ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVC: Energy Conversion...C: Energy Conversion and Storage; Energy and Charge TransportNEXT

Nature of Terminating Hydroxyl Groups and Intercalating Water in Ti3C2Tx MXenes: A Study by 1H Solid-State NMR and DFT Calculations

Cite this: J. Phys. Chem. C 2020, 124, 25, 13649–13655
Publication Date (Web):June 5, 2020
https://doi.org/10.1021/acs.jpcc.0c04744
Copyright © 2020 American Chemical Society

    Article Views

    2383

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Since the discovery of two-dimensional transition metal carbides, referred to as MXenes, research efforts have targeted their applications in energy storage, as lithium-ion batteries and supercapacitors. This interest is attributable to MXenes’ large volumetric capacitance, high rate handling capability, and stable cycling performance, which largely rely on the surface chemistry provided by the terminating groups, such as −OH, −O, and −F. However, the atomic-scale characterization of these surface terminations is challenging for diffraction methods. Solid-state (SS)NMR spectroscopy, especially 1H SSNMR, is a promising approach for scrutinizing the surface terminations and the intercalated water on an atomistic-scale; yet, only a few SSNMR studies of MXenes have been reported to date, offering conflicting results and limited understanding of −OH terminations. Here, we used 1H SSNMR experiments in concert with the DFT calculations of NMR parameters to identify multiple types of −OH groups residing on the external and internal surfaces in a commonly studied MXene, Ti3C2Tx. The study also identifies bulklike water trapped between the MXene flakes and interfacial water stranded on the surface. Lastly, two-dimensional 1H–1H correlation spectra elucidated the water–surface interactions and the mechanism of water deintercalation upon annealing.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.0c04744.

    • Synthesis of MAX phase Ti3AlC2, 1H–1H SQ/SQ correlation spectra of MXene annealed at 110 °C, and DFT calculations of chemical shift values for AA-stacking MXene (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 38 publications.

    1. Minxia Jiang, Minxi Li, Chang Cui, Jie Wang, Yang Cheng, Yixin Wang, Xing Zhang, Jinwen Qin, Minhua Cao. Molecular-Level Interfacial Chemistry Regulation of MXene Enables Energy Storage beyond Theoretical Limit. ACS Nano 2024, 18 (10) , 7532-7545. https://doi.org/10.1021/acsnano.3c12329
    2. Lu Cheng, Ruiyuan Tian, Yifan Zhao, Zhixuan Wei, Xin Pu, You-Liang Zhu, Dong Zhang, Fei Du. Small Things Make a Big Difference: Conductive Cross-Linking Sodium Alginate@MXene Binder Enables High-Volumetric-Capacity and High-Mass-Loading Li–S Battery. Nano Letters 2023, 23 (22) , 10538-10544. https://doi.org/10.1021/acs.nanolett.3c03429
    3. Florian Brette, Dani Kourati, Michael Paris, Lola Loupias, Stéphane Célérier, Thierry Cabioc’h, Michael Deschamps, Florent Boucher, Vincent Mauchamp. Assessing the Surface Chemistry of 2D Transition Metal Carbides (MXenes): A Combined Experimental/Theoretical 13C Solid State NMR Approach. Journal of the American Chemical Society 2023, 145 (7) , 4003-4014. https://doi.org/10.1021/jacs.2c11290
    4. Qiao Han, Pan Gao, Lixin Liang, Kuizhi Chen, Aiyi Dong, Zhengmao Liu, Xiuwen Han, Qiang Fu, Guangjin Hou. Unraveling the Surface Hydroxyl Network on In2O3 Nanoparticles with High-Field Ultrafast Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Analytical Chemistry 2021, 93 (50) , 16769-16778. https://doi.org/10.1021/acs.analchem.1c02759
    5. Hossein Alijani, Amgad R. Rezk, Mohammad Mehdi Khosravi Farsani, Heba Ahmed, Joseph Halim, Philipp Reineck, Billy J. Murdoch, Ahmed El-Ghazaly, Johanna Rosen, Leslie Y. Yeo. Acoustomicrofluidic Synthesis of Pristine Ultrathin Ti3C2Tz MXene Nanosheets and Quantum Dots. ACS Nano 2021, 15 (7) , 12099-12108. https://doi.org/10.1021/acsnano.1c03428
    6. Pinelopi Moutzouri, Bruno Simões de Almeida, Daria Torodii, Lyndon Emsley. Pure Isotropic Proton Solid State NMR. Journal of the American Chemical Society 2021, 143 (26) , 9834-9841. https://doi.org/10.1021/jacs.1c03315
    7. Taeyeong Yun, Gang San Lee, Jungwoo Choi, Hyerim Kim, Geon Gug Yang, Ho Jin Lee, Jin Goo Kim, Hyuck Mo Lee, Chong Min Koo, Joonwon Lim, Sang Ouk Kim. Multidimensional Ti3C2Tx MXene Architectures via Interfacial Electrochemical Self-Assembly. ACS Nano 2021, 15 (6) , 10058-10066. https://doi.org/10.1021/acsnano.1c01727
    8. James E. Heckler, Gregory R. Neher, Faisal Mehmood, David B. Lioi, Ruth Pachter, Richard Vaia, W. Joshua Kennedy, Dhriti Nepal. Surface Functionalization of Ti3C2Tx MXene Nanosheets with Catechols: Implication for Colloidal Processing. Langmuir 2021, 37 (18) , 5447-5456. https://doi.org/10.1021/acs.langmuir.0c03078
    9. Kent J. Griffith, Michael A. Hope, Philip J. Reeves, Mark Anayee, Yury Gogotsi, Clare P. Grey. Bulk and Surface Chemistry of the Niobium MAX and MXene Phases from Multinuclear Solid-State NMR Spectroscopy. Journal of the American Chemical Society 2020, 142 (44) , 18924-18935. https://doi.org/10.1021/jacs.0c09044
    10. Suji Mary Zachariah, Yves Grohens, Sabu Thomas. Processing and Characterization of MXenes and Their Nanocomposites. 2024, 85-98. https://doi.org/10.1002/9781119874027.ch5
    11. Maedeh Pahlevaninezhad, Rad Sadri, Damilola Momodu, Karamullah Eisawi, Majid Pahlevani, Michael Naguib, Edward P. L. Roberts. Ammonium Bifluoride‐Etched MXene Modified Electrode for the All−Vanadium Redox Flow Battery. Batteries & Supercaps 2024, 7 (4) https://doi.org/10.1002/batt.202300473
    12. Yi-Lin Liu, Dongyang Li, Ping Cao, Xiangbiao Yin, Qingyi Zeng, Haiqing Zhou. Advances in MXene-Based Composite Materials for Efficient Removal of Radioactive Nuclides and Heavy Metal Ions. Materials Today Physics 2024, 30 , 101444. https://doi.org/10.1016/j.mtphys.2024.101444
    13. Sanjay Sunny, Yannick Coppel, Pierre-Louis Taberna, Patrice Simon. Characterization by NMR Spectroscopy of the SEI Layer Formed on Ti 3 C 2 MXene Materials Prepared with Various Terminations. Journal of The Electrochemical Society 2024, https://doi.org/10.1149/1945-7111/ad2d1a
    14. Maisha Rahman, Muhammad Shamim Al Mamun. Future prospects of MXenes: synthesis, functionalization, properties, and application in field effect transistors. Nanoscale Advances 2024, 6 (2) , 367-385. https://doi.org/10.1039/D3NA00874F
    15. Mailis Lounasvuori, Yangyunli Sun, Tyler S. Mathis, Ljiljana Puskar, Ulrich Schade, De-En Jiang, Yury Gogotsi, Tristan Petit. Vibrational signature of hydrated protons confined in MXene interlayers. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36842-0
    16. Chenkun Zhou, Di Wang, Francisco Lagunas, Benjamin Atterberry, Ming Lei, Huicheng Hu, Zirui Zhou, Alexander S. Filatov, De-en Jiang, Aaron J. Rossini, Robert F. Klie, Dmitri V. Talapin. Hybrid organic–inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces. Nature Chemistry 2023, 15 (12) , 1722-1729. https://doi.org/10.1038/s41557-023-01288-w
    17. Zhiyun Wu, Shuiren Liu, Zijuan Hao, Xuying Liu. MXene Contact Engineering for Printed Electronics. Advanced Science 2023, 10 (19) https://doi.org/10.1002/advs.202207174
    18. Guanghui Song, Yan Zhan, Yajie Hu, Jun Rao, Nan Li, Zhongxuan Wu, Zhenhua Su, Baozhong Lü, Ruiping Liu, Bo Jiang, Gegu Chen, Feng Peng. Paper‐Mill Waste Reinforced Nanofluidic Membrane as High‐Performance Osmotic Energy Generators. Advanced Functional Materials 2023, 33 (26) https://doi.org/10.1002/adfm.202214044
    19. Yanzhe Zhu, Renbo Zhu, Peiyuan Guan, Mengyao Li, Tao Wan, Long Hu, Shuo Zhang, Chao Liu, Dawei Su, Yunjian Liu, Dan Liu, Qin Li, Juan Yu, Dewei Chu. Designing MXene-Wrapped AgCl@Carbon core shell cathode for robust quasi-solid-state Ag-Zn battery with ultralong cycle life. Energy Storage Materials 2023, 60 , 102836. https://doi.org/10.1016/j.ensm.2023.102836
    20. Anastasia G. Ilgen, Kevin Leung, Louise J. Criscenti, Jeffery A. Greathouse. Adsorption at Nanoconfined Solid–Water Interfaces. Annual Review of Physical Chemistry 2023, 74 (1) , 169-191. https://doi.org/10.1146/annurev-physchem-083022-030802
    21. Meenakshi Gusain, Ritika Nagpal. MXene for solar cells. 2023, 171-200. https://doi.org/10.1016/B978-0-323-90601-2.00008-8
    22. Kristopher J. Harris. NMR studies of 2D and pseudo-2D systems. 2023, 450-470. https://doi.org/10.1016/B978-0-12-823144-9.00083-2
    23. Riddhi Kadrekar, Dattatray J. Late. Density Functional Theory: An Investigative and Predictive Tool for the Study of 2D Materials. 2022, 11-1-11-22. https://doi.org/10.1063/9780735425422_011
    24. Xin Liu, Yong Qiu, Deming Jiang, Fengheng Li, Ying Gan, Yuxuan Zhu, Yuxiang Pan, Hao Wan, Ping Wang. Covalently grafting first-generation PAMAM dendrimers onto MXenes with self-adsorbed AuNPs for use as a functional nanoplatform for highly sensitive electrochemical biosensing of cTnT. Microsystems & Nanoengineering 2022, 8 (1) https://doi.org/10.1038/s41378-022-00352-8
    25. Huanhuan Liu, Jia Lei, Changyao Gong, Ye Li, Huimei Chen, Jiali Chen, Fengchun Wen, Dengjiang Fu, Yan Liu, Wenkun Zhu, Rong He. In-situ oxidized tungsten disulfide nanosheets achieve ultrafast photocatalytic extraction of uranium through hydroxyl-mediated binding and reduction. Nano Research 2022, 15 (10) , 8810-8818. https://doi.org/10.1007/s12274-022-4559-0
    26. Hao Wu, Jun Yu, Guanyu Yao, Zhongzhou Li, Wenjing Zou, Xiaogan Li, Huichao Zhu, Zhengxing Huang, Zhenan Tang. Room temperature NH3 sensing properties and humidity influence of Ti3C2Tx and Ag-Ti3C2Tx in an oxygen-free environment. Sensors and Actuators B: Chemical 2022, 369 , 132195. https://doi.org/10.1016/j.snb.2022.132195
    27. Siva Murugan Mohan Raj, Ashok K. Sundramoorthy, Raji Atchudan, Dhanraj Ganapathy, Ajit Khosla. Review—Recent Trends on the Synthesis and Different Characterization Tools for MXenes and their Emerging Applications. Journal of The Electrochemical Society 2022, 169 (7) , 077501. https://doi.org/10.1149/1945-7111/ac7bac
    28. Jing Zou, Jing Wu, Yizhou Wang, Fengxia Deng, Jizhou Jiang, Yizhou Zhang, Song Liu, Neng Li, Han Zhang, Jiaguo Yu, Tianyou Zhai, Husam N. Alshareef. Additive-mediated intercalation and surface modification of MXenes. Chemical Society Reviews 2022, 51 (8) , 2972-2990. https://doi.org/10.1039/D0CS01487G
    29. Huanhuan Liu, Jia Lei, Jiali Chen, Ye Li, Changyao Gong, Shangjie Yang, Yamin Zheng, Ning Lu, Yan Liu, Wenkun Zhu, Rong He. Hydrogen-incorporated vanadium dioxide nanosheets enable efficient uranium confinement and photoreduction. Nano Research 2022, 15 (4) , 2943-2951. https://doi.org/10.1007/s12274-021-3916-8
    30. Tatyana R. Kayumova, Ilay P. Kolganov, Alexander V. Myshlyavtsev, Pavel V. Stishenko, Anastasiia I. Fadeeva. Surface hydrogenation of oxygen terminated MXenes M2CO2 (M = Ti, V, Nb). Surface Science 2022, 717 , 121984. https://doi.org/10.1016/j.susc.2021.121984
    31. Pragati A. Shinde, Amar M. Patil, Suchan Lee, Euigeol Jung, Seong Chan Jun. Two-dimensional MXenes for electrochemical energy storage applications. Journal of Materials Chemistry A 2022, 10 (3) , 1105-1149. https://doi.org/10.1039/D1TA04642J
    32. Suresh Kumar Kailasa, Dharaben J. Joshi, Janardhan Reddy Koduru, Naved I. Malek. Review on MXenes-based nanomaterials for sustainable opportunities in energy storage, sensing and electrocatalytic reactions. Journal of Molecular Liquids 2021, 342 , 117524. https://doi.org/10.1016/j.molliq.2021.117524
    33. Mikhail Shekhirev, Christopher E. Shuck, Asia Sarycheva, Yury Gogotsi. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Progress in Materials Science 2021, 120 , 100757. https://doi.org/10.1016/j.pmatsci.2020.100757
    34. Lihua Xu, Tao Wu, Paul R. C. Kent, De-en Jiang. Interfacial charge transfer and interaction in the MXene / Ti O 2 heterostructures. Physical Review Materials 2021, 5 (5) https://doi.org/10.1103/PhysRevMaterials.5.054007
    35. Varun Natu, Mohamed Benchakar, Christine Canaff, Aurélien Habrioux, Stéphane Célérier, Michel W. Barsoum. A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter 2021, 4 (4) , 1224-1251. https://doi.org/10.1016/j.matt.2021.01.015
    36. Sithara P. Sreenilayam, Inam Ul Ahad, Valeria Nicolosi, Dermot Brabazon. MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today 2021, 43 , 99-131. https://doi.org/10.1016/j.mattod.2020.10.025
    37. Joseph Halim, Ahmed S. Etman, Anna Elsukova, Peter Polcik, Justinas Palisaitis, Michel W. Barsoum, Per O. Å. Persson, Johanna Rosen. Tailored synthesis approach of (Mo 2/3 Y 1/3 ) 2 AlC i -MAX and its two-dimensional derivative Mo 1.33 CT z MXene: enhancing the yield, quality, and performance in supercapacitor applications. Nanoscale 2021, 13 (1) , 311-319. https://doi.org/10.1039/D0NR07045A
    38. Qui Thanh Hoai Ta, Nghe My Tran, Jin-Seo Noh. Rice Crust-Like ZnO/Ti3C2Tx MXene Hybrid Structures for Improved Photocatalytic Activity. Catalysts 2020, 10 (10) , 1140. https://doi.org/10.3390/catal10101140

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect