistry A 2021, 125 (26) , 5753-5764. https://doi.org/10.1021/acs.jpca.1c03555
    6. Susi Lehtola, Maria Dimitrova, Heike Fliegl, Dage Sundholm. Benchmarking Magnetizabilities with Recent Density Functionals. Journal of Chemical Theory and Computation 2021, 17 (3) , 1457-1468. https://doi.org/10.1021/acs.jctc.0c01190
    7. Glib V. Baryshnikov, Rashid R. Valiev, Rinat T. Nasibullin, Dage Sundholm, Theo Kurten, Hans Ågren. Aromaticity of Even-Number Cyclo[n]carbons (n = 6–100). The Journal of Physical Chemistry A 2020, 124 (51) , 10849-10855. https://doi.org/10.1021/acs.jpca.0c09692
    8. José M. López-de-Luzuriaga, Miguel Monge, M. Elena Olmos, María Rodríguez-Castillo, Inés Soldevilla, Dage Sundholm, Rashid R. Valiev. Perhalophenyl Three-Coordinate Gold(I) Complexes as TADF Emitters: A Photophysical Study from Experimental and Computational Viewpoints. Inorganic Chemistry 2020, 59 (19) , 14236-14244. https://doi.org/10.1021/acs.inorgchem.0c02018
    9. Rashid R. Valiev, Glib V. Baryshnikov, Rinat T. Nasibullin, Dage Sundholm, Hans Ågren. When are Antiaromatic Molecules Paramagnetic?. The Journal of Physical Chemistry C 2020, 124 (38) , 21027-21035. https://doi.org/10.1021/acs.jpcc.0c01559
    10. Qin Xiang, Jing Guo, Jun Xu, Shuaishuai Ding, Zhaoyang Li, Guangwu Li, Hoa Phan, Yanwei Gu, Yanfeng Dang, Zhanqiang Xu, Zongcheng Gong, Wenping Hu, Zebing Zeng, Jishan Wu, Zhe Sun. Stable Olympicenyl Radicals and Their π-Dimers. Journal of the American Chemical Society 2020, 142 (25) , 11022-11031. https://doi.org/10.1021/jacs.0c02287
    11. Kevin Reiter, Florian Weigend, Lukas N. Wirz, Maria Dimitrova, Dage Sundholm. Magnetically Induced Current Densities in Toroidal Carbon Nanotubes. The Journal of Physical Chemistry C 2019, 123 (24) , 15354-15365. https://doi.org/10.1021/acs.jpcc.9b03769
    12. Hiroto Omori, Satoru Hiroto, Youhei Takeda, Heike Fliegl, Satoshi Minakata, Hiroshi Shinokubo. Ni(II) 10-Phosphacorrole: A Porphyrin Analogue Containing Phosphorus at the Meso Position. Journal of the American Chemical Society 2019, 141 (12) , 4800-4805. https://doi.org/10.1021/jacs.8b13169
    13. Lenara Valiulina, R. Valiyev, Victor Cherepanov. First excited singlet state aromaticity of macroheterocycles. Chemical Physics Letters 2025, 858 , 141742. https://doi.org/10.1016/j.cplett.2024.141742
    14. Lenara I. Valiulina, R. Valiyev, Victor N. Cherepanov, Elena V. Stepanova. Aromaticity of biphenylene networks. Physical Chemistry Chemical Physics 2024, 26 (39) , 25648-25654. https://doi.org/10.1039/D4CP03157A
    15. Lenara I. Valiulina, Victor N. Cherepanov, Kirill Khoroshkin. Insight into magnetically induced ring currents and photophysics of six-porphyrin nanorings. Physical Chemistry Chemical Physics 2024, 26 (34) , 22337-22345. https://doi.org/10.1039/D4CP02547D
    16. Niyazbek Kh. Ibrayev, Rashid R. Valiev, Evgeniya V. Seliverstova, Evgeniya P. Menshova, Rinat T. Nasibullin, Dage Sundholm. Molecular phosphorescence enhancement by the plasmon field of metal nanoparticles. Physical Chemistry Chemical Physics 2024, 26 (20) , 14624-14636. https://doi.org/10.1039/D4CP01281J
    17. Shipra Pandit, Manas Ranjan Dash. In pursuit of novel pyriporphyrin—a porphyrin ring expansion congener containing a built-in pyridine moiety by CH radical: a DFT investigation. Structural Chemistry 2023, 34 (4) , 1457-1468. https://doi.org/10.1007/s11224-022-02112-w
    18. Guanghua Liu, Lei Gao, Yi Han, Yao Xiao, Bochao Du, Jianye Gong, Jinlian Hu, Fujin Zhang, He Meng, Xiang Li, Xueliang Shi, Zhe Sun, Jianguo Wang, Gaole Dai, Chunyan Chi, Qing Wang. Symmetry‐Broken Intermolecular Charge Separation of Cationic Radicals. Angewandte Chemie 2023, 135 (15) https://doi.org/10.1002/ange.202301348
    19. Guanghua Liu, Lei Gao, Yi Han, Yao Xiao, Bochao Du, Jianye Gong, Jinlian Hu, Fujin Zhang, He Meng, Xiang Li, Xueliang Shi, Zhe Sun, Jianguo Wang, Gaole Dai, Chunyan Chi, Qing Wang. Symmetry‐Broken Intermolecular Charge Separation of Cationic Radicals. Angewandte Chemie International Edition 2023, 62 (15) https://doi.org/10.1002/anie.202301348
    20. Mesías Orozco-Ic, Dage Sundholm. Magnetic response properties of carbon nano-onions. Physical Chemistry Chemical Physics 2022, 24 (37) , 22487-22496. https://doi.org/10.1039/D2CP02718F
    21. Irene Casademont‐Reig, Luis Soriano‐Agueda, Eloy Ramos‐Cordoba, Miquel Torrent‐Sucarrat, Eduard Matito. Reply to the Correspondence on “How Aromatic Are Molecular Nanorings? The Case of a Six‐Porphyrin Nanoring”**. Angewandte Chemie 2022, 134 (36) https://doi.org/10.1002/ange.202206836
    22. Irene Casademont‐Reig, Luis Soriano‐Agueda, Eloy Ramos‐Cordoba, Miquel Torrent‐Sucarrat, Eduard Matito. Reply to the Correspondence on “How Aromatic Are Molecular Nanorings? The Case of a Six‐Porphyrin Nanoring”**. Angewandte Chemie International Edition 2022, 61 (36) https://doi.org/10.1002/anie.202206836
    23. Mesías Orozco-Ic, Rashid R. Valiev, Dage Sundholm. Non-intersecting ring currents in [12]infinitene. Physical Chemistry Chemical Physics 2022, 24 (11) , 6404-6409. https://doi.org/10.1039/D2CP00637E
    24. Rashid R. Valiev, Theo Kurten, Lenara I. Valiulina, Sergey Yu. Ketkov, Viktor N. Cherepanov, Maria Dimitrova, Dage Sundholm. Magnetically induced ring currents in metallocenothiaporphyrins. Physical Chemistry Chemical Physics 2022, 24 (3) , 1666-1674. https://doi.org/10.1039/D1CP04779E
    25. Raphael J. F. Berger, Maria Dimitrova, Rinat T. Nasibullin, Rashid R. Valiev, Dage Sundholm. Integration of global ring currents using the Ampère–Maxwell law. Physical Chemistry Chemical Physics 2022, 24 (2) , 624-628. https://doi.org/10.1039/D1CP05061C
    26. Eline Desmedt, Tatiana Woller, Jos L. Teunissen, Freija De Vleeschouwer, Mercedes Alonso. Fine-Tuning of Nonlinear Optical Contrasts of Hexaphyrin-Based Molecular Switches Using Inverse Design. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.786036
    27. Mesías Orozco-Ic, Gabriel Merino. The Magnetic Response of Starphenes. Chemistry 2021, 3 (4) , 1381-1391. https://doi.org/10.3390/chemistry3040099
    28. Irene Casademont‐Reig, Raúl Guerrero‐Avilés, Eloy Ramos‐Cordoba, Miquel Torrent‐Sucarrat, Eduard Matito. How Aromatic Are Molecular Nanorings? The Case of a Six‐Porphyrin Nanoring**. Angewandte Chemie 2021, 133 (45) , 24282-24290. https://doi.org/10.1002/ange.202108997
    29. Irene Casademont‐Reig, Raúl Guerrero‐Avilés, Eloy Ramos‐Cordoba, Miquel Torrent‐Sucarrat, Eduard Matito. How Aromatic Are Molecular Nanorings? The Case of a Six‐Porphyrin Nanoring**. Angewandte Chemie International Edition 2021, 60 (45) , 24080-24088. https://doi.org/10.1002/anie.202108997
    30. Markus Rauhalahti, Dage Sundholm, Mikael P. Johansson. Magnetically induced ring currents in naphthalene-fused heteroporphyrinoids. Physical Chemistry Chemical Physics 2021, 23 (31) , 16629-16634. https://doi.org/10.1039/D1CP02381K
    31. Maria Dimitrova, Dage Sundholm. Current density, current-density pathways, and molecular aromaticity. 2021, 155-194. https://doi.org/10.1016/B978-0-12-822723-7.00005-4
    32. Rashid R. Valiev, Lenara I. Valiulina, Heike Fliegl, Dage Sundholm. The effect of anion complexation on the aromatic properties of aromatic and antiaromatic porphyrinoids. New Journal of Chemistry 2020, 44 (47) , 20643-20650. https://doi.org/10.1039/D0NJ04470A
    33. Harrison D. Root, Daniel N. Mangel, James T. Brewster, Hadiqa Zafar, Adam Samia, Graeme Henkelman, Jonathan L. Sessler. Amethyrin-type expanded porphyrins that display anti-aromatic character upon protonation. Chemical Communications 2020, 56 (69) , 9994-9997. https://doi.org/10.1039/D0CC04400H
    34. Bryan Kudisch, Margherita Maiuri, Luca Moretti, Maria B. Oviedo, Leon Wang, Daniel G. Oblinsky, Robert K. Prud’homme, Bryan M. Wong, Stephen A. McGill, Gregory D. Scholes. Ring currents modulate optoelectronic properties of aromatic chromophores at 25 T. Proceedings of the National Academy of Sciences 2020, 117 (21) , 11289-11298. https://doi.org/10.1073/pnas.1918148117
    35. Guglielmo Monaco, Emeritus Lawrence T. Scott, Riccardo Zanasi. Reversal of Clar's Aromatic‐Sextet Rule in Ultrashort Single‐End‐Capped [5,5] Carbon Nanotubes. ChemistryOpen 2020, 9 (5) , 616-622. https://doi.org/10.1002/open.202000091
    36. Donghai Yu, Chunying Rong, Tian Lu, Paul Geerlings, Frank De Proft, Mercedes Alonso, Shubin Liu. Switching between Hückel and Möbius aromaticity: a density functional theory and information-theoretic approach study. Physical Chemistry Chemical Physics 2020, 22 (8) , 4715-4730. https://doi.org/10.1039/C9CP06120G
    37. R.R. Valiev. Competition between the nonadiabatic electronic state-mixing and the Herzberg-Teller vibronic effects in fluorescence process of tetraoxa[8]circulene. Chemical Physics Letters 2020, 738 , 136914. https://doi.org/10.1016/j.cplett.2019.136914
    38. Soji Shimizu. 5,15-Diheteroporphyrins Synthesized from α,α'-Dihalodipyrrin as a Key Building Block. HETEROCYCLES 2020, 100 (8) , 1123. https://doi.org/10.3987/REV-20-927
    39. Ryo Nozawa, Jinseok Kim, Juwon Oh, Anna Lamping, Yemei Wang, Soji Shimizu, Ichiro Hisaki, Tim Kowalczyk, Heike Fliegl, Dongho Kim, Hiroshi Shinokubo. Three-dimensional aromaticity in an antiaromatic cyclophane. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-11467-4
    40. Gleb V. Baryshnikov, Rashid R. Valiev, Qizhao Li, Chengjie Li, Yongshu Xie, Hans Ågren. Computational study of aromaticity, 1 H NMR spectra and intermolecular interactions of twisted thia-norhexaphyrin and its multiply annulated polypyrrolic derivatives. Physical Chemistry Chemical Physics 2019, 21 (45) , 25334-25343. https://doi.org/10.1039/C9CP04819G
    41. R. R. Valiev, G. V. Baryshnikov, D. Sundholm. Relations between the aromaticity and magnetic dipole transitions in the electronic spectra of hetero[8]circulenes. Physical Chemistry Chemical Physics 2018, 20 (48) , 30239-30246. https://doi.org/10.1039/C8CP05694C
    42. Rashid R. Valiev, Anna K. Drozdova, Pavel V. Petunin, Pavel S. Postnikov, Marina E. Trusova, Victor N. Cherepanov, Dage Sundholm. The aromaticity of verdazyl radicals and their closed-shell charged species. New Journal of Chemistry 2018, 42 (24) , 19987-19994. https://doi.org/10.1039/C8NJ04341H
    43. Akihide Nishiyama, Masaya Fukuda, Shigeki Mori, Ko Furukawa, Heike Fliegl, Hiroyuki Furuta, Soji Shimizu. Rational Synthesis of Antiaromatic 5,15‐Dioxaporphyrin and Oxidation into β,β‐Linked Dimers. Angewandte Chemie 2018, 130 (31) , 9876-9881. https://doi.org/10.1002/ange.201804648
    44. Akihide Nishiyama, Masaya Fukuda, Shigeki Mori, Ko Furukawa, Heike Fliegl, Hiroyuki Furuta, Soji Shimizu. Rational Synthesis of Antiaromatic 5,15‐Dioxaporphyrin and Oxidation into β,β‐Linked Dimers. Angewandte Chemie International Edition 2018, 57 (31) , 9728-9733. https://doi.org/10.1002/anie.201804648
    45. Rashid R. Valiev, Heike Fliegl, Dage Sundholm. Bicycloaromaticity and Baird-type bicycloaromaticity of dithienothiophene-bridged [34]octaphyrins. Physical Chemistry Chemical Physics 2018, 20 (26) , 17705-17713. https://doi.org/10.1039/C8CP03112F

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2018, 122, 20, 4756–4767
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpca.8b02311
    Published May 9, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    1262

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.