ACS Publications. Most Trusted. Most Cited. Most Read
Time Evolution of the Dissociation Fraction in rf CO2 Plasmas: Impact and Nature of Back-Reaction Mechanisms
My Activity

Figure 1Loading Img
    C: Energy Conversion and Storage; Energy and Charge Transport

    Time Evolution of the Dissociation Fraction in rf CO2 Plasmas: Impact and Nature of Back-Reaction Mechanisms
    Click to copy article linkArticle link copied!

    • Ana Sofia Morillo-Candas*
      Ana Sofia Morillo-Candas
      Laboratoire de Physique des Plasmas (UMR 7648), CNRS-Univ. Paris Sud-Sorbonne Université-École Polytechnique, 91128 Palaiseau, France
      *Email: [email protected]
    • Vasco Guerra
      Vasco Guerra
      Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
      More by Vasco Guerra
    • Olivier Guaitella
      Olivier Guaitella
      Laboratoire de Physique des Plasmas (UMR 7648), CNRS-Univ. Paris Sud-Sorbonne Université-École Polytechnique, 91128 Palaiseau, France
    Other Access Options

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2020, 124, 32, 17459–17475
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.0c03354
    Published July 13, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The time evolution of the dissociation fraction in a pulsed radio frequency (rf) CO2 discharge is studied by infrared absorption. A large parametric study performed in a closed reactor brings valuable information about both dissociation and recombination processes. The CO2 conversion shows a time evolution initially controlled by electron impact dissociation. For longer plasma-on times, the dissociation fraction reaches a steady-state that corresponds to a balance between dissociation processes and back-reaction mechanisms. The characteristic times of vibrational and rotational excitation of CO and CO2 are measured during a single plasma pulse. The dependence of the CO2 conversion as a function of pulse duration and frequency is then analyzed, showing the influence of the plasma excitation conditions on the back-reaction mechanisms. The study of CO2–O2 and CO–O2 gas mixtures gives further insight into the impact of the oxygen content in these mechanisms. The global back-reaction rate observed in these experiments is compared with calculated values from rate coefficients available in the literature. The experimental results and preliminary calculations reveal a key role of molecular oxygen and of the metastable electronically excited state CO(a3Πr) in the back-reaction. Competing processes involving vibrational excited CO are not dominant in our discharge conditions but may become relevant at slightly higher vibrational temperatures.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 26 publications.

    1. Ana Sofia Morillo-Candas, Bart L. M. Klarenaar, Vasco Guerra, Olivier Guaitella. Fast O Atom Exchange Diagnosed by Isotopic Tracing as a Probe of Excited States in Nonequilibrium CO2–CO–O2 Plasmas. The Journal of Physical Chemistry C 2023, 127 (13) , 6135-6151. https://doi.org/10.1021/acs.jpcc.2c08493
    2. João Vargas, Bruno Lopez, Mário Lino da Silva. Heavy Particle Impact Vibrational Excitation and Dissociation Processes in CO2. The Journal of Physical Chemistry A 2021, 125 (2) , 493-512. https://doi.org/10.1021/acs.jpca.0c05677
    3. Samuel K. Conlin, Joseph Joel Muhanga, David N. Parette, Robert H. Coridan. Characterizing the stability of ultra-thin metal oxide catalyst films in non-thermal plasma CO 2 reduction reactions. Nanoscale Advances 2025, 7 (3) , 876-885. https://doi.org/10.1039/D4NA00854E
    4. Aswath Mohanan, Ramses Snoeckx, Min Suk Cha. Temperature‐Dependent Kinetics of Plasma‐Based CO 2 Conversion: Interplay of Electron‐Driven and Thermal‐Driven Chemistry. ChemSusChem 2024, 223 https://doi.org/10.1002/cssc.202401526
    5. Valeriy Lisovskiy, Stanislav Dudin, Amaliya Shakhnazarian, Pavlo Platonov, Vladimir Yegorenkov. Numerical Simulation of the Dynamics of RF Capacitive Discharge in Carbon Dioxide. East European Journal of Physics 2024, (3) , 172-187. https://doi.org/10.26565/2312-4334-2024-3-17
    6. Dante Filice, Sylvain Coulombe. Combined ns pulsed-RF excitation and impedance matching considerations for the production of moderate E/n atmospheric pressure discharges for gas conversion. Plasma Sources Science and Technology 2024, 33 (5) , 055011. https://doi.org/10.1088/1361-6595/ad42d0
    7. Edmond Baratte, Carolina A. Garcia-Soto, Tiago Silva, Vasco Guerra, Vasile I. Parvulescu, Olivier Guaitella. $$\hbox {CO}_2$$/$$\hbox {CH}_4$$ Glow Discharge Plasma: Part I—Experimental and Numerical Study of the Reaction Pathways. Plasma Chemistry and Plasma Processing 2024, 44 (3) , 1237-1286. https://doi.org/10.1007/s11090-023-10421-z
    8. Carolina A. Garcia-Soto, Edmond Baratte, Tiago Silva, Vasco Guerra, Vasile I. Parvulescu, Olivier Guaitella. CO2/CH4 Glow Discharge Plasma. Part II: Study of Plasma Catalysis Interaction Mechanisms on CeO2. Plasma Chemistry and Plasma Processing 2024, 44 (3) , 1287-1326. https://doi.org/10.1007/s11090-023-10419-7
    9. L. D. Pietanza, G. Colonna, M. Capitelli. Self-Consistent State-to-State Kinetic Modeling of CO2 Cold Plasmas: Insights on the Role of Electronically Excited States. Plasma Chemistry and Plasma Processing 2024, 44 (3) , 1431-1468. https://doi.org/10.1007/s11090-023-10407-x
    10. C Fromentin, T Silva, T C Dias, E Baratte, O Guaitella, V Guerra. Validation of non-equilibrium kinetics in CO 2 –N 2 plasmas. Plasma Sources Science and Technology 2023, 32 (5) , 054004. https://doi.org/10.1088/1361-6595/acce64
    11. Adrian Scurtu, Dorina Ticoş, Maria Luiza Mitu, Constantin Diplașu, Nicoleta Udrea, Cătălin Mihai Ticoș. Splitting CO2 in Intense Pulsed Plasma Jets. International Journal of Molecular Sciences 2023, 24 (8) , 6899. https://doi.org/10.3390/ijms24086899
    12. Audrey Chatain, Ana Sofia Morillo-Candas, Ludovic Vettier, Nathalie Carrasco, Guy Cernogora, Olivier Guaitella. Characterization of a DC glow discharge in N 2 –H 2 with electrical measurements and neutral and ion mass spectrometry. Plasma Sources Science and Technology 2023, 32 (3) , 035002. https://doi.org/10.1088/1361-6595/acc132
    13. C Fromentin, T Silva, T C Dias, A S Morillo-Candas, O Biondo, O Guaitella, V Guerra. Study of vibrational kinetics of CO 2 and CO in CO 2 –O 2 plasmas under non-equilibrium conditions. Plasma Sources Science and Technology 2023, 32 (2) , 024001. https://doi.org/10.1088/1361-6595/acb665
    14. S C L Vervloedt, M Budde, R Engeln. Influence of oxygen on the ro-vibrational kinetics of a non-equilibrium discharge in CO 2 –O 2 mixtures. Plasma Sources Science and Technology 2023, 32 (1) , 015004. https://doi.org/10.1088/1361-6595/acb00d
    15. Rani Vertongen, Georgi Trenchev, Robbe Van Loenhout, Annemie Bogaerts. Enhancing CO2 conversion with plasma reactors in series and O2 removal. Journal of CO2 Utilization 2022, 66 , 102252. https://doi.org/10.1016/j.jcou.2022.102252
    16. V. Guerra, T. Silva, N. Pinhão, O. Guaitella, C. Guerra-Garcia, F. J. J. Peeters, M. N. Tsampas, M. C. M. van de Sanden. Plasmas for in situ resource utilization on Mars: Fuels, life support, and agriculture. Journal of Applied Physics 2022, 132 (7) https://doi.org/10.1063/5.0098011
    17. Maik Budde, Richard Engeln. Crosstalk-Free Excitation Scheme for Quantitative OH Laser-Induced Fluorescence in Environments Containing Excited CO. Applied Spectroscopy 2022, 76 (7) , 851-855. https://doi.org/10.1177/00037028221088591
    18. Rani Vertongen, Georgi Trenchev, Robbe Van Loenhout, Annemie Bogaerts. Enhancing Co2 Conversion with Plasma Reactors in Series and O2 Removal. SSRN Electronic Journal 2022, 26 https://doi.org/10.2139/ssrn.4180103
    19. Gabriele Centi, Siglinda Perathoner, Georgia Papanikolaou. Plasma assisted CO2 splitting to carbon and oxygen: A concept review analysis. Journal of CO2 Utilization 2021, 54 , 101775. https://doi.org/10.1016/j.jcou.2021.101775
    20. Kimberly A. M. Hiyoto, Erin P. Stuckert, Ellen R. Fisher. Comparison of CO and CO2 rf plasma treatment of SnO2 nanoparticles for gas sensing materials. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2021, 39 (6) https://doi.org/10.1116/6.0001326
    21. Tiago Silva, Ana Sofia Morillo-Candas, Olivier Guaitella, Vasco Guerra. Modeling the time evolution of the dissociation fraction in low-pressure CO2 plasmas. Journal of CO2 Utilization 2021, 53 , 101719. https://doi.org/10.1016/j.jcou.2021.101719
    22. Yanjun Du, Tsanko V Tsankov, Dirk Luggenhölscher, Uwe Czarnetzki. Time evolution of CO 2 ro-vibrational excitation in a nanosecond discharge measured with laser absorption spectroscopy. Journal of Physics D: Applied Physics 2021, 54 (36) , 365201. https://doi.org/10.1088/1361-6463/ac03e7
    23. Lucia Daniela Pietanza, Olivier Guaitella, Vincenzo Aquilanti, Iole Armenise, Annemie Bogaerts, Mario Capitelli, Gianpiero Colonna, Vasco Guerra, Richard Engeln, Elena Kustova, Andrea Lombardi, Federico Palazzetti, Tiago Silva. Advances in non-equilibrium $$\hbox {CO}_2$$ plasma kinetics: a theoretical and experimental review. The European Physical Journal D 2021, 75 (9) https://doi.org/10.1140/epjd/s10053-021-00226-0
    24. P Ogloblina, A S Morillo-Candas, A F Silva, T Silva, A Tejero-del-Caz, L L Alves, O Guaitella, V Guerra. Mars in situ oxygen and propellant production by non-equilibrium plasmas. Plasma Sources Science and Technology 2021, 30 (6) , 065005. https://doi.org/10.1088/1361-6595/abec28
    25. Shota Yamada, Yuki Morita, Atsushi Nezu, Hiroshi Akatsuka. Nonequilibrium characteristics in the rotational temperature of CO excited states in microwave discharge CO 2 plasma. Japanese Journal of Applied Physics 2021, 60 (4) , 046005. https://doi.org/10.35848/1347-4065/abee04
    26. A S Morillo-Candas, B L M Klarenaar, C Amoedo, V Guerra, O Guaitella. Effect of oxygen atoms on the vibrational kinetics of CO 2 and CO revealed by the use of a large surface area material. Journal of Physics D: Applied Physics 2021, 54 (9) , 095208. https://doi.org/10.1088/1361-6463/abc992

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2020, 124, 32, 17459–17475
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.0c03354
    Published July 13, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    643

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.