ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

High-Resolution Structures of the Amyloid-β 1–42 Dimers from the Comparison of Four Atomistic Force Fields

View Author Information
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695−8202, United States
Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
*(P.D.) E-mail: [email protected]. Telephone: 33 1 58 41 51 72.
Cite this: J. Phys. Chem. B 2017, 121, 24, 5977–5987
Publication Date (Web):May 24, 2017
https://doi.org/10.1021/acs.jpcb.7b04689
Copyright © 2017 American Chemical Society

    Article Views

    1314

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The dimer of the amyloid-β peptide Aβ of 42 residues is the smallest toxic species in Alzheimer’s disease, but its equilibrium structures are unknown. Here we determined the equilibrium ensembles generated by the four atomistic OPLS-AA, CHARMM22*, AMBER99sb-ildn, and AMBERsb14 force fields with the TIP3P water model. On the basis of 144 μs replica exchange molecular dynamics simulations (with 750 ns per replica), we find that the four force fields lead to random coil ensembles with calculated cross-collision sections, hydrodynamics properties, and small-angle X-ray scattering profiles independent of the force field. There are, however, marked differences in secondary structure, with the AMBERsb14 and CHARMM22* ensembles overestimating the CD-derived helix content, and the OPLS-AA and AMBER99sb-ildn secondary structure contents in agreement with CD data. Also the intramolecular beta-hairpin content spanning residues 17–21 and 30–36 varies between 1.5% and 13%. Overall, there are significant differences in tertiary and quaternary conformations among all force fields, and the key finding, irrespective of the force field, is that the dimer is stabilized by nonspecific interactions, explaining therefore its possible transient binding to multiple cellular partners and, in part, its toxicity.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcb.7b04689.

    • Tables S1 and S2 characterize the single-molecule and overall states of the dimer. Figures S1 and S2 are related to the convergence of the REMD simulations. Figures S3 and S4 show differences in the salt-bridge and interpeptide side-chain side-chain populations. Figure S5 shows representative structures of the 10 single-molecule states of Aβ42 dimer obtained using the four force fields. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 108 publications.

    1. Son Tung Ngo, Trung Hai Nguyen, Van V. Vu. Morphology of a Transmembrane Aβ42 Tetramer via REMD Simulations. Journal of Chemical Information and Modeling 2023, 63 (14) , 4376-4382. https://doi.org/10.1021/acs.jcim.3c00706
    2. Mei Fang, Xin Wang, Kehe Su, Xingang Jia, Ping Guan, Xiaoling Hu. Inhibition Effect and Molecular Mechanisms of Quercetin on the Aβ42 Dimer: A Molecular Dynamics Simulation Study. ACS Omega 2023, 8 (20) , 18009-18018. https://doi.org/10.1021/acsomega.3c01208
    3. Xuhua Li, Zhiwei Yang, Yujie Chen, Shengli Zhang, Guanghong Wei, Lei Zhang. Dissecting the Molecular Mechanisms of the Co-Aggregation of Aβ40 and Aβ42 Peptides: A REMD Simulation Study. The Journal of Physical Chemistry B 2023, 127 (18) , 4050-4060. https://doi.org/10.1021/acs.jpcb.3c01078
    4. Viet Hoang Man, Xibing He, Fengyang Han, Lianjin Cai, Luxuan Wang, Taoyu Niu, Jingchen Zhai, Beihong Ji, Jie Gao, Junmei Wang. Phosphorylation at Ser289 Enhances the Oligomerization of Tau Repeat R2. Journal of Chemical Information and Modeling 2023, 63 (4) , 1351-1361. https://doi.org/10.1021/acs.jcim.2c01597
    5. Yu Zou, Lulu Guan, Jingwang Tan, Bote Qi, Ying Wang, Qingwen Zhang, Yunxiang Sun. Atomistic Insights into the Inhibitory Mechanism of Tyrosine Phosphorylation against the Aggregation of Human Tau Fragment PHF6. The Journal of Physical Chemistry B 2023, 127 (1) , 335-345. https://doi.org/10.1021/acs.jpcb.2c07568
    6. Phuong H. Nguyen, Philippe Derreumaux. Insights into the Mixture of Aβ24 and Aβ42 Peptides from Atomistic Simulations. The Journal of Physical Chemistry B 2022, 126 (50) , 10689-10696. https://doi.org/10.1021/acs.jpcb.2c07321
    7. Phuong. H. Nguyen, Fabio Sterpone, Philippe Derreumaux. Self-Assembly of Amyloid-Beta (Aβ) Peptides from Solution to Near In Vivo Conditions. The Journal of Physical Chemistry B 2022, 126 (49) , 10317-10326. https://doi.org/10.1021/acs.jpcb.2c06375
    8. Rituparna Roy, Sandip Paul. Disparate Effect of Hybrid Peptidomimetics Containing Isomers of Aminobenzoic Acid on hIAPP Aggregation. The Journal of Physical Chemistry B 2022, 126 (49) , 10427-10444. https://doi.org/10.1021/acs.jpcb.2c05970
    9. Zenghui Lao, Xuewei Dong, Xianshi Liu, Fangying Li, Yujie Chen, Yiming Tang, Guanghong Wei. Insights into the Atomistic Mechanisms of Phosphorylation in Disrupting Liquid–Liquid Phase Separation and Aggregation of the FUS Low-Complexity Domain. Journal of Chemical Information and Modeling 2022, 62 (13) , 3227-3238. https://doi.org/10.1021/acs.jcim.2c00414
    10. Sheng Zhang, Stan Yoo, Dalton T. Snyder, Benjamin B. Katz, Amy Henrickson, Borries Demeler, Vicki H. Wysocki, Adam G. Kreutzer, James S. Nowick. A Disulfide-Stabilized Aβ that Forms Dimers but Does Not Form Fibrils. Biochemistry 2022, 61 (4) , 252-264. https://doi.org/10.1021/acs.biochem.1c00739
    11. Hisashi Okumura, Satoru G. Itoh, Kazuhiro Nakamura, Takayasu Kawasaki. Role of Water Molecules and Helix Structure Stabilization in the Laser-Induced Disruption of Amyloid Fibrils Observed by Nonequilibrium Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2021, 125 (19) , 4964-4976. https://doi.org/10.1021/acs.jpcb.0c11491
    12. Son Tung Ngo, Phuong H. Nguyen, Philippe Derreumaux. Impact of the Rat R5G, Y10F, and H13R Mutations on Tetrameric Aβ42 β-Barrel in a Lipid Bilayer Membrane Model. The Journal of Physical Chemistry B 2021, 125 (12) , 3105-3113. https://doi.org/10.1021/acs.jpcb.1c00030
    13. Masataka Yamauchi, Hisashi Okumura. Dimerization of α-Synuclein Fragments Studied by Isothermal–Isobaric Replica-Permutation Molecular Dynamics Simulation. Journal of Chemical Information and Modeling 2021, 61 (3) , 1307-1321. https://doi.org/10.1021/acs.jcim.0c01056
    14. Son Tung Ngo, Phuong H. Nguyen, Philippe Derreumaux. Cholesterol Molecules Alter the Energy Landscape of Small Aβ1–42 Oligomers. The Journal of Physical Chemistry B 2021, 125 (9) , 2299-2307. https://doi.org/10.1021/acs.jpcb.1c00036
    15. Xuhua Li, Zenghui Lao, Yu Zou, Xuewei Dong, Le Li, Guanghong Wei. Mechanistic Insights into the Co-Aggregation of Aβ and hIAPP: An All-Atom Molecular Dynamic Study. The Journal of Physical Chemistry B 2021, 125 (8) , 2050-2060. https://doi.org/10.1021/acs.jpcb.0c11132
    16. Phuong H. Nguyen, Ayyalusamy Ramamoorthy, Bikash R. Sahoo, Jie Zheng, Peter Faller, John E. Straub, Laura Dominguez, Joan-Emma Shea, Nikolay V. Dokholyan, Alfonso De Simone, Buyong Ma, Ruth Nussinov, Saeed Najafi, Son Tung Ngo, Antoine Loquet, Mara Chiricotto, Pritam Ganguly, James McCarty, Mai Suan Li, Carol Hall, Yiming Wang, Yifat Miller, Simone Melchionna, Birgit Habenstein, Stepan Timr, Jiaxing Chen, Brianna Hnath, Birgit Strodel, Rakez Kayed, Sylvain Lesné, Guanghong Wei, Fabio Sterpone, Andrew J. Doig, Philippe Derreumaux. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer’s Disease, Parkinson’s Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews 2021, 121 (4) , 2545-2647. https://doi.org/10.1021/acs.chemrev.0c01122
    17. Farbod Mahmoudinobar, Bradley L. Nilsson, Cristiano L. Dias. Effects of Ions and Small Compounds on the Structure of Aβ42 Monomers. The Journal of Physical Chemistry B 2021, 125 (4) , 1085-1097. https://doi.org/10.1021/acs.jpcb.0c09617
    18. Leena Aggarwal, Parbati Biswas. Hydration Thermodynamics of the N-Terminal FAD Mutants of Amyloid-β. Journal of Chemical Information and Modeling 2021, 61 (1) , 298-310. https://doi.org/10.1021/acs.jcim.0c01286
    19. Hoang Linh Nguyen, Huynh Quang Linh, Paolo Matteini, Giovanni La Penna, Mai Suan Li. Emergence of Barrel Motif in Amyloid-β Trimer: A Computational Study. The Journal of Physical Chemistry B 2020, 124 (47) , 10617-10631. https://doi.org/10.1021/acs.jpcb.0c05508
    20. Srijita Paul, Komal Kumari, Sandip Paul. Molecular Insight into the Effects of Enhanced Hydrophobicity on Amyloid-like Aggregation. The Journal of Physical Chemistry B 2020, 124 (45) , 10048-10061. https://doi.org/10.1021/acs.jpcb.0c06000
    21. Kohei Noda, Yuhei Tachi, Yuko Okamoto. Structural Characteristics of Monomeric Aβ42 on Fibril in the Early Stage of Secondary Nucleation Process. ACS Chemical Neuroscience 2020, 11 (19) , 2989-2998. https://doi.org/10.1021/acschemneuro.0c00163
    22. Takayasu Kawasaki, Viet Hoang Man, Yasunobu Sugimoto, Nobuyuki Sugiyama, Hiroko Yamamoto, Koichi Tsukiyama, Junmei Wang, Philippe Derreumaux, Phuong H. Nguyen. Infrared Laser-Induced Amyloid Fibril Dissociation: A Joint Experimental/Theoretical Study on the GNNQQNY Peptide. The Journal of Physical Chemistry B 2020, 124 (29) , 6266-6277. https://doi.org/10.1021/acs.jpcb.0c05385
    23. Viet Hoang Man, Xibing He, Beihong Ji, Shuhan Liu, Xiang-Qun Xie, Junmei Wang. Introducing Virtual Oligomerization Inhibition to Identify Potent Inhibitors of Aβ Oligomerization. Journal of Chemical Theory and Computation 2020, 16 (6) , 3920-3935. https://doi.org/10.1021/acs.jctc.0c00185
    24. Leena Aggarwal, Parbati Biswas. Interaction Volume Is a Measure of the Aggregation Propensity of Amyloid-β. The Journal of Physical Chemistry Letters 2020, 11 (10) , 3993-4000. https://doi.org/10.1021/acs.jpclett.0c00922
    25. David Wang, Piotr E. Marszalek. Exploiting a Mechanical Perturbation of a Titin Domain to Identify How Force Field Parameterization Affects Protein Refolding Pathways. Journal of Chemical Theory and Computation 2020, 16 (5) , 3240-3252. https://doi.org/10.1021/acs.jctc.0c00080
    26. Philippe Derreumaux, Viet Hoang Man, Junmei Wang, Phuong H. Nguyen. Tau R3–R4 Domain Dimer of the Wild Type and Phosphorylated Ser356 Sequences. I. In Solution by Atomistic Simulations. The Journal of Physical Chemistry B 2020, 124 (15) , 2975-2983. https://doi.org/10.1021/acs.jpcb.0c00574
    27. Huynh Minh Hung, Minh Tho Nguyen, Phuong-Thao Tran, Vi Khanh Truong, James Chapman, Le Huu Quynh Anh, Philippe Derreumaux, Van V. Vu, Son Tung Ngo. Impact of the Astaxanthin, Betanin, and EGCG Compounds on Small Oligomers of Amyloid Aβ40 Peptide. Journal of Chemical Information and Modeling 2020, 60 (3) , 1399-1408. https://doi.org/10.1021/acs.jcim.9b01074
    28. Son Tung Ngo, Phuong H. Nguyen, Philippe Derreumaux. Stability of Aβ11–40 Trimers with Parallel and Antiparallel β-Sheet Organizations in a Membrane-Mimicking Environment by Replica Exchange Molecular Dynamics Simulation. The Journal of Physical Chemistry B 2020, 124 (4) , 617-626. https://doi.org/10.1021/acs.jpcb.9b10982
    29. Saikat Pal, Sandip Paul. ATP Controls the Aggregation of Aβ16–22 Peptides. The Journal of Physical Chemistry B 2020, 124 (1) , 210-223. https://doi.org/10.1021/acs.jpcb.9b10175
    30. Viet Hoang Man, Xibing He, Beihong Ji, Shuhan Liu, Xiang-Qun Xie, Junmei Wang. Molecular Mechanism and Kinetics of Amyloid-β42 Aggregate Formation: A Simulation Study. ACS Chemical Neuroscience 2019, 10 (11) , 4643-4658. https://doi.org/10.1021/acschemneuro.9b00473
    31. Deborah Doens, Mario E. Valdés-Tresanco, Velmarini Vasquez, Maria Beatriz Carreira, Yila De La Guardia, David E. Stephens, Viet D. Nguyen, Vu T. Nguyen, Jianhua Gu, Muralidhar L. Hegde, Oleg V. Larionov, Pedro A. Valiente, Ricardo Lleonart, Patricia L. Fernández. Hexahydropyrrolo[2,3-b]indole Compounds as Potential Therapeutics for Alzheimer’s Disease. ACS Chemical Neuroscience 2019, 10 (10) , 4250-4263. https://doi.org/10.1021/acschemneuro.9b00297
    32. Olga Press-Sandler, Yifat Miller. Distinct Primary Nucleation of Polymorphic Aβ Dimers Yields to Distinguished Fibrillation Pathways. ACS Chemical Neuroscience 2019, 10 (10) , 4407-4413. https://doi.org/10.1021/acschemneuro.9b00437
    33. Hoang Linh Nguyen, Pawel Krupa, Nguyen Minh Hai, Huynh Quang Linh, Mai Suan Li. Structure and Physicochemical Properties of the Aβ42 Tetramer: Multiscale Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2019, 123 (34) , 7253-7269. https://doi.org/10.1021/acs.jpcb.9b04208
    34. Phuong H. Nguyen, Josep M. Campanera, Son Tung Ngo, Antoine Loquet, Philippe Derreumaux. Tetrameric Aβ40 and Aβ42 β-Barrel Structures by Extensive Atomistic Simulations. II. In Aqueous Solution. The Journal of Physical Chemistry B 2019, 123 (31) , 6750-6756. https://doi.org/10.1021/acs.jpcb.9b05288
    35. Ioana M. Ilie, Amedeo Caflisch. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chemical Reviews 2019, 119 (12) , 6956-6993. https://doi.org/10.1021/acs.chemrev.8b00731
    36. Banafsheh Mehrazma, Arvi Rauk. Exploring Amyloid-β Dimer Structure Using Molecular Dynamics Simulations. The Journal of Physical Chemistry A 2019, 123 (22) , 4658-4670. https://doi.org/10.1021/acs.jpca.8b11251
    37. Birgit Strodel, Orkid Coskuner-Weber. Transition Metal Ion Interactions with Disordered Amyloid-β Peptides in the Pathogenesis of Alzheimer’s Disease: Insights from Computational Chemistry Studies. Journal of Chemical Information and Modeling 2019, 59 (5) , 1782-1805. https://doi.org/10.1021/acs.jcim.8b00983
    38. Phuong H. Nguyen, Josep M. Campanera, Son Tung Ngo, Antoine Loquet, Philippe Derreumaux. Tetrameric Aβ40 and Aβ42 β-Barrel Structures by Extensive Atomistic Simulations. I. In a Bilayer Mimicking a Neuronal Membrane. The Journal of Physical Chemistry B 2019, 123 (17) , 3643-3648. https://doi.org/10.1021/acs.jpcb.9b01206
    39. Srijita Paul, Sandip Paul. Inhibitory Effect of Choline-O-sulfate on Aβ16–22 Peptide Aggregation: A Molecular Dynamics Simulation Study. The Journal of Physical Chemistry B 2019, 123 (16) , 3475-3489. https://doi.org/10.1021/acs.jpcb.9b02727
    40. Yan Lu, Xiao-Feng Shi, Phuong H. Nguyen, Fabio Sterpone, Freddie R. Salsbury, Jr., Philippe Derreumaux. Amyloid-β(29–42) Dimeric Conformations in Membranes Rich in Omega-3 and Omega-6 Polyunsaturated Fatty Acids. The Journal of Physical Chemistry B 2019, 123 (12) , 2687-2696. https://doi.org/10.1021/acs.jpcb.9b00431
    41. Yu Zou, Zhenyu Qian, Yujie Chen, Hongsheng Qian, Guanghong Wei, Qingwen Zhang. Norepinephrine Inhibits Alzheimer’s Amyloid-β Peptide Aggregation and Destabilizes Amyloid-β Protofibrils: A Molecular Dynamics Simulation Study. ACS Chemical Neuroscience 2019, 10 (3) , 1585-1594. https://doi.org/10.1021/acschemneuro.8b00537
    42. Viet Hoang Man, Xibing He, Philippe Derreumaux, Beihong Ji, Xiang-Qun Xie, Phuong H. Nguyen, Junmei Wang. Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of Aβ16–22 Dimer. Journal of Chemical Theory and Computation 2019, 15 (2) , 1440-1452. https://doi.org/10.1021/acs.jctc.8b01107
    43. Xi Li, Baolong Xie, Yan Sun. Basified Human Lysozyme: A Potent Inhibitor against Amyloid β-Protein Fibrillogenesis. Langmuir 2018, 34 (50) , 15569-15577. https://doi.org/10.1021/acs.langmuir.8b03278
    44. Lu Lu, Yixiang Deng, Xuejin Li, He Li, George Em Karniadakis. Understanding the Twisted Structure of Amyloid Fibrils via Molecular Simulations. The Journal of Physical Chemistry B 2018, 122 (49) , 11302-11310. https://doi.org/10.1021/acs.jpcb.8b07255
    45. Nguyen Quoc Thai, Zuzana Bednarikova, Miroslav Gancar, Huynh Quang Linh, Chin-Kun Hu, Mai Suan Li, Zuzana Gazova. Compound CID 9998128 Is a Potential Multitarget Drug for Alzheimer’s Disease. ACS Chemical Neuroscience 2018, 9 (11) , 2588-2598. https://doi.org/10.1021/acschemneuro.8b00091
    46. Nidhi Katyal, Manish Agarwal, Raktim Sen, Vinay Kumar, Shashank Deep. Paradoxical Effect of Trehalose on the Aggregation of α-Synuclein: Expedites Onset of Aggregation yet Reduces Fibril Load. ACS Chemical Neuroscience 2018, 9 (6) , 1477-1491. https://doi.org/10.1021/acschemneuro.8b00056
    47. Payel Das, Silvina Matysiak, Jeetain Mittal. Looking at the Disordered Proteins through the Computational Microscope. ACS Central Science 2018, 4 (5) , 534-542. https://doi.org/10.1021/acscentsci.7b00626
    48. Xinwei Ge, Ye Yang, Yunxiang Sun, Weiguo Cao, Feng Ding. Islet Amyloid Polypeptide Promotes Amyloid-Beta Aggregation by Binding-Induced Helix-Unfolding of the Amyloidogenic Core. ACS Chemical Neuroscience 2018, 9 (5) , 967-975. https://doi.org/10.1021/acschemneuro.7b00396
    49. Nicholas P. van der Munnik, Md Symon Jahan Sajib, Melissa A. Moss, Tao Wei, Mark J. Uline. Determining the Potential of Mean Force for Amyloid-β Dimerization: Combining Self-Consistent Field Theory with Molecular Dynamics Simulation. Journal of Chemical Theory and Computation 2018, 14 (5) , 2696-2704. https://doi.org/10.1021/acs.jctc.7b01057
    50. Sumit Mittal, Kenny Bravo-Rodriguez, Elsa Sanchez-Garcia. Mechanism of Inhibition of Beta Amyloid Toxicity by Supramolecular Tweezers. The Journal of Physical Chemistry B 2018, 122 (15) , 4196-4205. https://doi.org/10.1021/acs.jpcb.7b10530
    51. Bogdan Barz, Qinghua Liao, and Birgit Strodel . Pathways of Amyloid-β Aggregation Depend on Oligomer Shape. Journal of the American Chemical Society 2018, 140 (1) , 319-327. https://doi.org/10.1021/jacs.7b10343
    52. Marco Bacci, Jiří Vymětal, Maja Mihajlovic, Amedeo Caflisch, and Andreas Vitalis . Amyloid β Fibril Elongation by Monomers Involves Disorder at the Tip. Journal of Chemical Theory and Computation 2017, 13 (10) , 5117-5130. https://doi.org/10.1021/acs.jctc.7b00662
    53. Anupam Roy, Kousik Chandra, Sandip Dolui, and Nakul C. Maiti . Envisaging the Structural Elevation in the Early Event of Oligomerization of Disordered Amyloid β Peptide. ACS Omega 2017, 2 (8) , 4316-4327. https://doi.org/10.1021/acsomega.7b00522
    54. Hamid R. Kalhor and M. Parsa Jabbari . Inhibition Mechanisms of a Pyridazine-Based Amyloid Inhibitor: As a β-Sheet Destabilizer and a Helix Bridge Maker. The Journal of Physical Chemistry B 2017, 121 (32) , 7633-7645. https://doi.org/10.1021/acs.jpcb.7b05189
    55. Rong-zu Nie, Shan-shuo Zhang, Xiao-ke Yan, Kun Feng, Yan-jing Lao, Ya-ru Bao. Molecular insights into the structure destabilization effects of ECG and EC on the Aβ protofilament: An all-atom molecular dynamics simulation study. International Journal of Biological Macromolecules 2023, 253 , 127002. https://doi.org/10.1016/j.ijbiomac.2023.127002
    56. Julen Aduriz‐Arrizabalaga, Xabier Lopez, David De Sancho. Atomistic molecular simulations of Aβ‐Zn conformational ensembles. Proteins: Structure, Function, and Bioinformatics 2023, 12 https://doi.org/10.1002/prot.26590
    57. Ly Thi Huong Luu Le, Jeeyoung Lee, Dongjoon Im, Sunha Park, Kyoung‐Doo Hwang, Jung Hoon Lee, Yanxialei Jiang, Yong‐Seok Lee, Young Ho Suh, Hugh I. Kim, Min Jae Lee. Self‐Aggregating Tau Fragments Recapitulate Pathologic Phenotypes and Neurotoxicity of Alzheimer's Disease in Mice. Advanced Science 2023, 2011 https://doi.org/10.1002/advs.202302035
    58. Priya Dey, Parbati Biswas. Exploring the aggregation of amyloid-β 42 through Monte Carlo simulations. Biophysical Chemistry 2023, 297 , 107011. https://doi.org/10.1016/j.bpc.2023.107011
    59. Phuong H. Nguyen, Fabio Sterpone, Philippe Derreumaux. Metastable alpha‐rich and beta‐rich conformations of small Aβ42 peptide oligomers. Proteins: Structure, Function, and Bioinformatics 2023, 13 https://doi.org/10.1002/prot.26495
    60. Debasis Saha, Biman Jana. Identifying the Template for Oligomer to Fibril Conversion for Amyloid‐β (1‐42) Oligomers using Hamiltonian Replica Exchange Molecular Dynamics. ChemPhysChem 2022, 23 (24) https://doi.org/10.1002/cphc.202200393
    61. Kingsley Y. Wu, David Doan, Marco Medrano, Chia-en A. Chang. Modeling structural interconversion in Alzheimers’ amyloid beta peptide with classical and intrinsically disordered protein force fields. Journal of Biomolecular Structure and Dynamics 2022, 40 (20) , 10005-10022. https://doi.org/10.1080/07391102.2021.1939163
    62. Rong-zu Nie, Shuang Cai, Bo Yu, Wen-ying Fan, Huan-huan Li, Shang-wen Tang, Yin-qiang Huo. Molecular insights into the very early steps of Aβ1-42 pentameric protofibril disassembly by PGG: A molecular dynamics simulation study. Journal of Molecular Liquids 2022, 361 , 119638. https://doi.org/10.1016/j.molliq.2022.119638
    63. Maryam Haji Dehabadi, Rohoullah Firouzi. Constructing conformational library for amyloid-β42 dimers as the smallest toxic oligomers using two CHARMM force fields. Journal of Molecular Graphics and Modelling 2022, 115 , 108207. https://doi.org/10.1016/j.jmgm.2022.108207
    64. Sompriya Chatterjee, Yeonsig Nam, Abbas Salimi, Jin Yong Lee. Monitoring early-stage β-amyloid dimer aggregation by histidine site-specific two-dimensional infrared spectroscopy in a simulation study. Physical Chemistry Chemical Physics 2022, 24 (31) , 18691-18702. https://doi.org/10.1039/D2CP02479A
    65. Hisashi Okumura, Satoru G. Itoh. Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation. Molecules 2022, 27 (8) , 2483. https://doi.org/10.3390/molecules27082483
    66. Daiki Fukuhara, Satoru G. Itoh, Hisashi Okumura. Replica permutation with solute tempering for molecular dynamics simulation and its application to the dimerization of amyloid-β fragments. The Journal of Chemical Physics 2022, 156 (8) https://doi.org/10.1063/5.0081686
    67. Jiawen Wang, Huilong Dong, Tianle Leng, Yi Yu, Youyong Li. Turning the structure of the Aβ 42 peptide by different functionalized carbon nanotubes: a molecular dynamics simulation study. Physical Chemistry Chemical Physics 2022, 24 (7) , 4270-4279. https://doi.org/10.1039/D1CP04278E
    68. Trung Hai Nguyen, Phuong H. Nguyen, Son Tung Ngo, Philippe Derreumaux. Effect of Cholesterol Molecules on Aβ1-42 Wild-Type and Mutants Trimers. Molecules 2022, 27 (4) , 1395. https://doi.org/10.3390/molecules27041395
    69. Phuong Hoang Nguyen, Pierre Tufféry, Philippe Derreumaux. Dynamics of Amyloid Formation from Simplified Representation to Atomistic Simulations. 2022, 95-113. https://doi.org/10.1007/978-1-0716-1855-4_5
    70. Phuong H. Nguyen, Philippe Derreumaux. Computer Simulations Aimed at Exploring Protein Aggregation and Dissociation. 2022, 175-196. https://doi.org/10.1007/978-1-0716-1546-1_9
    71. Yuhei Tachi, Satoru G. Itoh, Hisashi Okumura. Molecular dynamics simulations of amyloid-β peptides in heterogeneous environments. Biophysics and Physicobiology 2022, 19 (0) , n/a. https://doi.org/10.2142/biophysico.bppb-v19.0010
    72. Tuan D. Samdin, Adam G. Kreutzer, James S. Nowick. Exploring amyloid oligomers with peptide model systems. Current Opinion in Chemical Biology 2021, 64 , 106-115. https://doi.org/10.1016/j.cbpa.2021.05.004
    73. Hebah Fatafta, Mohammed Khaled, Michael C. Owen, Abdallah Sayyed-Ahmad, Birgit Strodel. Amyloid-β peptide dimers undergo a random coil to β-sheet transition in the aqueous phase but not at the neuronal membrane. Proceedings of the National Academy of Sciences 2021, 118 (39) https://doi.org/10.1073/pnas.2106210118
    74. Fangying Li, Chendi Zhan, Xuewei Dong, Guanghong Wei. Molecular mechanisms of resveratrol and EGCG in the inhibition of Aβ 42 aggregation and disruption of Aβ 42 protofibril: similarities and differences. Physical Chemistry Chemical Physics 2021, 23 (34) , 18843-18854. https://doi.org/10.1039/D1CP01913A
    75. Abbas Salimi, Hao Li, Jin Yong Lee. Molecular insight into the early stage of amyloid-β(1-42) Homodimers aggregation influenced by histidine tautomerism. International Journal of Biological Macromolecules 2021, 184 , 887-897. https://doi.org/10.1016/j.ijbiomac.2021.06.078
    76. Huan He, Juan Xu, Chen‐Qiao Li, Tian Gao, Peng Jiang, Feng‐Lei Jiang, Yi Liu. Insights into Mechanism of A β 42 Fibril Growth on Surface of Graphene Oxides: Oxidative Degree Matters. Advanced Healthcare Materials 2021, 10 (16) , 2100436. https://doi.org/10.1002/adhm.202100436
    77. Srijita Paul, Sandip Paul. Controlling the self-assembly of human calcitonin: a theoretical approach using molecular dynamics simulations. Physical Chemistry Chemical Physics 2021, 23 (26) , 14496-14510. https://doi.org/10.1039/D1CP00825K
    78. Pablo G. Argudo, Juan J. Giner-Casares. Folding and self-assembly of short intrinsically disordered peptides and protein regions. Nanoscale Advances 2021, 3 (7) , 1789-1812. https://doi.org/10.1039/D0NA00941E
    79. Min Wu, Lyudmyla Dorosh, Gerold Schmitt-Ulms, Holger Wille, Maria Stepanova, . Aggregation of Aβ40/42 chains in the presence of cyclic neuropeptides investigated by molecular dynamics simulations. PLOS Computational Biology 2021, 17 (3) , e1008771. https://doi.org/10.1371/journal.pcbi.1008771
    80. Satoru Itoh, Hisashi Okumura. Promotion and Inhibition of Amyloid-β Peptide Aggregation: Molecular Dynamics Studies. International Journal of Molecular Sciences 2021, 22 (4) , 1859. https://doi.org/10.3390/ijms22041859
    81. Ke Wang, Liu Na, Mojie Duan. The Pathogenesis Mechanism, Structure Properties, Potential Drugs and Therapeutic Nanoparticles against the Small Oligomers of Amyloid-β. Current Topics in Medicinal Chemistry 2021, 21 (2) , 151-167. https://doi.org/10.2174/1568026620666200916123000
    82. Rohit Shukla, Timir Tripathi. Molecular Dynamics Simulation in Drug Discovery: Opportunities and Challenges. 2021, 295-316. https://doi.org/10.1007/978-981-15-8936-2_12
    83. Phuong H. Nguyen, Philippe Derreumaux. Structures of the intrinsically disordered Aβ, tau and α-synuclein proteins in aqueous solution from computer simulations. Biophysical Chemistry 2020, 264 , 106421. https://doi.org/10.1016/j.bpc.2020.106421
    84. János Gera, Gábor Paragi. Fluorescence-Labeled Amyloid Beta Monomer: A Molecular Dynamical Study. Molecules 2020, 25 (15) , 3524. https://doi.org/10.3390/molecules25153524
    85. Hisashi Okumura, Satoru G. Itoh. Molecular dynamics simulations of amyloid-β(16–22) peptide aggregation at air–water interfaces. The Journal of Chemical Physics 2020, 152 (9) https://doi.org/10.1063/1.5131848
    86. Thomas A. Collier, Thomas J. Piggot, Jane R. Allison. Molecular Dynamics Simulation of Proteins. 2020, 311-327. https://doi.org/10.1007/978-1-4939-9869-2_17
    87. Phuong H. Nguyen, Fabio Sterpone, Philippe Derreumaux. Aggregation of disease-related peptides. 2020, 435-460. https://doi.org/10.1016/bs.pmbts.2019.12.002
    88. Yang Cao, Xuan Tang, Miao Yuan, Wei Han. Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation. 2020, 461-504. https://doi.org/10.1016/bs.pmbts.2019.12.008
    89. Gianvito Grasso, Andrea Danani. Molecular simulations of amyloid beta assemblies. Advances in Physics: X 2020, 5 (1) , 1770627. https://doi.org/10.1080/23746149.2020.1770627
    90. Nan Zhang, Jingjie Yeo, Yongxiang Lim, Ping Guan, Kaiyang Zeng, Xiaoling Hu, Yuan Cheng. Tuning the structure of monomeric amyloid beta peptide by the curvature of carbon nanotubes. Carbon 2019, 153 , 717-724. https://doi.org/10.1016/j.carbon.2019.07.068
    91. Mohtadin Hashemi, Yuliang Zhang, Zhengjian Lv, Yuri L. Lyubchenko. Spontaneous self-assembly of amyloid β (1–40) into dimers. Nanoscale Advances 2019, 1 (10) , 3892-3899. https://doi.org/10.1039/C9NA00380K
    92. Michael C. Owen, David Gnutt, Mimi Gao, Sebastian K. T. S. Wärmländer, Jüri Jarvet, Astrid Gräslund, Roland Winter, Simon Ebbinghaus, Birgit Strodel. Effects of in vivo conditions on amyloid aggregation. Chemical Society Reviews 2019, 48 (14) , 3946-3996. https://doi.org/10.1039/C8CS00034D
    93. Yibo Jin, Yunxiang Sun, Yujie Chen, Jiangtao Lei, Guanghong Wei. Molecular dynamics simulations reveal the mechanism of graphene oxide nanosheet inhibition of Aβ 1–42 peptide aggregation. Physical Chemistry Chemical Physics 2019, 21 (21) , 10981-10991. https://doi.org/10.1039/C9CP01803D
    94. Keiichi Masutani, Yu Yamamori, Kang Kim, Nobuyuki Matubayasi. Free-energy analysis of the hydration and cosolvent effects on the β-sheet aggregation through all-atom molecular dynamics simulation. The Journal of Chemical Physics 2019, 150 (14) https://doi.org/10.1063/1.5088395
    95. Panagiota S. Georgoulia, Nicholas M. Glykos. Molecular simulation of peptides coming of age: Accurate prediction of folding, dynamics and structures. Archives of Biochemistry and Biophysics 2019, 664 , 76-88. https://doi.org/10.1016/j.abb.2019.01.033
    96. Naohiro Nishikawa, Yoshitake Sakae, Takuya Gouda, Yuichiro Tsujimura, Yuko Okamoto. Structural Analysis of a Trimer of β2-Microgloblin Fragment by Molecular Dynamics Simulations. Biophysical Journal 2019, 116 (5) , 781-790. https://doi.org/10.1016/j.bpj.2018.11.3143
    97. Holger Wille, Lyudmyla Dorosh, Sara Amidian, Gerold Schmitt-Ulms, Maria Stepanova. Combining molecular dynamics simulations and experimental analyses in protein misfolding. 2019, 33-110. https://doi.org/10.1016/bs.apcsb.2019.10.001
    98. Phuong H. Nguyen, Maria P. del Castillo-Frias, Olivia Berthoumieux, Peter Faller, Andrew J. Doig, Philippe Derreumaux, , , , , . Amyloid-β/Drug Interactions from Computer Simulations and Cell-Based Assays. Journal of Alzheimer's Disease 2018, 64 (s1) , S659-S672. https://doi.org/10.3233/JAD-179902
    99. Shruti Arya, Avinash K. Singh, Karishma Bhasne, Priyanka Dogra, Anindya Datta, Payel Das, Samrat Mukhopadhyay. Femtosecond Hydration Map of Intrinsically Disordered α-Synuclein. Biophysical Journal 2018, 114 (11) , 2540-2551. https://doi.org/10.1016/j.bpj.2018.04.028
    100. Tiziana Ginex, Marta Trius, F. Javier Luque. Computational Study of the Aza‐Michael Addition of the Flavonoid (+)‐Taxifolin in the Inhibition of β‐Amyloid Fibril Aggregation. Chemistry – A European Journal 2018, 24 (22) , 5813-5824. https://doi.org/10.1002/chem.201706072
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect