The Solvation Structure of Lithium Ions in an Ether Based Electrolyte Solution from First-Principles Molecular DynamicsClick to copy article linkArticle link copied!
Abstract

The solvation and desolvation of the Li ion play a crucial role in the electrolytes of Li based secondary batteries, and their understanding at the microscopic level is of great importance. Oligoether (glyme) based electrolytes have attracted much attention as electrolytes used in Li based secondary batteries, such as Li-ion, Li–S, and Li–O2 batteries. However, the solvation structure of the Li ion in glyme based electrolytes has not been fully clarified yet. We present a computational study on the solvation structure of lithium ions in the mixture of triglyme and lithium bis(trifluoromethylsulfonyl)-amide (LiTFSA) by means of molecular orbital and molecular dynamics calculations based on density functional theory. We found that, in the electrolyte solution composed of the equimolar mixture of triglyme and LiTFSA, lithium ions are solvated mainly by crown-ether-like curled triglyme molecules and in direct contact with an TFSA anion. We also found the aggregate formed with Li ion and TFSA anions and/or triglyme molecule(s) is equally stable, which has not been reported in the previous classical molecular dynamics simulations, suggesting that in reality a small fraction of Li ions form aggregates and they might have a significant impact on the Li ion transport. Our results demonstrate the importance of performing electronic structure based molecular dynamics of electrolyte solution to clarify the detailed solvation structure of the Li ion.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 51 publications.
- Jule Kristin Philipp, Lennart Kruse, Dietmar Paschek, Ralf Ludwig. Structural Transformations within the Solvate Ionic Liquid [Li(Triglyme)][NTf2]: Implications for Self-Diffusion, Viscosity, and Ionic Conductivity. The Journal of Physical Chemistry B 2025, 129
(22)
, 5561-5577. https://doi.org/10.1021/acs.jpcb.5c01772
- Qi You, Yan Sun, Feng Wang, Jun Cheng, Fujie Tang. Decoding the Competing Effects of Dynamic Solvation Structures on Nuclear Magnetic Resonance Chemical Shifts of Battery Electrolytes via Machine Learning. Journal of the American Chemical Society 2025, 147
(17)
, 14667-14676. https://doi.org/10.1021/jacs.5c02710
- Guillermo A. Ferrero, Gustav Åvall, Knut Janßen, Youhyun Son, Yuliia Kravets, Yanan Sun, Philipp Adelhelm. Solvent Co-Intercalation Reactions for Batteries and Beyond. Chemical Reviews 2025, 125
(6)
, 3401-3439. https://doi.org/10.1021/acs.chemrev.4c00805
- Piotr Kubisiak, Domantas Narkevičius, Chiara Nicotri, Andrzej Eilmes. Comparative Study of Isomeric TFSI and FPFSI Anions in Li-Ion Electrolytes Using Quantum Chemistry and Ab Initio Molecular Dynamics. The Journal of Physical Chemistry B 2025, 129
(9)
, 2560-2572. https://doi.org/10.1021/acs.jpcb.4c08414
- Fangyong Yan, Kallol Mukherjee, Mark Maroncelli, Hyung J. Kim. Infrared Spectroscopy of Li+ Solvation in Diglyme: Ab Initio Molecular Dynamics and Experiment. The Journal of Physical Chemistry B 2023, 127
(42)
, 9191-9203. https://doi.org/10.1021/acs.jpcb.3c05612
- Feng Wang, Yan Sun, Jun Cheng. Switching of Redox Levels Leads to High Reductive Stability in Water-in-Salt Electrolytes. Journal of the American Chemical Society 2023, 145
(7)
, 4056-4064. https://doi.org/10.1021/jacs.2c11793
- Srimayee Mukherji, Nikhil V. S. Avula, Rahul Kumar, Sundaram Balasubramanian. Hopping in High Concentration Electrolytes - Long Time Bulk and Single-Particle Signatures, Free Energy Barriers, and Structural Insights. The Journal of Physical Chemistry Letters 2020, 11
(22)
, 9613-9620. https://doi.org/10.1021/acs.jpclett.0c02995
- Sergey Krachkovskiy, Martin Dontigny, Sylviane Rochon, Chisu Kim, Michel L. Trudeau, Karim Zaghib. Determination of Binary Diffusivities in Concentrated Lithium Battery Electrolytes via NMR and Conductivity Measurements. The Journal of Physical Chemistry C 2020, 124
(45)
, 24624-24630. https://doi.org/10.1021/acs.jpcc.0c07383
- Saul Perez Beltran, Xia Cao, Ji-Guang Zhang, Perla B. Balbuena. Localized High Concentration Electrolytes for High Voltage Lithium–Metal Batteries: Correlation between the Electrolyte Composition and Its Reductive/Oxidative Stability. Chemistry of Materials 2020, 32
(14)
, 5973-5984. https://doi.org/10.1021/acs.chemmater.0c00987
- Yukihiro Okamoto, Seiji Tsuzuki, Ryoichi Tatara, Kazuhide Ueno, Kaoru Dokko, Masayoshi Watanabe. High Transference Number of Na Ion in Liquid-State Sulfolane Solvates of Sodium Bis(fluorosulfonyl)amide. The Journal of Physical Chemistry C 2020, 124
(8)
, 4459-4469. https://doi.org/10.1021/acs.jpcc.9b11458
- Birane Fall, Prabhat Prakash, Michael R. Gau, Stephanie L. Wunder, Arun Venkatnathan, Michael J. Zdilla. Experimental and Theoretical Investigation of the Ion Conduction Mechanism of Tris(adiponitrile)perchloratosodium, a Self-Binding, Melt-Castable Crystalline Sodium Electrolyte. Chemistry of Materials 2019, 31
(21)
, 8850-8863. https://doi.org/10.1021/acs.chemmater.9b02853
- Azusa Nakanishi, Kazuhide Ueno, Daiki Watanabe, Yosuke Ugata, Yoshiharu Matsumae, Jiali Liu, Morgan L. Thomas, Kaoru Dokko, Masayoshi Watanabe. Sulfolane-Based Highly Concentrated Electrolytes of Lithium Bis(trifluoromethanesulfonyl)amide: Ionic Transport, Li-Ion Coordination, and Li–S Battery Performance. The Journal of Physical Chemistry C 2019, 123
(23)
, 14229-14238. https://doi.org/10.1021/acs.jpcc.9b02625
- Kaoru Dokko, Daiki Watanabe, Yosuke Ugata, Morgan L. Thomas, Seiji Tsuzuki, Wataru Shinoda, Kei Hashimoto, Kazuhide Ueno, Yasuhiro Umebayashi, Masayoshi Watanabe. Direct Evidence for Li Ion Hopping Conduction in Highly Concentrated Sulfolane-Based Liquid Electrolytes. The Journal of Physical Chemistry B 2018, 122
(47)
, 10736-10745. https://doi.org/10.1021/acs.jpcb.8b09439
- Yang Sun, Ikutaro Hamada. Insight into the Solvation Structure of Tetraglyme-Based Electrolytes via First-Principles Molecular Dynamics Simulation. The Journal of Physical Chemistry B 2018, 122
(43)
, 10014-10022. https://doi.org/10.1021/acs.jpcb.8b07098
- Gabriela Horwitz, Matías Factorovich, Javier Rodriguez, Daniel Laria, Horacio R. Corti. Ionic Transport and Speciation of Lithium Salts in Glymes: Experimental and Theoretical Results for Electrolytes of Interest for Lithium–Air Batteries. ACS Omega 2018, 3
(9)
, 11205-11215. https://doi.org/10.1021/acsomega.8b01443
- Chengyin Fu, Lihua Xu, Fredy W. Aquino, Arthur v. Cresce, Mallory Gobet, Steven G. Greenbaum, Kang Xu, Bryan M. Wong, Juchen Guo. Correlating Li+-Solvation Structure and its Electrochemical Reaction Kinetics with Sulfur in Subnano Confinement. The Journal of Physical Chemistry Letters 2018, 9
(7)
, 1739-1745. https://doi.org/10.1021/acs.jpclett.8b00567
- Ke Li, Susith R Galle Kankanamge, Thomas K Weldeghiorghis, Ryan Jorn, Daniel G. Kuroda, Revati Kumar. Predicting Ion Association in Sodium Electrolytes: A Transferrable Model for Investigating Glymes. The Journal of Physical Chemistry C 2018, 122
(9)
, 4747-4756. https://doi.org/10.1021/acs.jpcc.7b09995
- Fernando Pignanelli, Mariano Romero, Ricardo Faccio, and Álvaro W. Mombrú . Experimental and Theoretical Study of Ionic Pair Dissociation in a Lithium Ion–Linear Polyethylenimine–Polyacrylonitrile Blend for Solid Polymer Electrolytes. The Journal of Physical Chemistry B 2017, 121
(27)
, 6759-6765. https://doi.org/10.1021/acs.jpcb.7b04634
- Jemin Lee, Wonwoo Choi, Eunbin Jang, Hyunjin Kim, Jeeyoung Yoo. Dual-anion ionic liquid electrolytes: a strategy for achieving high stability and conductivity in lithium metal batteries. Energy & Environmental Science 2025, 18
(11)
, 5277-5286. https://doi.org/10.1039/D5EE00119F
- Hongyi Li, Daichi Shimizu, Rongkang Jin, Tongqing Zhang, Daisuke Horikawa, Katsuhiko Nagaya, Hiroshi Tsubouchi, Hiroyuki Yamaguchi, Motoyoshi Okumura, Tetsu Ichitsubo. Stable functional electrode–electrolyte interface formed by multivalent cation additives in lithium-metal anode batteries. Journal of Materials Chemistry A 2025, 13
(5)
, 3619-3633. https://doi.org/10.1039/D4TA07531E
- A. A. Slesarenko, G. Z. Tulibaeva, A. V. Yudina, N. A. Slesarenko, A. F. Shestakov, O. V. Yarmolenko. Low-temperature gelled electrolytes based on the salt LiN(SO2CF3)2 in mixed glyme solutions for lithium power sources. Russian Chemical Bulletin 2024, 73
(11)
, 3267-3274. https://doi.org/10.1007/s11172-024-4442-0
- Gabriela Horwitz, Vera Kunz, Samuel P. Niblett, Clare P. Grey. The effect of ionic association on the electrochemistry of redox mediators for Li–O
2
batteries: developing a theoretical framework. Physical Chemistry Chemical Physics 2024, 26
(33)
, 22134-22148. https://doi.org/10.1039/D4CP01488J
- Minhong Lim, Jiwon Lee, Soyeon Lee, Seungsoo Park, Hongkyung Lee. Modulation of Li
+
microenvironment in liquid electrolyte for interface design of Li‐metal anodes. Bulletin of the Korean Chemical Society 2024, 45
(8)
, 648-663. https://doi.org/10.1002/bkcs.12884
- Aginmariya Kottarathil, Zaher Slim, Hafiz Ahmad Ishfaq, Steffen Jeschke, Grażyna Zofia Żukowska, Maciej Marczewski, Katarzyna Lech, Patrik Johansson, Wladyslaw Wieczorek. The Role of the Anion in Concentrated Electrolytes for Lithium-Sulfur Batteries. Journal of The Electrochemical Society 2024, 171
(7)
, 070506. https://doi.org/10.1149/1945-7111/ad5b8c
- Panawan Vanaphuti, Zehao Cui, Arumugam Manthiram. Demarcating the Impact of Electrolytes on High‐Nickel Cathodes and Lithium‐Metal Anode. Advanced Functional Materials 2024, 34
(7)
https://doi.org/10.1002/adfm.202308619
- Erlendur Jónsson, Astrid H. Berge, Clare P. Grey, Israel Temprano. Solvent-dependent iodide interactions in LiO
2
electrolytes – a molecular dynamics study. Faraday Discussions 2024, 248 , 145-159. https://doi.org/10.1039/D3FD00090G
- Jihoon Choi, Kyoung-Hee Shin, Young-Kyu Han. Origin of Li+ Solvation Ability of Electrolyte Solvent: Ring Strain. Materials 2023, 16
(21)
, 6995. https://doi.org/10.3390/ma16216995
- Feng Wang, Jun Cheng. Understanding the solvation structures of glyme-based electrolytes by machine learning molecular dynamics. Chinese Journal of Structural Chemistry 2023, 42
(9)
, 100061. https://doi.org/10.1016/j.cjsc.2023.100061
- Filipe Marques Mota, Omar Allam, Kyunghee Chae, Nur Aqlili Riana Che Mohamad, Seung Soon Jang, Dong Ha Kim. Practicality assessment: Temperature-governed performance of CO2-containing Li–O2 batteries. Chemical Engineering Journal 2022, 449 , 137744. https://doi.org/10.1016/j.cej.2022.137744
- Gabriel D. Barbosa, C. Heath Turner. Molecular-level solvation and selectivity behavior of Na+, K+, and Li+ within glycerol-derived solvents. Chemical Engineering Science 2022, 262 , 117992. https://doi.org/10.1016/j.ces.2022.117992
- G. R. Baymuratova, K. G. Khatmullina, G. Z. Tulibaeva, I. K. Yakushchenko, P. A. Troshin, O. V. Yarmolenko. Gelled tetraglyme-based electrolyte for organic electrode materials. Russian Chemical Bulletin 2022, 71
(10)
, 2108-2115. https://doi.org/10.1007/s11172-022-3634-8
- Xiangyang Liu, Jianchun Chu, Ziwen Zhang, Maogang He. Data-driven multi-objective molecular design of ionic liquid with high generation efficiency on small dataset. Materials & Design 2022, 220 , 110888. https://doi.org/10.1016/j.matdes.2022.110888
- Gabriel D. Barbosa, Jason E. Bara, C. Heath Turner. Molecular simulation of glycerol-derived triether podands for lithium ion solvation. Physical Chemistry Chemical Physics 2022, 24
(16)
, 9459-9466. https://doi.org/10.1039/D2CP00646D
- Daniele Di Lecce, Vittorio Marangon, Hun-Gi Jung, Yoichi Tominaga, Steve Greenbaum, Jusef Hassoun. Glyme-based electrolytes: suitable solutions for next-generation lithium batteries. Green Chemistry 2022, 24
(3)
, 1021-1048. https://doi.org/10.1039/D1GC03996B
- Longkun Xu, Michelle L. Coote. Recent advances in solvation modeling applications: Chemical properties, reaction mechanisms and catalysis. 2022, 53-121. https://doi.org/10.1016/bs.arcc.2022.09.001
- Maciej Śmiechowski. The influence of intermolecular correlations on the infrared spectrum of liquid dimethyl sulfoxide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 260 , 119869. https://doi.org/10.1016/j.saa.2021.119869
- Maciej Śmiechowski. Molecular level interpretation of excess infrared spectroscopy. Journal of Molecular Liquids 2021, 342 , 117544. https://doi.org/10.1016/j.molliq.2021.117544
- Yatao Liu, Yuval Elias, Jiashen Meng, Doron Aurbach, Ruqiang Zou, Dingguo Xia, Quanquan Pang. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5
(9)
, 2323-2364. https://doi.org/10.1016/j.joule.2021.06.009
- Jiwon Yu, Myungsuk Lee, Yeonseo Kim, Hyung-Kyu Lim, Jonghyun Chae, Gyeong S. Hwang, Sangheon Lee. Agent molecule modulated low-temperature activation of solid-state lithium-ion transport for polymer electrolytes. Journal of Power Sources 2021, 505 , 229917. https://doi.org/10.1016/j.jpowsour.2021.229917
- John Holoubek, Haodong Liu, Zhaohui Wu, Yijie Yin, Xing Xing, Guorui Cai, Sicen Yu, Hongyao Zhou, Tod A. Pascal, Zheng Chen, Ping Liu. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nature Energy 2021, 6
(3)
, 303-313. https://doi.org/10.1038/s41560-021-00783-z
- Wujie Wang, Tzuhsiung Yang, William H. Harris, Rafael Gómez-Bombarelli. Active learning and neural network potentials accelerate molecular screening of ether-based solvate ionic liquids. Chemical Communications 2020, 56
(63)
, 8920-8923. https://doi.org/10.1039/D0CC03512B
- N. Ortiz Vitoriano, I. Ruiz de Larramendi, R.L. Sacci, I. Lozano, C.A. Bridges, O. Arcelus, M. Enterría, J. Carrasco, T. Rojo, G.M. Veith. Goldilocks and the three glymes: How Na+ solvation controls Na–O2 battery cycling. Energy Storage Materials 2020, 29 , 235-245. https://doi.org/10.1016/j.ensm.2020.04.034
- Zongliang Qiao, Yue Cao, Yuming Yin, Lingling Zhao, Fengqi Si. Solvation structure of supercritical CO2 and brine mixture for CO2 plume geothermal applications: A molecular dynamics study. The Journal of Supercritical Fluids 2020, 159 , 104783. https://doi.org/10.1016/j.supflu.2020.104783
- Chibueze V. Amanchukwu, Xian Kong, Jian Qin, Yi Cui, Zhenan Bao. Nonpolar Alkanes Modify Lithium‐Ion Solvation for Improved Lithium Deposition and Stripping. Advanced Energy Materials 2019, 9
(41)
https://doi.org/10.1002/aenm.201902116
- Haritha Hareendrakrishnakumar, Reshma Chulliyote, Mary Gladis Joseph, Shruti Suriyakumar, Arul Manuel Stephan. Sulfonic groups stemmed ionic shield for polysulfides towards high performance Li–S batteries. Electrochimica Acta 2019, 321 , 134697. https://doi.org/10.1016/j.electacta.2019.134697
- Chien‐Pin Chou, Aditya Wibawa Sakti, Yoshifumi Nishimura, Hiromi Nakai. Development of Divide‐and‐Conquer Density‐Functional Tight‐Binding Method for Theoretical Research on Li‐Ion Battery. The Chemical Record 2019, 19
(4)
, 746-757. https://doi.org/10.1002/tcr.201800141
- Shinji Kondou, Morgan L. Thomas, Toshihiko Mandai, Kazuhide Ueno, Kaoru Dokko, Masayoshi Watanabe. Ionic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes. Physical Chemistry Chemical Physics 2019, 21
(9)
, 5097-5105. https://doi.org/10.1039/C9CP00425D
- Tuan Anh Pham. Ab initio simulations of liquid electrolytes for energy conversion and storage. International Journal of Quantum Chemistry 2019, 119
(1)
https://doi.org/10.1002/qua.25795
- Peng Zhang, Yong Zhao, Xinbo Zhang. Functional and stability orientation synthesis of materials and structures in aprotic Li–O
2
batteries. Chemical Society Reviews 2018, 47
(8)
, 2921-3004. https://doi.org/10.1039/C8CS00009C
- Maciej Śmiechowski. Visualizing spatially decomposed intermolecular correlations in the infrared spectra of aprotic liquids. Journal of Molecular Graphics and Modelling 2017, 78 , 148-157. https://doi.org/10.1016/j.jmgm.2017.09.018
- Maciej Śmiechowski, Joanna Krakowiak, Piotr Bruździak, Janusz Stangret. Unique agreement of experimental and computational infrared spectroscopy: a case study of lithium bromide solvation in an important electrochemical solvent. Phys. Chem. Chem. Phys. 2017, 19
(13)
, 9270-9280. https://doi.org/10.1039/C6CP08799J
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.