Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVB: Liquids, Chemical...B: Liquids, Chemical and Dynamical Processes in Solution, Spectroscopy in SolutionNEXT

Are There Magic Compositions in Deep Eutectic Solvents? Effects of Composition and Water Content in Choline Chloride/Ethylene Glycol from Ab Initio Molecular Dynamics

Cite this: J. Phys. Chem. B 2020, 124, 34, 7433–7443
Publication Date (Web):July 29, 2020
https://doi.org/10.1021/acs.jpcb.0c04844
Copyright © 2020 American Chemical Society

    Article Views

    3200

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Ab initio molecular dynamics simulations at elevated temperature are carried out to investigate the microscopic structure of liquid mixtures (deep eutectic solvents) composed of 1:1 and 1:2 choline chloride:ethylene glycol ([Ch]Cl:EG) and 1:2:1 choline chloride:ethylene glycol:water ([Ch]Cl:EG:water). In the present study, we aim to understand the composition effect on the choline chloride:ethylene glycol deep eutectic solvent and whether there is a specific composition in these solvents with marked special behavior at the microscopic level. The role of hydrogen bonds between all components was investigated through distribution functions. The structures are governed by the balance of hydrogen bond networks and the different populations of the EG molecule conformations. In the water-containing system, water competes for association with the anion. Also, the charge distribution analysis, which is consistent with structural analysis, indicates that the results are not impacted by changing composition. In addition, the charge transfer observed between ions, EG, and water molecules appears to be significant.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcb.0c04844.

    • Additional figures containing the center of mass and site–site interval RDFs (Figure S1), the site–site RDFs–NIs (Figures S2, S3, S5, and S6), and CDFs (Figures S4 and S5) along with the atomic charge distribution with the Blöchl method (Figure S8). (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 94 publications.

    1. Ibrahim Alfurayj, Desiree Mae Prado, Ross Clark Prado, Anna Cristina Samia, Clemens Burda. Unusual Hydration Properties of Choline Fluoride-Based Deep Eutectic Solvents. The Journal of Physical Chemistry B 2024, 128 (11) , 2762-2772. https://doi.org/10.1021/acs.jpcb.3c07625
    2. Zhen Song, Jiahui Chen, Jie Cheng, Guzhong Chen, Zhiwen Qi. Computer-Aided Molecular Design of Ionic Liquids as Advanced Process Media: A Review from Fundamentals to Applications. Chemical Reviews 2024, 124 (2) , 248-317. https://doi.org/10.1021/acs.chemrev.3c00223
    3. Akshay Malik, Hemant K. Kashyap. Solvation Shell Anatomy of H2S and CO Dissolved in Reline and Ethaline Deep Eutectic Solvents. The Journal of Physical Chemistry B 2023, 127 (48) , 10392-10403. https://doi.org/10.1021/acs.jpcb.3c03411
    4. Stephanie Spittle, Ibrahim Alfurayj, Benworth Bryce Hansen, Kaylie Glynn, William Brackett, Rathiesh Pandian, Clemens Burda, Joshua Sangoro. Enhanced Dynamics and Charge Transport at the Eutectic Point: A New Paradigm for the Use of Deep Eutectic Solvent Systems. JACS Au 2023, 3 (11) , 3024-3030. https://doi.org/10.1021/jacsau.3c00420
    5. Changhao Zhu, Xuye He, Yun Shi, Zhenkang Wang, Baojiu Hao, Wanhao Chen, Hao Yang, Lifang Zhang, Haoqing Ji, Jie Liu, Chenglin Yan, Jinqiu Zhou, Tao Qian. Strong Replaces Weak: Design of H-Bond Interactions Enables Cryogenic Aqueous Zn Metal Batteries. ACS Nano 2023, 17 (21) , 21614-21625. https://doi.org/10.1021/acsnano.3c06687
    6. Tubai Chowdhury, Srijan Chatterjee, Samadhan H. Deshmukh, Sayan Bagchi. A Systematic Study on the Role of Hydrogen Bond Donors in Dictating the Dynamics of Choline-Based Deep Eutectic Solvents. The Journal of Physical Chemistry B 2023, 127 (33) , 7299-7308. https://doi.org/10.1021/acs.jpcb.3c02191
    7. Man-Ni Nie, Zhen Wang, Qian-Hang Niu, Jia-Xing Dai, Qi-Qi Wang, Jin-Song Peng, Pengju Ji. Acidity Scale in a Choline Chloride- and Ethylene Glycol-Based Deep Eutectic Solvent and Its Implication on Carbon Dioxide Absorption. The Journal of Organic Chemistry 2023, 88 (9) , 5368-5376. https://doi.org/10.1021/acs.joc.2c02942
    8. Thaciana Malaspina, Guilherme Colherinhas, Stephen E. Weitzner, Brandon C. Wood, Eudes Eterno Fileti. Ab Initio Dynamics of Graphene and Graphyne Electrodes in Vacuum and in the Presence of Electrolytes. The Journal of Physical Chemistry C 2023, 127 (13) , 6515-6523. https://doi.org/10.1021/acs.jpcc.2c08699
    9. Akshay Malik, Hemant K. Kashyap. Solvation Shell Structures of Ammonia in Reline and Ethaline Deep Eutectic Solvents. The Journal of Physical Chemistry B 2023, 127 (11) , 2499-2510. https://doi.org/10.1021/acs.jpcb.2c07929
    10. Stefano Nejrotti, Achille Antenucci, Carlotta Pontremoli, Lorenzo Gontrani, Nadia Barbero, Marilena Carbone, Matteo Bonomo. Critical Assessment of the Sustainability of Deep Eutectic Solvents: A Case Study on Six Choline Chloride-Based Mixtures. ACS Omega 2022, 7 (51) , 47449-47461. https://doi.org/10.1021/acsomega.2c06140
    11. Vira Agieienko, Vadim Neklyudov, Richard Buchner. Why Does Ethaline Apparently Behave as an Ideal Binary Mixture?. The Journal of Physical Chemistry Letters 2022, 13 (46) , 10805-10809. https://doi.org/10.1021/acs.jpclett.2c02901
    12. Akshay Malik, Hemant K. Kashyap. Solvent Organization around Methane Dissolved in Archetypal Reline and Ethaline Deep Eutectic Solvents as Revealed by AIMD Investigation. The Journal of Physical Chemistry B 2022, 126 (34) , 6472-6482. https://doi.org/10.1021/acs.jpcb.2c02406
    13. Yong Zhang, Henry Squire, Burcu Gurkan, Edward J. Maginn. Refined Classical Force Field for Choline Chloride and Ethylene Glycol Mixtures over Wide Composition Range. Journal of Chemical & Engineering Data 2022, 67 (8) , 1864-1871. https://doi.org/10.1021/acs.jced.1c00841
    14. Gabriela S. A. Reis, Rafael M. de Souza, Mauro C. C. Ribeiro. Molecular Dynamics Simulation Study of the Far-Infrared Spectrum of a Deep Eutectic Solvent. The Journal of Physical Chemistry B 2022, 126 (30) , 5695-5705. https://doi.org/10.1021/acs.jpcb.2c03277
    15. Matteo Busato, Alessandro Tofoni, Giorgia Mannucci, Francesco Tavani, Alessandra Del Giudice, Andrea Colella, Mauro Giustini, Paola D’Angelo. On the Role of Water in the Formation of a Deep Eutectic Solvent Based on NiCl2·6H2O and Urea. Inorganic Chemistry 2022, 61 (23) , 8843-8853. https://doi.org/10.1021/acs.inorgchem.2c00864
    16. Omid Shayestehpour, Stefan Zahn. Ion Correlation in Choline Chloride–Urea Deep Eutectic Solvent (Reline) from Polarizable Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2022, 126 (18) , 3439-3449. https://doi.org/10.1021/acs.jpcb.1c10671
    17. Barbara Kirchner, Jan Blasius, Vahideh Alizadeh, Andreas Gansäuer, Oldamur Hollóczki. Chemistry Dissolved in Ionic Liquids. A Theoretical Perspective. The Journal of Physical Chemistry B 2022, 126 (4) , 766-777. https://doi.org/10.1021/acs.jpcb.1c09092
    18. Di Wu, Hua Jie Feng, Li Hua Xu, Wen Yu Zhang, Zhong Jie Zhang, Xiang Ying Chen, Peng Cui. Optimal Design of a Small-Molecule Crowding Electrolyte and Molecular Dynamics Simulation of an Electrode–Electrolyte Interface for Aqueous Supercapacitors with a Wide Operating Temperature Range. ACS Applied Energy Materials 2022, 5 (1) , 355-366. https://doi.org/10.1021/acsaem.1c02889
    19. Olga V. Kazarina, Vira N. Agieienko, Anton N. Petukhov, Andrey V. Vorotyntsev, Maria E. Atlaskina, Artem A. Atlaskin, Sergey S. Kryuchkov, Atryom N. Markov, Alexander V. Nyuchev, Ilya V. Vorotyntsev. Deep Eutectic Solvents Composed of Urea and New Salts of a Choline Family for Efficient Ammonia Absorption. Journal of Chemical & Engineering Data 2022, 67 (1) , 138-150. https://doi.org/10.1021/acs.jced.1c00684
    20. Rafael Maglia de Souza, Mikko Karttunen, Mauro Carlos Costa Ribeiro. Fine-Tuning the Polarizable CL&Pol Force Field for the Deep Eutectic Solvent Ethaline. Journal of Chemical Information and Modeling 2021, 61 (12) , 5938-5947. https://doi.org/10.1021/acs.jcim.1c01181
    21. Hirad S. Salehi, Othonas A. Moultos, Thijs J. H. Vlugt. Interfacial Properties of Hydrophobic Deep Eutectic Solvents with Water. The Journal of Physical Chemistry B 2021, 125 (44) , 12303-12314. https://doi.org/10.1021/acs.jpcb.1c07796
    22. Ibrahim Alfurayj, Carla Cecilia Fraenza, Yong Zhang, Rathiesh Pandian, Stephanie Spittle, Bryce Hansen, William Dean, Burcu Gurkan, Robert Savinell, Steve Greenbaum, Edward Maginn, Joshua Sangoro, Clemens Burda. Solvation Dynamics of Wet Ethaline: Water is the Magic Component. The Journal of Physical Chemistry B 2021, 125 (31) , 8888-8901. https://doi.org/10.1021/acs.jpcb.1c04629
    23. Qingsong Chen, Lingxiao Chaihu, Xiaopeng Yao, Xiwang Cao, Wentao Bi, Jun Lin, David Da Yong Chen. Molecular Property-Tailored Soy Protein Extraction Process Using a Deep Eutectic Solvent. ACS Sustainable Chemistry & Engineering 2021, 9 (30) , 10083-10092. https://doi.org/10.1021/acssuschemeng.1c01848
    24. Xiang Zhong, Caroline Velez, Orlando Acevedo. Partial Charges Optimized by Genetic Algorithms for Deep Eutectic Solvent Simulations. Journal of Chemical Theory and Computation 2021, 17 (5) , 3078-3087. https://doi.org/10.1021/acs.jctc.1c00047
    25. Kateryna Goloviznina, Zheng Gong, Margarida F. Costa Gomes, Agílio A. H. Pádua. Extension of the CL&Pol Polarizable Force Field to Electrolytes, Protic Ionic Liquids, and Deep Eutectic Solvents. Journal of Chemical Theory and Computation 2021, 17 (3) , 1606-1617. https://doi.org/10.1021/acs.jctc.0c01002
    26. Nicolas Schaeffer, Dinis O. Abranches, Liliana P. Silva, Mónia A.R. Martins, Pedro J. Carvalho, Olga Russina, Alessandro Triolo, Laurent Paccou, Yannick Guinet, Alain Hedoux, João A.P. Coutinho. Non-Ideality in Thymol + Menthol Type V Deep Eutectic Solvents. ACS Sustainable Chemistry & Engineering 2021, 9 (5) , 2203-2211. https://doi.org/10.1021/acssuschemeng.0c07874
    27. Burcu E. Gurkan, Edward J. Maginn, Emily B. Pentzer. Deep Eutectic Solvents: A New Class of Versatile Liquids. The Journal of Physical Chemistry B 2020, 124 (50) , 11313-11315. https://doi.org/10.1021/acs.jpcb.0c10099
    28. Supreet Kaur, Monika Kumari, Hemant K. Kashyap. Microstructure of Deep Eutectic Solvents: Current Understanding and Challenges. The Journal of Physical Chemistry B 2020, 124 (47) , 10601-10616. https://doi.org/10.1021/acs.jpcb.0c07934
    29. Nicolás F. Gajardo-Parra, Vincenzo P. Cotroneo-Figueroa, Paulo Aravena, Velisa Vesovic, Roberto I. Canales. Viscosity of Choline Chloride-Based Deep Eutectic Solvents: Experiments and Modeling. Journal of Chemical & Engineering Data 2020, 65 (11) , 5581-5592. https://doi.org/10.1021/acs.jced.0c00715
    30. A. Chaumont, E. Engler, R. Schurhammer. Is Charge Scaling Really Mandatory when Developing Fixed-Charge Atomistic Force Fields for Deep Eutectic Solvents?. The Journal of Physical Chemistry B 2020, 124 (33) , 7239-7250. https://doi.org/10.1021/acs.jpcb.0c04907
    31. Adroit T. N. Fajar, Takafumi Hanada, Aditya D. Hartono, Masahiro Goto. Estimating the phase diagrams of deep eutectic solvents within an extensive chemical space. Communications Chemistry 2024, 7 (1) https://doi.org/10.1038/s42004-024-01116-3
    32. Christopher M.A. Brett. Perspectives for the use of deep eutectic solvents in the preparation of electrochemical sensors and biosensors. Current Opinion in Electrochemistry 2024, 45 , 101465. https://doi.org/10.1016/j.coelec.2024.101465
    33. Chandan Prasad Sahoo, Deepak Kumar Panda, B.L. Bhargava. Computational insight into the effect of alkyl chain length in tetraalkylammonium-based deep eutectic solvents. Journal of Molecular Graphics and Modelling 2024, 128 , 108717. https://doi.org/10.1016/j.jmgm.2024.108717
    34. Srijan Chatterjee, Samadhan H. Deshmukh, Tubai Chowdhury, Sayan Bagchi. Viscosity effects on the dynamics of diols and diol‐based deep eutectic solvents. Photochemistry and Photobiology 2024, 155 https://doi.org/10.1111/php.13950
    35. Jan Philipp Bittner, Irina Smirnova, Sven Jakobtorweihen. Investigating Biomolecules in Deep Eutectic Solvents with Molecular Dynamics Simulations: Current State, Challenges and Future Perspectives. Molecules 2024, 29 (3) , 703. https://doi.org/10.3390/molecules29030703
    36. Stephany Zárate-Roldán, María J. Trujillo-Rodríguez, M. Concepción Gimeno, Raquel P. Herrera. L-proline-based deep eutectic solvents as green and enantioselective organocatalyst/media for aldol reaction. Journal of Molecular Liquids 2024, 396 , 123971. https://doi.org/10.1016/j.molliq.2024.123971
    37. Tom Frömbgen, Jan Blasius, Leonard Dick, Katrin Drysch, Vahideh Alizadeh, Luke Wylie, Barbara Kirchner. Reducing Uncertainties in and Analysis of Ionic Liquid Trajectories. 2024, 692-722. https://doi.org/10.1016/B978-0-12-821978-2.00097-0
    38. Zhida Zuo, Bei Cao, Yangxin Wang, Chunyan Ma, Xiaohua Lu, Xiaoyan Ji. Thermodynamic study of choline chloride-based deep eutectic solvents with dimethyl sulfoxide and isopropanol. Journal of Molecular Liquids 2024, 394 , 123731. https://doi.org/10.1016/j.molliq.2023.123731
    39. Yannik Hinz, Roland Böhmer. 2H and 13C nuclear spin relaxation unravels dynamic heterogeneities in deep eutectic solvents of ethylene glycol, glycerol, or urea with choline chloride. The Journal of Chemical Physics 2023, 159 (22) https://doi.org/10.1063/5.0177377
    40. Man Zhou, Olugbenga Abiola Fakayode, Manni Ren, Haoxin Li, Jiakang Liang, Abu ElGasim Ahmed Yagoub, Zhiliang Fan, Cunshan Zhou. Laccase-catalyzed lignin depolymerization in deep eutectic solvents: challenges and prospects. Bioresources and Bioprocessing 2023, 10 (1) https://doi.org/10.1186/s40643-023-00640-9
    41. Thomas Di Pietro, Laetitia Cesari, Fabrice Mutelet. Influence of water on the conformations and interactions within two choline chloride-based deep eutectic solvents: a density functional theory investigation. Structural Chemistry 2023, 34 (6) , 2165-2183. https://doi.org/10.1007/s11224-023-02156-6
    42. Tubai Chowdhury, Sucheta Ghosh, Akhil Pathania, Shivshankar Kore, Akhil B Mon, Srijan Chatterjee, Samadhan H. Deshmukh, Sayan Bagchi. Impact of water addition on fluctuation dynamics in viscous solvents with varied heterogeneity: A 2D IR spectroscopic study. Chemical Physics Impact 2023, 7 , 100332. https://doi.org/10.1016/j.chphi.2023.100332
    43. Xiaochen Shen, Nicholas Sinclair, Christian Kellamis, Burcu Gurkan, Jesse Wainright, Robert Savinell. Effects of alkyl chain length and halide anion on hydrogen bonding, electrochemical transport properties and double layer capacitance in eutectic solvents. Journal of Molecular Liquids 2023, 391 , 123314. https://doi.org/10.1016/j.molliq.2023.123314
    44. Thaciana Malaspina, Iuliia V. Voroshylova, M. Natália D.S. Cordeiro, Eudes Eterno Fileti. Probing the local structures of Choline-Glycine Electrolytes: Insights from ab initio simulations. Journal of Molecular Liquids 2023, 390 , 122946. https://doi.org/10.1016/j.molliq.2023.122946
    45. Dipeshkumar D. Kachhadiya, Z.V.P. Murthy. Highly efficient deep eutectic solvents coated MIL-53(Fe) embedded polyvinylidenefluoride MMMs for phenol separation using pervaporation. Journal of Molecular Liquids 2023, 390 , 122981. https://doi.org/10.1016/j.molliq.2023.122981
    46. Paulo Aravena, Esteban Cea-Klapp, Nicolás F. Gajardo-Parra, Christoph Held, José Matías Garrido, Roberto I. Canales. Effect of water and hydrogen bond acceptor on the density and viscosity of glycol-based eutectic solvents. Journal of Molecular Liquids 2023, 389 , 122856. https://doi.org/10.1016/j.molliq.2023.122856
    47. Priyanka A. Shah, Vishwajit Chavda, Darshna Hirpara, Vinay S. Sharma, Pranav S. Shrivastav, Sanjeev Kumar. Exploring the potential of deep eutectic solvents in pharmaceuticals: Challenges and opportunities. Journal of Molecular Liquids 2023, 390 , 123171. https://doi.org/10.1016/j.molliq.2023.123171
    48. E. Ferreira, G. Ramos-Ortiz, A. Vazquez, M. Trejo-Durán. Third-order nonlinear optical properties of choline chloride based deep eutectic solvents: Theoretical and experimental studies. Journal of Molecular Liquids 2023, 384 , 122253. https://doi.org/10.1016/j.molliq.2023.122253
    49. Richard Buchner, Vira Agieienko. Ethaline and related systems: may be not “deep” eutectics but clearly interesting ionic liquids. Pure and Applied Chemistry 2023, 95 (7) , 833-840. https://doi.org/10.1515/pac-2022-1112
    50. Dinis O. Abranches, João A.P. Coutinho. Everything You Wanted to Know about Deep Eutectic Solvents but Were Afraid to Be Told. Annual Review of Chemical and Biomolecular Engineering 2023, 14 (1) , 141-163. https://doi.org/10.1146/annurev-chembioeng-101121-085323
    51. Fangchen Zhen, Philippe Hapiot. Electrochemical reduction of quinones in ethaline chosen as an example of deep eutectic solvent. Electrochemical Science Advances 2023, 3 (3) https://doi.org/10.1002/elsa.202100148
    52. Gonzalo A. Ojeda, Margarita M. Vallejos, Sonia C. Sgroppo, Concepción Sánchez-Moreno, Begoña de Ancos. Enhanced extraction of phenolic compounds from mango by-products using deep eutectic solvents. Heliyon 2023, 9 (6) , e16912. https://doi.org/10.1016/j.heliyon.2023.e16912
    53. Srijan Chatterjee, Tubai Chowdhury, Sayan Bagchi. Does variation in composition affect dynamics when approaching the eutectic composition?. The Journal of Chemical Physics 2023, 158 (11) https://doi.org/10.1063/5.0139153
    54. Sara Rozas, Lorena Zamora, Cristina Benito, Mert Atilhan, Santiago Aparicio. A study on monoterpenoid-based natural deep eutectic solvents. Green Chemical Engineering 2023, 4 (1) , 99-114. https://doi.org/10.1016/j.gce.2022.05.005
    55. Jie-Du Wu, Yu Ding, Feng Zhu, Yu Gu, Wei-Wei Wang, Lan Sun, Bing-Wei Mao, Jia-Wei Yan. The Role of Water Content of Deep Eutectic Solvent Ethaline in the Anodic Process of Gold Electrode. Molecules 2023, 28 (5) , 2300. https://doi.org/10.3390/molecules28052300
    56. Yihua Xie, Jianhang Huang, Taoyi Kong, Xing Zhou, Kai Wu, Xiaoyu Liu, Jin Yi, Lidan Xing, Yongyao Xia. Moisture-activated deep eutectic electrolyte enabling stable metal Zn anode. Energy Storage Materials 2023, 56 , 218-226. https://doi.org/10.1016/j.ensm.2023.01.013
    57. Alessandro Triolo, Fabrizio Lo Celso, Olga Russina. Liquid structure of a water-based, hydrophobic and natural deep eutectic solvent: The case of thymol-water. A Molecular Dynamics study. Journal of Molecular Liquids 2023, 372 , 121151. https://doi.org/10.1016/j.molliq.2022.121151
    58. Yuling Zhang, Hongwei Ren, Yize Liu, Meiyu Li, Adnan Hameed Rasheed, Hajar Alias, Erhong Duan. Quantum Chemical and Experimental Insight into Structure, Physicochemical Properties and Dissolving Behavior of Deep Eutectic Solvents. Journal of Computational Biophysics and Chemistry 2022, 21 (08) , 883-907. https://doi.org/10.1142/S2737416522300048
    59. Leon de Villiers Engelbrecht, Xiaoyan Ji, Carlo Maria Carbonaro, Aatto Laaksonen, Francesca Mocci. MD simulations explain the excess molar enthalpies in pseudo-binary mixtures of a choline chloride-based deep eutectic solvent with water or methanol. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.983281
    60. Jiahui Chen, Fengyuan Zhu, Hao Qin, Zhen Song, Zhiwen Qi, Kai Sundmacher. Rational eutectic solvent design by linking regular solution theory with QSAR modelling. Chemical Engineering Science 2022, 262 , 118042. https://doi.org/10.1016/j.ces.2022.118042
    61. Oliver S. Hammond, Adrian Sanchez-Fernandez, Rachel Tyte, Robert Dalgliesh, Andrew J. Smith, Karen J. Edler. Mix-and-Match Diols: Adjusting Self-Assembly of Micellar Phases in Choline Chloride Eutectics. Crystals 2022, 12 (11) , 1621. https://doi.org/10.3390/cryst12111621
    62. Adriaan van den Bruinhorst, Margarida Costa Gomes. Is there depth to eutectic solvents?. Current Opinion in Green and Sustainable Chemistry 2022, 37 , 100659. https://doi.org/10.1016/j.cogsc.2022.100659
    63. Ahmad Alhadid, Sahar Nasrallah, Liudmila Mokrushina, Mirjana Minceva. Design of Deep Eutectic Systems: Plastic Crystalline Materials as Constituents. Molecules 2022, 27 (19) , 6210. https://doi.org/10.3390/molecules27196210
    64. Deepak Kumar Panda, B.L. Bhargava. Effect of hydration on intermolecular interactions in tetrabutylammonium chloride based deep eutectic solvents. Journal of Molecular Liquids 2022, 363 , 119959. https://doi.org/10.1016/j.molliq.2022.119959
    65. Fangchen Zhen, Philippe Hapiot. Electron Transfer Kinetics in Ethaline/Water Mixtures: An Apparent Non‐Marcus Behavior in a Deep Eutectic Solvent. ChemElectroChem 2022, 9 (16) https://doi.org/10.1002/celc.202200351
    66. Oliver S. Hammond, Ria Atri, Daniel T. Bowron, Karen J. Edler. Neutron Diffraction Study of Indole Solvation in Deep Eutectic Systems of Choline Chloride, Malic Acid, and Water. Chemistry – A European Journal 2022, 28 (41) https://doi.org/10.1002/chem.202200566
    67. Caroline Velez, Orlando Acevedo. Simulation of deep eutectic solvents: Progress to promises. WIREs Computational Molecular Science 2022, 12 (4) https://doi.org/10.1002/wcms.1598
    68. Ana I. M. C. Lobo Ferreira, Sérgio M. Vilas-Boas, Rodrigo M. A. Silva, Mónia A. R. Martins, Dinis. O. Abranches, Paula C. R. Soares-Santos, Filipe A. Almeida Paz, Olga Ferreira, Simão P. Pinho, Luís M. N. B. F. Santos, João A. P. Coutinho. Extensive characterization of choline chloride and its solid–liquid equilibrium with water. Physical Chemistry Chemical Physics 2022, 24 (24) , 14886-14897. https://doi.org/10.1039/D2CP00377E
    69. Dinis O. Abranches, João A.P. Coutinho. Type V deep eutectic solvents: Design and applications. Current Opinion in Green and Sustainable Chemistry 2022, 35 , 100612. https://doi.org/10.1016/j.cogsc.2022.100612
    70. Deepak Kumar Panda, B.L. Bhargava. Molecular dynamics investigation of non-ionic deep eutectic solvents. Journal of Molecular Graphics and Modelling 2022, 113 , 108152. https://doi.org/10.1016/j.jmgm.2022.108152
    71. Sara Rozas, Mert Atilhan, Santiago Aparicio. A density functional theory based tight-binding study on the water effect on nanostructuring of choline chloride + ethylene glycol deep eutectic solvent. The Journal of Chemical Physics 2022, 156 (20) https://doi.org/10.1063/5.0091665
    72. Li Hua Xu, Di Wu, Yan Wu Zhu, Xiang Ying Chen, Zhong Jie Zhang. Deep eutectic solvents as effective electrolyte from potassium iodide and ethylene glycol exhibiting redox behavior for supercapacitor application. Journal of Energy Storage 2022, 48 , 103955. https://doi.org/10.1016/j.est.2022.103955
    73. Oliver S. Hammond, Anja-Verena Mudring. Ionic liquids and deep eutectics as a transformative platform for the synthesis of nanomaterials. Chemical Communications 2022, 58 (24) , 3865-3892. https://doi.org/10.1039/D1CC06543B
    74. Mehdi Shakourian-Fard, S. Maryamdokht Taimoory, Hamid Reza Ghenaatian, Ganesh Kamath, John F. Trant. Effect of mono-vacant defects on the adsorption properties of deep eutectic solvents onto hexagonal boron-nitride nanoflakes. Journal of Molecular Liquids 2022, 349 , 118122. https://doi.org/10.1016/j.molliq.2021.118122
    75. Man Zhou, Olugbenga Abiola Fakayode, Abu ElGasim Ahmed Yagoub, Qinghua Ji, Cunshan Zhou. Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization. Renewable and Sustainable Energy Reviews 2022, 156 , 111986. https://doi.org/10.1016/j.rser.2021.111986
    76. Zhong Jie Zhang, Xiang Ying Chen, Hua Jie Feng. High-voltage and wide temperature aqueous supercapacitors aided by deep eutectic solvents. Journal of Electroanalytical Chemistry 2022, 908 , 116082. https://doi.org/10.1016/j.jelechem.2022.116082
    77. Saffron J. Bryant, Andrew J. Christofferson, Tamar L. Greaves, Christopher F. McConville, Gary Bryant, Aaron Elbourne. Bulk and interfacial nanostructure and properties in deep eutectic solvents: Current perspectives and future directions. Journal of Colloid and Interface Science 2022, 608 , 2430-2454. https://doi.org/10.1016/j.jcis.2021.10.163
    78. Dmitry Tolmachev, Natalia Lukasheva, Ruslan Ramazanov, Victor Nazarychev, Natalia Borzdun, Igor Volgin, Maria Andreeva, Artyom Glova, Sofia Melnikova, Alexey Dobrovskiy, Steven A. Silber, Sergey Larin, Rafael Maglia de Souza, Mauro Carlos Costa Ribeiro, Sergey Lyulin, Mikko Karttunen. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. International Journal of Molecular Sciences 2022, 23 (2) , 645. https://doi.org/10.3390/ijms23020645
    79. Cixin Huang, Xiunian Chen, Chao Wei, Hongwei Wang, Hua Gao. Deep Eutectic Solvents as Active Pharmaceutical Ingredient Delivery Systems in the Treatment of Metabolic Related Diseases. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.794939
    80. Sara Rozas, Cristina Benito, Rafael Alcalde, Mert Atilhan, Santiago Aparicio. Insights on the water effect on deep eutectic solvents properties and structuring: The archetypical case of choline chloride + ethylene glycol. Journal of Molecular Liquids 2021, 344 , 117717. https://doi.org/10.1016/j.molliq.2021.117717
    81. Alberto Gutiérrez, Mert Atilhan, Santiago Aparicio. Molecular dynamics study on water confinement in deep eutectic solvents. Journal of Molecular Liquids 2021, 339 , 116758. https://doi.org/10.1016/j.molliq.2021.116758
    82. Ícaro F.T. de Souza, Vitor H. Paschoal, Kalil Bernardino, Thamires A. Lima, Luke L. Daemen, Y. Z, Mauro C.C. Ribeiro. Vibrational spectroscopy and molecular dynamics simulation of choline oxyanions salts. Journal of Molecular Liquids 2021, 340 , 117100. https://doi.org/10.1016/j.molliq.2021.117100
    83. Payam Kalhor, Ommolbanin Yarivand, Kumars Seifpanahi-Shabani. Quantum chemical calculations on dissolution of dimethylformamide in ethaline. Journal of Molecular Graphics and Modelling 2021, 107 , 107966. https://doi.org/10.1016/j.jmgm.2021.107966
    84. Joshua A. Hammons, Quinn A. Besford, Jan Ilavsky, Andrew J. Christofferson. Manipulating meso-scale solvent structure from Pd nanoparticle deposits in deep eutectic solvents. The Journal of Chemical Physics 2021, 155 (7) https://doi.org/10.1063/5.0058605
    85. Deepak Kumar Panda, B.L. Bhargava. Intermolecular interactions in tetrabutylammonium chloride based deep eutectic solvents: Classical molecular dynamics studies. Journal of Molecular Liquids 2021, 335 , 116139. https://doi.org/10.1016/j.molliq.2021.116139
    86. Mary M. LaRocca, Gary A. Baker, Mark P. Heitz. Assessing rotation and solvation dynamics in ethaline deep eutectic solvent and its solutions with methanol. The Journal of Chemical Physics 2021, 155 (3) https://doi.org/10.1063/5.0056653
    87. Angelica Mero, Andrea Mezzetta, Janusz Nowicki, Justyna Łuczak, Lorenzo Guazzelli. Betaine and l-carnitine ester bromides: Synthesis and comparative study of their thermal behaviour and surface activity. Journal of Molecular Liquids 2021, 334 , 115988. https://doi.org/10.1016/j.molliq.2021.115988
    88. Vira Agieienko, Ali Reza Harifi-Mood, Richard Buchner. Cooperative dynamics and speciation in deep eutectic solvent + DMSO mixtures. Journal of Molecular Liquids 2021, 331 , 115790. https://doi.org/10.1016/j.molliq.2021.115790
    89. Mehdi Shakourian-Fard, S. Maryamdokht Taimoory, Hamid Reza Ghenaatian, Ganesh Kamath, John F. Trant. A DFT study of the adsorption of deep eutectic solvents onto graphene and defective graphene nanoflakes. Journal of Molecular Liquids 2021, 327 , 114850. https://doi.org/10.1016/j.molliq.2020.114850
    90. Vahideh Alizadeh, Lars Esser, Barbara Kirchner. How is CO2 absorbed into a deep eutectic solvent?. The Journal of Chemical Physics 2021, 154 (9) https://doi.org/10.1063/5.0038093
    91. Jisha Kuttiani Ali, Chahd Maher Chabib, Maguy Abi Jaoude, Emad Alhseinat, Satish Teotia, Shashikant Patole, Dalaver Hussain Anjum, Issam Qattan. Enhanced removal of aqueous phenol with polyimide ultrafiltration membranes embedded with deep eutectic solvent-coated nanosilica. Chemical Engineering Journal 2021, 408 , 128017. https://doi.org/10.1016/j.cej.2020.128017
    92. Noé Fanjul-Mosteirín, Vicente del Amo. Organocatalytic transformations in deep eutectic solvents: Green methodologies made greener. Tetrahedron 2021, 84 , 131967. https://doi.org/10.1016/j.tet.2021.131967
    93. Renato Contreras, Lucas Lodeiro, Nicolás Rozas-Castro, Rodrigo Ormazábal-Toledo. On the role of water in the hydrogen bond network in DESs: an ab initio molecular dynamics and quantum mechanical study on the urea–betaine system. Physical Chemistry Chemical Physics 2021, 23 (3) , 1994-2004. https://doi.org/10.1039/D0CP06078J
    94. Greta Colombo Dugoni, Andrea Mezzetta, Lorenzo Guazzelli, Cinzia Chiappe, Monica Ferro, Andrea Mele. Purification of Kraft cellulose under mild conditions using choline acetate based deep eutectic solvents. Green Chemistry 2020, 22 (24) , 8680-8691. https://doi.org/10.1039/D0GC03375H