ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Origin of the Reactive and Nonreactive Excited States in the Primary Reaction of Rhodopsins: pH Dependence of Femtosecond Absorption of Light-Driven Sodium Ion Pump Rhodopsin KR2

  • Shinya Tahara
    Shinya Tahara
    Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
  • Satoshi Takeuchi
    Satoshi Takeuchi
    Molecular Spectroscopy Laboratory  and  Ultrafast Spectroscopy Research Team, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
  • Rei Abe-Yoshizumi
    Rei Abe-Yoshizumi
    Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
  • Keiichi Inoue
    Keiichi Inoue
    Department of Frontier Materials  and  OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
    PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
  • Hiroyuki Ohtani
    Hiroyuki Ohtani
    Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
  • Hideki Kandori
    Hideki Kandori
    Department of Frontier Materials  and  OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
  • , and 
  • Tahei Tahara*
    Tahei Tahara
    Molecular Spectroscopy Laboratory  and  Ultrafast Spectroscopy Research Team, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
    *E-mail: [email protected]
    More by Tahei Tahara
Cite this: J. Phys. Chem. B 2018, 122, 18, 4784–4792
Publication Date (Web):April 30, 2018
https://doi.org/10.1021/acs.jpcb.8b01934
Copyright © 2018 American Chemical Society

    Article Views

    1177

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    KR2 is the first light-driven Na+-pumping rhodopsin discovered. It was reported that the photoexcitation of KR2 generates multiple S1 states, i.e., “reactive” and “nonreactive” S1 states at physiological pH, but their origin remained unclear. In this study, we examined the S1 state dynamics of KR2 using femtosecond time-resolved absorption spectroscopy at different pH′s in the range from 4 to 11. It was found that the reactive S1 state is predominantly formed at pH >9, but its population drastically decreases with decreasing pH while the population of the nonreactive S1 state(s) increases. The pH dependence of the relative population of the reactive S1 state correlates very well with the pH titration curve of Asp116, which is the counterion of the protonated retinal Schiff base (PRSB) in KR2. This strongly indicates that the deprotonation/protonation of Asp116 is directly related to the generation of the multiple S1 states in KR2. The quantitative analysis of the time-resolved absorption data led us to conclude that the reactive and nonreactive S1 states of KR2 originate from KR2 proteins having a hydrogen bond between Asp116 and PRSB or not, respectively. In other words, it is the ground-state inhomogeneity that is the origin of the coexistence of the reactive and nonreactive S1 states in KR2. So far, the generation of multiple S1 states having a different photoreactivity of rhodopsins has been mainly explained with the branching of the relaxation pathway in the Franck–Condon region in the S1 state. The present study shows that the structural inhomogeneity in the ground state, in particular that of the hydrogen-bond network, is the more plausible origin of the reactive and nonreactive S1 states which have been widely observed for various rhodopsins.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcb.8b01934.

    • HPLC analysis of the extracted retinal oxime at pH 8 and 4. Femtosecond time-resolved absorption spectra of wild-type KR2 at all of the pH′s measured as well as those of the D116N mutant. The temporal trace of the time-resolved absorption signal of D116N and the best fit. Tables of the parameters of the best fits for wild-type KR2 at each pH and the D116N mutant (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 23 publications.

    1. Zixuan Li, Misao Mizuno, Tomo Ejiri, Shigehiko Hayashi, Hideki Kandori, Yasuhisa Mizutani. Unique Vibrational Characteristics and Structures of the Photoexcited Retinal Chromophore in Ion-Pumping Rhodopsins. The Journal of Physical Chemistry B 2023, 127 (46) , 9873-9886. https://doi.org/10.1021/acs.jpcb.3c02146
    2. Marvin Asido, Josef Wachtveitl. Photochemistry of the Light-Driven Sodium Pump Krokinobacter eikastus Rhodopsin 2 and Its Implications on Microbial Rhodopsin Research: Retrospective and Perspective. The Journal of Physical Chemistry B 2023, 127 (17) , 3766-3773. https://doi.org/10.1021/acs.jpcb.2c08933
    3. Pavel A. Kusochek, Andrei V. Scherbinin, Anastasia V. Bochenkova. Insights into the Early-Time Excited-State Dynamics of Structurally Inhomogeneous Rhodopsin KR2. The Journal of Physical Chemistry Letters 2021, 12 (35) , 8664-8671. https://doi.org/10.1021/acs.jpclett.1c02312
    4. Marvin Asido, Rajiv K. Kar, Clara Nassrin Kriebel, Markus Braun, Clemens Glaubitz, Igor Schapiro, Josef Wachtveitl. Transient Near-UV Absorption of the Light-Driven Sodium Pump Krokinobacter eikastus Rhodopsin 2: A Spectroscopic Marker for Retinal Configuration. The Journal of Physical Chemistry Letters 2021, 12 (27) , 6284-6291. https://doi.org/10.1021/acs.jpclett.1c01436
    5. Olga A. Smitienko, Tatiana B. Feldman, Lada E. Petrovskaya, Oksana V. Nekrasova, Marina A. Yakovleva, Ivan V. Shelaev, Fedor E. Gostev, Dmitry A. Cherepanov, Irina B. Kolchugina, Dmitry A. Dolgikh, Victor A. Nadtochenko, Mikhail P. Kirpichnikov, Mikhail A. Ostrovsky. Comparative Femtosecond Spectroscopy of Primary Photoreactions of Exiguobacterium sibiricum Rhodopsin and Halobacterium salinarum Bacteriorhodopsin. The Journal of Physical Chemistry B 2021, 125 (4) , 995-1008. https://doi.org/10.1021/acs.jpcb.0c07763
    6. Laura Pedraza-González, María Del Carmen Marín, Alejandro N. Jorge, Tyler D. Ruck, Xuchun Yang, Alessio Valentini, Massimo Olivucci, Luca De Vico. Web-ARM: A Web-Based Interface for the Automatic Construction of QM/MM Models of Rhodopsins. Journal of Chemical Information and Modeling 2020, 60 (3) , 1481-1493. https://doi.org/10.1021/acs.jcim.9b00615
    7. Akihiro Otomo, Misao Mizuno, Keiichi Inoue, Hideki Kandori, Yasuhisa Mizutani. Allosteric Communication with the Retinal Chromophore upon Ion Binding in a Light-Driven Sodium Ion-Pumping Rhodopsin. Biochemistry 2020, 59 (4) , 520-529. https://doi.org/10.1021/acs.biochem.9b01062
    8. Shinya Tahara, Manish Singh, Hikaru Kuramochi, Wataru Shihoya, Keiichi Inoue, Osamu Nureki, Oded Béjà, Yasuhisa Mizutani, Hideki Kandori, Tahei Tahara. Ultrafast Dynamics of Heliorhodopsins. The Journal of Physical Chemistry B 2019, 123 (11) , 2507-2512. https://doi.org/10.1021/acs.jpcb.9b00887
    9. María del Carmen Marín, Damianos Agathangelou, Yoelvis Orozco-Gonzalez, Alessio Valentini, Yoshitaka Kato, Rei Abe-Yoshizumi, Hideki Kandori, Ahreum Choi, Kwang-Hwan Jung, Stefan Haacke, Massimo Olivucci. Fluorescence Enhancement of a Microbial Rhodopsin via Electronic Reprogramming. Journal of the American Chemical Society 2019, 141 (1) , 262-271. https://doi.org/10.1021/jacs.8b09311
    10. Keiichi Inoue, Shinya Tahara, Yoshitaka Kato, Satoshi Takeuchi, Tahei Tahara, Hideki Kandori. Spectroscopic Study of Proton-Transfer Mechanism of Inward Proton-Pump Rhodopsin, Parvularcula oceani Xenorhodopsin. The Journal of Physical Chemistry B 2018, 122 (25) , 6453-6461. https://doi.org/10.1021/acs.jpcb.8b01279
    11. Filip Leonarski, Jie Nan, Zdenek Matej, Quentin Bertrand, Antonia Furrer, Ishkhan Gorgisyan, Monika Bjelčić, Michal Kepa, Hannah Glover, Viktoria Hinger, Thomas Eriksson, Aleksander Cehovin, Mikel Eguiraun, Piero Gasparotto, Aldo Mozzanica, Tobias Weinert, Ana Gonzalez, Jörg Standfuss, Meitian Wang, Thomas Ursby, Florian Dworkowski. Kilohertz serial crystallography with the JUNGFRAU detector at a fourth-generation synchrotron source. IUCrJ 2023, 10 (6) , 729-737. https://doi.org/10.1107/S2052252523008618
    12. Qifan Yang, Deliang Chen. Na+ Binding and Transport: Insights from Light-Driven Na+-Pumping Rhodopsin. Molecules 2023, 28 (20) , 7135. https://doi.org/10.3390/molecules28207135
    13. Mikhail A. Ostrovsky, Olga A. Smitienko, Anastasia V. Bochenkova, Tatiana B. Feldman. Similarities and Differences in Photochemistry of Type I and Type II Rhodopsins. Biochemistry (Moscow) 2023, 88 (10) , 1528-1543. https://doi.org/10.1134/S0006297923100097
    14. Kentaro Mannen, Takashi Nagata, Andrey Rozenberg, Masae Konno, María del Carmen Marín, Reza Bagherzadeh, Oded Béjà, Takayuki Uchihashi, Keiichi Inoue. Multiple Roles of a Conserved Glutamate Residue for Unique Biophysical Properties in a New Group of Microbial Rhodopsins Homologous to TAT Rhodopsin. Journal of Molecular Biology 2023, 134 , 168331. https://doi.org/10.1016/j.jmb.2023.168331
    15. Clara Nassrin Kriebel, Marvin Asido, Jagdeep Kaur, Jennifer Orth, Philipp Braun, Johanna Becker-Baldus, Josef Wachtveitl, Clemens Glaubitz. Structural and functional consequences of the H180A mutation of the light-driven sodium pump KR2. Biophysical Journal 2023, 122 (6) , 1003-1017. https://doi.org/10.1016/j.bpj.2022.12.023
    16. Marie Kurihara, Vera Thiel, Hirona Takahashi, Keiichi Kojima, David M. Ward, Donald A. Bryant, Makoto Sakai, Susumu Yoshizawa, Yuki Sudo. Identification of a Functionally Efficient and Thermally Stable Outward Sodium-Pumping Rhodopsin (BeNaR) from a Thermophilic Bacterium. Chemical and Pharmaceutical Bulletin 2023, 71 (2) , 154-164. https://doi.org/10.1248/cpb.c22-00774
    17. Chun‐Fu Chang, Hikaru Kuramochi, Manish Singh, Rei Abe‐Yoshizumi, Tatsuya Tsukuda, Hideki Kandori, Tahei Tahara. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Angewandte Chemie 2022, 134 (2) https://doi.org/10.1002/ange.202111930
    18. Chun‐Fu Chang, Hikaru Kuramochi, Manish Singh, Rei Abe‐Yoshizumi, Tatsuya Tsukuda, Hideki Kandori, Tahei Tahara. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Angewandte Chemie International Edition 2022, 61 (2) https://doi.org/10.1002/anie.202111930
    19. Damianos Agathangelou, Partha Pratim Roy, María del Carmen Marín, Nicolas Ferré, Massimo Olivucci, Tiago Buckup, Jérémie Léonard, Stefan Haacke. Sub-picosecond C = C bond photo-isomerization: evidence for the role of excited state mixing. Comptes Rendus. Physique 2021, 22 (S2) , 111-138. https://doi.org/10.5802/crphys.41
    20. Petr Skopintsev, David Ehrenberg, Tobias Weinert, Daniel James, Rajiv K. Kar, Philip J. M. Johnson, Dmitry Ozerov, Antonia Furrer, Isabelle Martiel, Florian Dworkowski, Karol Nass, Gregor Knopp, Claudio Cirelli, Christopher Arrell, Dardan Gashi, Sandra Mous, Maximilian Wranik, Thomas Gruhl, Demet Kekilli, Steffen Brünle, Xavier Deupi, Gebhard F. X. Schertler, Roger M. Benoit, Valerie Panneels, Przemyslaw Nogly, Igor Schapiro, Christopher Milne, Joachim Heberle, Jörg Standfuss. Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature 2020, 583 (7815) , 314-318. https://doi.org/10.1038/s41586-020-2307-8
    21. Chun-Fu Chang, Hikaru Kuramochi, Manish Singh, Rei Abe-Yoshizumi, Tatsuya Tsukuda, Hideki Kandori, Tahei Tahara. Acid–base equilibrium of the chromophore counterion results in distinct photoisomerization reactivity in the primary event of proteorhodopsin. Physical Chemistry Chemical Physics 2019, 21 (46) , 25728-25734. https://doi.org/10.1039/C9CP04991F
    22. Ramprasad Misra, Amiram Hirshfeld, Mordechai Sheves. Molecular mechanism for thermal denaturation of thermophilic rhodopsin. Chemical Science 2019, 10 (31) , 7365-7374. https://doi.org/10.1039/C9SC00855A
    23. Kirill Kovalev, Vitaly Polovinkin, Ivan Gushchin, Alexey Alekseev, Vitaly Shevchenko, Valentin Borshchevskiy, Roman Astashkin, Taras Balandin, Dmitry Bratanov, Svetlana Vaganova, Alexander Popov, Vladimir Chupin, Georg Büldt, Ernst Bamberg, Valentin Gordeliy. Structure and mechanisms of sodium-pumping KR2 rhodopsin. Science Advances 2019, 5 (4) https://doi.org/10.1126/sciadv.aav2671

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect