ACS Publications. Most Trusted. Most Cited. Most Read
The Solvation Structure of Lithium Ions in an Ether Based Electrolyte Solution from First-Principles Molecular Dynamics
My Activity

Figure 1Loading Img
    Article

    The Solvation Structure of Lithium Ions in an Ether Based Electrolyte Solution from First-Principles Molecular Dynamics
    Click to copy article linkArticle link copied!

    View Author Information
    Global Research Center for Environment and Energy Based on Nanomaterials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
    PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan
    § Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
    Center for Materials Research by Information Integration, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
    Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Goryo-Ohara, Kyoto 615-8245, Japan
    # International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2017, 121, 1, 180–188
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcb.6b09203
    Published December 20, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The solvation and desolvation of the Li ion play a crucial role in the electrolytes of Li based secondary batteries, and their understanding at the microscopic level is of great importance. Oligoether (glyme) based electrolytes have attracted much attention as electrolytes used in Li based secondary batteries, such as Li-ion, Li–S, and Li–O2 batteries. However, the solvation structure of the Li ion in glyme based electrolytes has not been fully clarified yet. We present a computational study on the solvation structure of lithium ions in the mixture of triglyme and lithium bis(trifluoromethylsulfonyl)-amide (LiTFSA) by means of molecular orbital and molecular dynamics calculations based on density functional theory. We found that, in the electrolyte solution composed of the equimolar mixture of triglyme and LiTFSA, lithium ions are solvated mainly by crown-ether-like curled triglyme molecules and in direct contact with an TFSA anion. We also found the aggregate formed with Li ion and TFSA anions and/or triglyme molecule(s) is equally stable, which has not been reported in the previous classical molecular dynamics simulations, suggesting that in reality a small fraction of Li ions form aggregates and they might have a significant impact on the Li ion transport. Our results demonstrate the importance of performing electronic structure based molecular dynamics of electrolyte solution to clarify the detailed solvation structure of the Li ion.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcb.6b09203.

    • Epair values for LiTFSA and Li(G3)n complexes and Ebcomplex values for Li(G3)nTFSA complexes with and without the BSSE correction (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 51 publications.

    1. Jule Kristin Philipp, Lennart Kruse, Dietmar Paschek, Ralf Ludwig. Structural Transformations within the Solvate Ionic Liquid [Li(Triglyme)][NTf2]: Implications for Self-Diffusion, Viscosity, and Ionic Conductivity. The Journal of Physical Chemistry B 2025, 129 (22) , 5561-5577. https://doi.org/10.1021/acs.jpcb.5c01772
    2. Qi You, Yan Sun, Feng Wang, Jun Cheng, Fujie Tang. Decoding the Competing Effects of Dynamic Solvation Structures on Nuclear Magnetic Resonance Chemical Shifts of Battery Electrolytes via Machine Learning. Journal of the American Chemical Society 2025, 147 (17) , 14667-14676. https://doi.org/10.1021/jacs.5c02710
    3. Guillermo A. Ferrero, Gustav Åvall, Knut Janßen, Youhyun Son, Yuliia Kravets, Yanan Sun, Philipp Adelhelm. Solvent Co-Intercalation Reactions for Batteries and Beyond. Chemical Reviews 2025, 125 (6) , 3401-3439. https://doi.org/10.1021/acs.chemrev.4c00805
    4. Piotr Kubisiak, Domantas Narkevičius, Chiara Nicotri, Andrzej Eilmes. Comparative Study of Isomeric TFSI and FPFSI Anions in Li-Ion Electrolytes Using Quantum Chemistry and Ab Initio Molecular Dynamics. The Journal of Physical Chemistry B 2025, 129 (9) , 2560-2572. https://doi.org/10.1021/acs.jpcb.4c08414
    5. Fangyong Yan, Kallol Mukherjee, Mark Maroncelli, Hyung J. Kim. Infrared Spectroscopy of Li+ Solvation in Diglyme: Ab Initio Molecular Dynamics and Experiment. The Journal of Physical Chemistry B 2023, 127 (42) , 9191-9203. https://doi.org/10.1021/acs.jpcb.3c05612
    6. Feng Wang, Yan Sun, Jun Cheng. Switching of Redox Levels Leads to High Reductive Stability in Water-in-Salt Electrolytes. Journal of the American Chemical Society 2023, 145 (7) , 4056-4064. https://doi.org/10.1021/jacs.2c11793
    7. Srimayee Mukherji, Nikhil V. S. Avula, Rahul Kumar, Sundaram Balasubramanian. Hopping in High Concentration Electrolytes - Long Time Bulk and Single-Particle Signatures, Free Energy Barriers, and Structural Insights. The Journal of Physical Chemistry Letters 2020, 11 (22) , 9613-9620. https://doi.org/10.1021/acs.jpclett.0c02995
    8. Sergey Krachkovskiy, Martin Dontigny, Sylviane Rochon, Chisu Kim, Michel L. Trudeau, Karim Zaghib. Determination of Binary Diffusivities in Concentrated Lithium Battery Electrolytes via NMR and Conductivity Measurements. The Journal of Physical Chemistry C 2020, 124 (45) , 24624-24630. https://doi.org/10.1021/acs.jpcc.0c07383
    9. Saul Perez Beltran, Xia Cao, Ji-Guang Zhang, Perla B. Balbuena. Localized High Concentration Electrolytes for High Voltage Lithium–Metal Batteries: Correlation between the Electrolyte Composition and Its Reductive/Oxidative Stability. Chemistry of Materials 2020, 32 (14) , 5973-5984. https://doi.org/10.1021/acs.chemmater.0c00987
    10. Yukihiro Okamoto, Seiji Tsuzuki, Ryoichi Tatara, Kazuhide Ueno, Kaoru Dokko, Masayoshi Watanabe. High Transference Number of Na Ion in Liquid-State Sulfolane Solvates of Sodium Bis(fluorosulfonyl)amide. The Journal of Physical Chemistry C 2020, 124 (8) , 4459-4469. https://doi.org/10.1021/acs.jpcc.9b11458
    11. Birane Fall, Prabhat Prakash, Michael R. Gau, Stephanie L. Wunder, Arun Venkatnathan, Michael J. Zdilla. Experimental and Theoretical Investigation of the Ion Conduction Mechanism of Tris(adiponitrile)perchloratosodium, a Self-Binding, Melt-Castable Crystalline Sodium Electrolyte. Chemistry of Materials 2019, 31 (21) , 8850-8863. https://doi.org/10.1021/acs.chemmater.9b02853
    12. Azusa Nakanishi, Kazuhide Ueno, Daiki Watanabe, Yosuke Ugata, Yoshiharu Matsumae, Jiali Liu, Morgan L. Thomas, Kaoru Dokko, Masayoshi Watanabe. Sulfolane-Based Highly Concentrated Electrolytes of Lithium Bis(trifluoromethanesulfonyl)amide: Ionic Transport, Li-Ion Coordination, and Li–S Battery Performance. The Journal of Physical Chemistry C 2019, 123 (23) , 14229-14238. https://doi.org/10.1021/acs.jpcc.9b02625
    13. Kaoru Dokko, Daiki Watanabe, Yosuke Ugata, Morgan L. Thomas, Seiji Tsuzuki, Wataru Shinoda, Kei Hashimoto, Kazuhide Ueno, Yasuhiro Umebayashi, Masayoshi Watanabe. Direct Evidence for Li Ion Hopping Conduction in Highly Concentrated Sulfolane-Based Liquid Electrolytes. The Journal of Physical Chemistry B 2018, 122 (47) , 10736-10745. https://doi.org/10.1021/acs.jpcb.8b09439
    14. Yang Sun, Ikutaro Hamada. Insight into the Solvation Structure of Tetraglyme-Based Electrolytes via First-Principles Molecular Dynamics Simulation. The Journal of Physical Chemistry B 2018, 122 (43) , 10014-10022. https://doi.org/10.1021/acs.jpcb.8b07098
    15. Gabriela Horwitz, Matías Factorovich, Javier Rodriguez, Daniel Laria, Horacio R. Corti. Ionic Transport and Speciation of Lithium Salts in Glymes: Experimental and Theoretical Results for Electrolytes of Interest for Lithium–Air Batteries. ACS Omega 2018, 3 (9) , 11205-11215. https://doi.org/10.1021/acsomega.8b01443
    16. Chengyin Fu, Lihua Xu, Fredy W. Aquino, Arthur v. Cresce, Mallory Gobet, Steven G. Greenbaum, Kang Xu, Bryan M. Wong, Juchen Guo. Correlating Li+-Solvation Structure and its Electrochemical Reaction Kinetics with Sulfur in Subnano Confinement. The Journal of Physical Chemistry Letters 2018, 9 (7) , 1739-1745. https://doi.org/10.1021/acs.jpclett.8b00567
    17. Ke Li, Susith R Galle Kankanamge, Thomas K Weldeghiorghis, Ryan Jorn, Daniel G. Kuroda, Revati Kumar. Predicting Ion Association in Sodium Electrolytes: A Transferrable Model for Investigating Glymes. The Journal of Physical Chemistry C 2018, 122 (9) , 4747-4756. https://doi.org/10.1021/acs.jpcc.7b09995
    18. Fernando Pignanelli, Mariano Romero, Ricardo Faccio, and Álvaro W. Mombrú . Experimental and Theoretical Study of Ionic Pair Dissociation in a Lithium Ion–Linear Polyethylenimine–Polyacrylonitrile Blend for Solid Polymer Electrolytes. The Journal of Physical Chemistry B 2017, 121 (27) , 6759-6765. https://doi.org/10.1021/acs.jpcb.7b04634
    19. Jemin Lee, Wonwoo Choi, Eunbin Jang, Hyunjin Kim, Jeeyoung Yoo. Dual-anion ionic liquid electrolytes: a strategy for achieving high stability and conductivity in lithium metal batteries. Energy & Environmental Science 2025, 18 (11) , 5277-5286. https://doi.org/10.1039/D5EE00119F
    20. Hongyi Li, Daichi Shimizu, Rongkang Jin, Tongqing Zhang, Daisuke Horikawa, Katsuhiko Nagaya, Hiroshi Tsubouchi, Hiroyuki Yamaguchi, Motoyoshi Okumura, Tetsu Ichitsubo. Stable functional electrode–electrolyte interface formed by multivalent cation additives in lithium-metal anode batteries. Journal of Materials Chemistry A 2025, 13 (5) , 3619-3633. https://doi.org/10.1039/D4TA07531E
    21. A. A. Slesarenko, G. Z. Tulibaeva, A. V. Yudina, N. A. Slesarenko, A. F. Shestakov, O. V. Yarmolenko. Low-temperature gelled electrolytes based on the salt LiN(SO2CF3)2 in mixed glyme solutions for lithium power sources. Russian Chemical Bulletin 2024, 73 (11) , 3267-3274. https://doi.org/10.1007/s11172-024-4442-0
    22. Gabriela Horwitz, Vera Kunz, Samuel P. Niblett, Clare P. Grey. The effect of ionic association on the electrochemistry of redox mediators for Li–O 2 batteries: developing a theoretical framework. Physical Chemistry Chemical Physics 2024, 26 (33) , 22134-22148. https://doi.org/10.1039/D4CP01488J
    23. Minhong Lim, Jiwon Lee, Soyeon Lee, Seungsoo Park, Hongkyung Lee. Modulation of Li + microenvironment in liquid electrolyte for interface design of Li‐metal anodes. Bulletin of the Korean Chemical Society 2024, 45 (8) , 648-663. https://doi.org/10.1002/bkcs.12884
    24. Aginmariya Kottarathil, Zaher Slim, Hafiz Ahmad Ishfaq, Steffen Jeschke, Grażyna Zofia Żukowska, Maciej Marczewski, Katarzyna Lech, Patrik Johansson, Wladyslaw Wieczorek. The Role of the Anion in Concentrated Electrolytes for Lithium-Sulfur Batteries. Journal of The Electrochemical Society 2024, 171 (7) , 070506. https://doi.org/10.1149/1945-7111/ad5b8c
    25. Panawan Vanaphuti, Zehao Cui, Arumugam Manthiram. Demarcating the Impact of Electrolytes on High‐Nickel Cathodes and Lithium‐Metal Anode. Advanced Functional Materials 2024, 34 (7) https://doi.org/10.1002/adfm.202308619
    26. Erlendur Jónsson, Astrid H. Berge, Clare P. Grey, Israel Temprano. Solvent-dependent iodide interactions in LiO 2 electrolytes – a molecular dynamics study. Faraday Discussions 2024, 248 , 145-159. https://doi.org/10.1039/D3FD00090G
    27. Jihoon Choi, Kyoung-Hee Shin, Young-Kyu Han. Origin of Li+ Solvation Ability of Electrolyte Solvent: Ring Strain. Materials 2023, 16 (21) , 6995. https://doi.org/10.3390/ma16216995
    28. Feng Wang, Jun Cheng. Understanding the solvation structures of glyme-based electrolytes by machine learning molecular dynamics. Chinese Journal of Structural Chemistry 2023, 42 (9) , 100061. https://doi.org/10.1016/j.cjsc.2023.100061
    29. Filipe Marques Mota, Omar Allam, Kyunghee Chae, Nur Aqlili Riana Che Mohamad, Seung Soon Jang, Dong Ha Kim. Practicality assessment: Temperature-governed performance of CO2-containing Li–O2 batteries. Chemical Engineering Journal 2022, 449 , 137744. https://doi.org/10.1016/j.cej.2022.137744
    30. Gabriel D. Barbosa, C. Heath Turner. Molecular-level solvation and selectivity behavior of Na+, K+, and Li+ within glycerol-derived solvents. Chemical Engineering Science 2022, 262 , 117992. https://doi.org/10.1016/j.ces.2022.117992
    31. G. R. Baymuratova, K. G. Khatmullina, G. Z. Tulibaeva, I. K. Yakushchenko, P. A. Troshin, O. V. Yarmolenko. Gelled tetraglyme-based electrolyte for organic electrode materials. Russian Chemical Bulletin 2022, 71 (10) , 2108-2115. https://doi.org/10.1007/s11172-022-3634-8
    32. Xiangyang Liu, Jianchun Chu, Ziwen Zhang, Maogang He. Data-driven multi-objective molecular design of ionic liquid with high generation efficiency on small dataset. Materials & Design 2022, 220 , 110888. https://doi.org/10.1016/j.matdes.2022.110888
    33. Gabriel D. Barbosa, Jason E. Bara, C. Heath Turner. Molecular simulation of glycerol-derived triether podands for lithium ion solvation. Physical Chemistry Chemical Physics 2022, 24 (16) , 9459-9466. https://doi.org/10.1039/D2CP00646D
    34. Daniele Di Lecce, Vittorio Marangon, Hun-Gi Jung, Yoichi Tominaga, Steve Greenbaum, Jusef Hassoun. Glyme-based electrolytes: suitable solutions for next-generation lithium batteries. Green Chemistry 2022, 24 (3) , 1021-1048. https://doi.org/10.1039/D1GC03996B
    35. Longkun Xu, Michelle L. Coote. Recent advances in solvation modeling applications: Chemical properties, reaction mechanisms and catalysis. 2022, 53-121. https://doi.org/10.1016/bs.arcc.2022.09.001
    36. Maciej Śmiechowski. The influence of intermolecular correlations on the infrared spectrum of liquid dimethyl sulfoxide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 260 , 119869. https://doi.org/10.1016/j.saa.2021.119869
    37. Maciej Śmiechowski. Molecular level interpretation of excess infrared spectroscopy. Journal of Molecular Liquids 2021, 342 , 117544. https://doi.org/10.1016/j.molliq.2021.117544
    38. Yatao Liu, Yuval Elias, Jiashen Meng, Doron Aurbach, Ruqiang Zou, Dingguo Xia, Quanquan Pang. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5 (9) , 2323-2364. https://doi.org/10.1016/j.joule.2021.06.009
    39. Jiwon Yu, Myungsuk Lee, Yeonseo Kim, Hyung-Kyu Lim, Jonghyun Chae, Gyeong S. Hwang, Sangheon Lee. Agent molecule modulated low-temperature activation of solid-state lithium-ion transport for polymer electrolytes. Journal of Power Sources 2021, 505 , 229917. https://doi.org/10.1016/j.jpowsour.2021.229917
    40. John Holoubek, Haodong Liu, Zhaohui Wu, Yijie Yin, Xing Xing, Guorui Cai, Sicen Yu, Hongyao Zhou, Tod A. Pascal, Zheng Chen, Ping Liu. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nature Energy 2021, 6 (3) , 303-313. https://doi.org/10.1038/s41560-021-00783-z
    41. Wujie Wang, Tzuhsiung Yang, William H. Harris, Rafael Gómez-Bombarelli. Active learning and neural network potentials accelerate molecular screening of ether-based solvate ionic liquids. Chemical Communications 2020, 56 (63) , 8920-8923. https://doi.org/10.1039/D0CC03512B
    42. N. Ortiz Vitoriano, I. Ruiz de Larramendi, R.L. Sacci, I. Lozano, C.A. Bridges, O. Arcelus, M. Enterría, J. Carrasco, T. Rojo, G.M. Veith. Goldilocks and the three glymes: How Na+ solvation controls Na–O2 battery cycling. Energy Storage Materials 2020, 29 , 235-245. https://doi.org/10.1016/j.ensm.2020.04.034
    43. Zongliang Qiao, Yue Cao, Yuming Yin, Lingling Zhao, Fengqi Si. Solvation structure of supercritical CO2 and brine mixture for CO2 plume geothermal applications: A molecular dynamics study. The Journal of Supercritical Fluids 2020, 159 , 104783. https://doi.org/10.1016/j.supflu.2020.104783
    44. Chibueze V. Amanchukwu, Xian Kong, Jian Qin, Yi Cui, Zhenan Bao. Nonpolar Alkanes Modify Lithium‐Ion Solvation for Improved Lithium Deposition and Stripping. Advanced Energy Materials 2019, 9 (41) https://doi.org/10.1002/aenm.201902116
    45. Haritha Hareendrakrishnakumar, Reshma Chulliyote, Mary Gladis Joseph, Shruti Suriyakumar, Arul Manuel Stephan. Sulfonic groups stemmed ionic shield for polysulfides towards high performance Li–S batteries. Electrochimica Acta 2019, 321 , 134697. https://doi.org/10.1016/j.electacta.2019.134697
    46. Chien‐Pin Chou, Aditya Wibawa Sakti, Yoshifumi Nishimura, Hiromi Nakai. Development of Divide‐and‐Conquer Density‐Functional Tight‐Binding Method for Theoretical Research on Li‐Ion Battery. The Chemical Record 2019, 19 (4) , 746-757. https://doi.org/10.1002/tcr.201800141
    47. Shinji Kondou, Morgan L. Thomas, Toshihiko Mandai, Kazuhide Ueno, Kaoru Dokko, Masayoshi Watanabe. Ionic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes. Physical Chemistry Chemical Physics 2019, 21 (9) , 5097-5105. https://doi.org/10.1039/C9CP00425D
    48. Tuan Anh Pham. Ab initio simulations of liquid electrolytes for energy conversion and storage. International Journal of Quantum Chemistry 2019, 119 (1) https://doi.org/10.1002/qua.25795
    49. Peng Zhang, Yong Zhao, Xinbo Zhang. Functional and stability orientation synthesis of materials and structures in aprotic Li–O 2 batteries. Chemical Society Reviews 2018, 47 (8) , 2921-3004. https://doi.org/10.1039/C8CS00009C
    50. Maciej Śmiechowski. Visualizing spatially decomposed intermolecular correlations in the infrared spectra of aprotic liquids. Journal of Molecular Graphics and Modelling 2017, 78 , 148-157. https://doi.org/10.1016/j.jmgm.2017.09.018
    51. Maciej Śmiechowski, Joanna Krakowiak, Piotr Bruździak, Janusz Stangret. Unique agreement of experimental and computational infrared spectroscopy: a case study of lithium bromide solvation in an important electrochemical solvent. Phys. Chem. Chem. Phys. 2017, 19 (13) , 9270-9280. https://doi.org/10.1039/C6CP08799J

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2017, 121, 1, 180–188
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcb.6b09203
    Published December 20, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    2910

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.