ACS Publications. Most Trusted. Most Cited. Most Read
Hot Hole Cooling and Transfer Dynamics from Lead Halide Perovskite Nanocrystals Using Porphyrin Molecules
My Activity

Figure 1Loading Img
    C: Physical Properties of Materials and Interfaces

    Hot Hole Cooling and Transfer Dynamics from Lead Halide Perovskite Nanocrystals Using Porphyrin Molecules
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2021, 125, 10, 5859–5869
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.0c11289
    Published March 8, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A deep understanding of hot carrier (HC) dynamics is important to improve the performance of optoelectronic devices by reducing the thermalization losses. Here, we investigate the hot hole cooling and transfer dynamics of CsPbBr3 nanocrystals (NCs) using 5,10,15,20-tetra(4pyridyl) porphyrin (TpyP) molecules. Density functional theory (DFT) is used to elucidate the mechanism underlying charge extraction as well as the HC transfer process in the CsPbBr3–TpyP system. It is noted that the hot hole states are localized around the top surface of CsPbBr3, while the hot electron states are delocalized away from its top surface, indicating easy extraction of hot holes from the CsPbBr3 by TpyP molecules, as compared to the hot electrons. The significant drop of initial hot carrier temperature from 1140 to 638 K at 400 nm excitation confirms the hot hole transfer from CsPbBr3 NCs to TpyP molecules, which is dependent on the excitation energy, and the maximum transfer efficiency is found to be 42% (for 0.85 eV above band edge photoexcitation). In addition, the hot hole transfer rate is almost 11 times faster than the band edge hole transfer rate. Our findings are relevant for the development of next-generation perovskite-based optoelectronic devices.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.0c11289.

    • Calculation of PLQY, FTIR spectra, NMR spectra, TEM images, UV–visible absorption spectra, supercell of the modeled system, partial charge density states, TA spectra, 2D pseudo-color TA plot, TA kinetics, TA profiles of pure TpyP, EADS spectra, MB fitting, variation of carrier temperature with excitation energy, fitting parameters of PL decay, upconverted PL, excitation wavelength-dependent hot carrier cooling time, and bleach recovery kinetics (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 47 publications.

    1. Bo Wang, Yingna Chen, Wenyuan Zhang, Jiacheng Liu, Xiaoxia Feng. Thickness Control and Aggregation Inhibition Achieved by Ammonium Bromide-Modified Tetraphenylethylene for Stable CH3NH3PbBr3 Nanoplates. ACS Applied Materials & Interfaces 2025, 17 (7) , 11045-11054. https://doi.org/10.1021/acsami.4c22487
    2. Antika Das, Supriya Ghosal, Kritiman Marjit, Swapan K. Pati, Amitava Patra. Chirality of CsPbBr3 Nanocrystals with Varying Dimensions in the Presence of Chiral Molecules. The Journal of Physical Chemistry Letters 2024, 15 (31) , 7822-7831. https://doi.org/10.1021/acs.jpclett.4c01837
    3. Kritiman Marjit, Antika Das, Debarati Ghosh, Amitava Patra. Effect of A-Site Cations on Carrier Relaxation Dynamics of APbBr3 (A = Cs/MA/FA) Perovskite Nanoplatelets. The Journal of Physical Chemistry C 2024, 128 (20) , 8357-8364. https://doi.org/10.1021/acs.jpcc.4c02595
    4. Fuwei Chen, Ziquan Li, Yueming Jiang, Zhen Li, Ruosheng Zeng, Ziyi Zhong, Ming-De Li, Jin Z. Zhang, Binbin Luo. Photocatalytic CO2 Reduction Coupled with Oxidation of Benzyl Alcohol over CsPbBr3@PANI Nanocomposites. The Journal of Physical Chemistry Letters 2023, 14 (49) , 11008-11014. https://doi.org/10.1021/acs.jpclett.3c02766
    5. Debopam Acharjee, Asit Baran Mahato, Ayendrila Das, Subhadip Ghosh. Electron Transfer from an Optically Pumped Polyhedral Perovskite Nanocrystal to Pristine Fullerene. The Journal of Physical Chemistry C 2023, 127 (39) , 19643-19650. https://doi.org/10.1021/acs.jpcc.3c04800
    6. Antika Das, Kritiman Marjit, Srijon Ghosh, Debarati Ghosh, Amitava Patra. Slowing Down the Hot Carrier Relaxation Dynamics of CsPbX3 Nanocrystals by the Surface Passivation Strategy. The Journal of Physical Chemistry C 2023, 127 (31) , 15385-15394. https://doi.org/10.1021/acs.jpcc.3c03728
    7. Soumya Mukherjee, Anjan Kumar NM, Saranya Ramesh, B. Karthikeyan, N. Kamaraju. Many-Body Interaction Governs the Ultrafast Relaxation Dynamics of Hot Holes in CuS Nanoflakes and Photocatalytic Efficiency-Enhanced CuS/Ag2S Nanocomposites. ACS Applied Optical Materials 2023, 1 (7) , 1332-1342. https://doi.org/10.1021/acsaom.3c00153
    8. Kritiman Marjit, Goutam Ghosh, Srijon Ghosh, Debarati Ghosh, Anusri Medda, Amitava Patra. Electron Transfer Dynamics from CsPbBr3 Nanocrystals to Au144 Clusters. ACS Physical Chemistry Au 2023, 3 (4) , 348-357. https://doi.org/10.1021/acsphyschemau.2c00070
    9. Vandana Nagal, Virendra Kumar, Manjari Jain, Saurabh K. Saini, Mahesh Kumar, Kedar Singh, Saswata Bhattacharya, Rafiq Ahmad, Aurangzeb Khurram Hafiz. Slow Cooling and Transfer Dynamics of Hot Excitons in CsPbBr3 Perovskite Quantum Dots/g-CN Nanosheet Heterostructures: Implications for Optoelectronic Applications. ACS Applied Nano Materials 2023, 6 (10) , 8894-8906. https://doi.org/10.1021/acsanm.3c01374
    10. Lei Zhang, Wenguang Hu, Mu He, Shenyue Li. Optimizing Photoelectrochemical Photovoltage and Stability of Molecular Interlayer-Modified Halide Perovskite in Water: Insights from Interpretable Machine Learning and Symbolic Regression. ACS Applied Energy Materials 2023, 6 (10) , 5177-5187. https://doi.org/10.1021/acsaem.2c04066
    11. Goutam Ghosh, Kritiman Marjit, Srijon Ghosh, Amitava Patra. Hot Carrier Cooling and Biexciton Dynamics of Anisotropic-Shaped CsPbBr3 Perovskite Nanocrystals. The Journal of Physical Chemistry C 2023, 127 (18) , 8670-8679. https://doi.org/10.1021/acs.jpcc.3c01441
    12. Ayendrila Das, Debopam Acharjee, Mrinal Kanti Panda, Asit Baran Mahato, Subhadip Ghosh. Dodecahedron CsPbBr3 Perovskite Nanocrystals Enable Facile Harvesting of Hot Electrons and Holes. The Journal of Physical Chemistry Letters 2023, 14 (16) , 3953-3960. https://doi.org/10.1021/acs.jpclett.3c00661
    13. Nadesh Fiuza-Maneiro, Kun Sun, Iago López-Fernández, Sergio Gómez-Graña, Peter Müller-Buschbaum, Lakshminarayana Polavarapu. Ligand Chemistry of Inorganic Lead Halide Perovskite Nanocrystals. ACS Energy Letters 2023, 8 (2) , 1152-1191. https://doi.org/10.1021/acsenergylett.2c02363
    14. Soubhik Ghosh, Anusri Medda, Srijon Ghosh, Amitava Patra. Hole Transfer Dynamics of 2D CdSeS Alloy Nanoplatelets for Photon-to-Current Conversion. The Journal of Physical Chemistry C 2022, 126 (51) , 21882-21890. https://doi.org/10.1021/acs.jpcc.2c07762
    15. Xiaoxia Feng, Pengxiao Xu, Jinli Liu, Xiyue Zhao, Jing Cao, Jiacheng Liu. Stable Core–Shell Structure Nanocrystals of Cs4PbBr6-Zn(moi)2 Achieved by an In Situ Surface Reconstruction Strategy for Optical Anticounterfeiting. Inorganic Chemistry 2022, 61 (44) , 17590-17598. https://doi.org/10.1021/acs.inorgchem.2c02632
    16. Debarati Ghosh, Kritiman Marjit, Goutam Ghosh, Srijon Ghosh, Amitava Patra. Charge Transfer Dynamics of Two-Dimensional Ruddlesden Popper Perovskite in the Presence of Short-Chain Aromatic Thiol Ligands. The Journal of Physical Chemistry C 2022, 126 (34) , 14590-14597. https://doi.org/10.1021/acs.jpcc.2c04439
    17. Kritiman Marjit, Goutam Ghosh, Raju K. Biswas, Srijon Ghosh, Swapan K. Pati, Amitava Patra. Modulating the Carrier Relaxation Dynamics in Heterovalently (Bi3+) Doped CsPbBr3 Nanocrystals. The Journal of Physical Chemistry Letters 2022, 13 (24) , 5431-5440. https://doi.org/10.1021/acs.jpclett.2c01270
    18. Jinlei Zhang, Cihui Liu, Shuyi Wu, Yunsong Di, Fangjian Xing, Zhiyuan Ren, Xiao Zhang, Lun Yang, Chunlan Ma, Zhixing Gan. Ultrafast Charge Carrier Dynamics of CsPbBr3/Cs4PbBr6 Nanocomposites. The Journal of Physical Chemistry C 2022, 126 (20) , 8777-8786. https://doi.org/10.1021/acs.jpcc.2c02249
    19. Krishna Mishra, Debopam Acharjee, Ayendrila Das, Subhadip Ghosh. Subpicosecond Hot Hole Transfer in a Graphene Quantum Dot Composite with High Efficiency. The Journal of Physical Chemistry Letters 2022, 13 (2) , 606-613. https://doi.org/10.1021/acs.jpclett.1c03530
    20. Anuraj S. Kshirsagar, Habibul Arfin, Srijita Banerjee, Barnali Mondal, Angshuman Nag. Colloidal Sb3+-Doped Cs2InCl5·H2O Perovskite Nanocrystals with Temperature-Dependent Luminescence. The Journal of Physical Chemistry C 2021, 125 (50) , 27671-27677. https://doi.org/10.1021/acs.jpcc.1c08720
    21. Srijon Ghosh, Arnab Ghosh, Goutam Ghosh, Kritiman Marjit, Amitava Patra. Deciphering the Relaxation Mechanism of Red-Emitting Carbon Dots Using Ultrafast Spectroscopy and Global Target Analysis. The Journal of Physical Chemistry Letters 2021, 12 (33) , 8080-8087. https://doi.org/10.1021/acs.jpclett.1c02116
    22. Kritiman Marjit, Goutam Ghosh, Srijon Ghosh, Sumanta Sain, Arnab Ghosh, Amitava Patra. Structural Analysis and Carrier Relaxation Dynamics of 2D CsPbBr3 Nanoplatelets. The Journal of Physical Chemistry C 2021, 125 (22) , 12214-12223. https://doi.org/10.1021/acs.jpcc.1c03236
    23. Rongjun Zhao, Tai Wu, Yong Hua, Yude Wang. Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters 2025, 36 (2) , 109587. https://doi.org/10.1016/j.cclet.2024.109587
    24. Debopam Acharjee, Shreya Mishra, Asit Baran Mahato, Mrinal Kanti Panda, Dipak Samanta, Subhadip Ghosh. Hot carrier harvesting at the interface of CsPbI 3 nanocrystals. Nanoscale 2025, 361 https://doi.org/10.1039/D5NR00416K
    25. Pameli Ghosh, Anusri Medda, Soubhik Ghosh, Amitava Patra. Evidence of Energy and Hole Transfer between 2D CdSe 0.7 Te 0.3 Alloy NPLs with Porphyrin Molecules. ChemPhysChem 2024, 25 (20) https://doi.org/10.1002/cphc.202400267
    26. Prajit Kumar Singha, Tamoghna Mukhopadhyay, Ejaj Tarif, Fariyad Ali, Anindya Datta. Competition among recombination pathways in single FAPbBr3 nanocrystals. The Journal of Chemical Physics 2024, 161 (5) https://doi.org/10.1063/5.0205940
    27. Puteri Intan Zulaikha Syed Mahadzir, M Mottakin, Muhammad Amirul Aizat Mohd Abdah, Puteri Nor Aznie Fahsyar, Khairulazhar Jumbri, Muhammad Haris Mahyuddin, Suhaila Sepeai, Mohd Asri Mat Teridi, Norasikin Ahmad Ludin, Mohd Sukor Su’ait, Mohammad Khaja Nazeeruddin. Demethylation strategies for spiro-OMeTAD to enhance the thermo-opto-electronic properties as potential hole transport materials in perovskite solar cells. Materials Research Express 2024, 11 (8) , 085511. https://doi.org/10.1088/2053-1591/ad6d33
    28. Kritiman Marjit, Antika Das, Debarati Ghosh, Amitava Patra. Providing a Review of Hot Carrier (HC) Relaxation Dynamics and Strategies of HC Extraction in Perovskites Nanocrystals. ChemNanoMat 2024, 10 (8) https://doi.org/10.1002/cnma.202300629
    29. Rongjun Zhao, Tai Wu, Rong Huang, Yude Wang, Yong Hua. A Universal and Versatile Hole Transport Layer “Activator” Enables Stable Perovskite Solar Cells with Efficiency Near 25%. Advanced Functional Materials 2024, 34 (30) https://doi.org/10.1002/adfm.202314758
    30. Peng Wang, Pei Yuan, Chenghao Ge, Rongjun Zhao, Lin Xie, Yong Hua. Tetraphenylethene-based hole transporting material for highly efficient and stable perovskite solar cells. Science China Chemistry 2024, 67 (6) , 2009-2015. https://doi.org/10.1007/s11426-023-1905-7
    31. Min Xu, Peng Wang, Shuwen Qi, Rongjun Zhao, Lin Xie, Yong Hua. Enhancing perovskite solar cell performance: The role of polymer-assisted hole transport layers in hot carrier dynamics. Chemical Engineering Journal 2024, 489 , 151357. https://doi.org/10.1016/j.cej.2024.151357
    32. Chenyu Du, Jianping Sheng, Fengyi Zhong, Ye He, Huiyu Liu, Yanjuan Sun, Fan Dong. Boosting exciton dissociation and charge transfer in CsPbBr 3 QDs via ferrocene derivative ligation for CO 2 photoreduction. Proceedings of the National Academy of Sciences 2024, 121 (9) https://doi.org/10.1073/pnas.2315956121
    33. Yuanju Zhao, Peng Wang, Tai Wu, Rongjun Zhao, Lin Xie, Yong Hua. Additive effect on hot carrier cooling in a hybrid perovskite. Chemical Communications 2023, 60 (1) , 67-70. https://doi.org/10.1039/D3CC04001A
    34. Naresh Chandra Maurya, Riyanka Karmakar, Rajesh Kumar Yadav, Pravrati Taank, Santu K. Bera, Anirban Mondal, Dipendranath Mandal, Megha Shrivastava, Md. Nur Hasan, Tuhin Kumar Maji, Debjani Karmakar, K. V. Adarsh. Exciton many-body interactions and charge transfer in CsPbBr 3 /graphene derivatives. Physical Review B 2023, 108 (15) https://doi.org/10.1103/PhysRevB.108.155417
    35. Rongjun Zhao, Tai Wu, Rongshan Zhuang, Yong Hua, Yude Wang. Unravel the Charge‐Carrier Dynamics in Simple Dimethyl Oxalate‐Treated Perovskite Solar Cells with Efficiency Exceeding 22%. ENERGY & ENVIRONMENTAL MATERIALS 2023, 6 (5) https://doi.org/10.1002/eem2.12417
    36. Rongshan Zhuang, Linqin Wang, Junming Qiu, Lin Xie, Xiaohe Miao, Xiaoliang Zhang, Yong Hua. Effect of molecular configuration of additives on perovskite crystallization and hot carriers behavior in perovskite solar cells. Chemical Engineering Journal 2023, 463 , 142449. https://doi.org/10.1016/j.cej.2023.142449
    37. Liqiong Zhu, Rongjun Zhao, Rongshan Zhuang, Tai Wu, Lin Xie, Yong Hua. Slowing the hot‐carrier cooling by an organic small molecule in perovskite solar cells. EcoMat 2023, 5 (3) https://doi.org/10.1002/eom2.12313
    38. Xiaoxia Feng, Xiyue Zhao, Jinli Liu, Pengxiao Xu, Jiacheng Liu. Stable CsPbBr 3 Achieved by Porphyrin–Thiol Surface Management and Their Dual‐Stimuli Responsive for Optical Encoding. Advanced Materials Interfaces 2023, 10 (1) https://doi.org/10.1002/admi.202201886
    39. 陈舒涵 Chen Shuhan, 刘晓春 Liu Xiaochun, 王丽娜 Wang Lina, 弓爵 Gong Jue. 钙钛矿材料在热载流子太阳能电池中的研究进展. Laser & Optoelectronics Progress 2023, 60 (13) , 1316021. https://doi.org/10.3788/LOP230819
    40. Xiaochun Liu, Peng Zeng, Shuhan Chen, Trevor A. Smith, Mingzhen Liu. Charge Transfer Dynamics at the Interface of CsPbX 3 Perovskite Nanocrystal‐Acceptor Complexes: A Femtosecond Transient Absorption Spectroscopy Study. Laser & Photonics Reviews 2022, 16 (12) https://doi.org/10.1002/lpor.202200280
    41. Jovan San Martin, Nhu Dang, Emily Raulerson, Matthew C. Beard, Joseph Hartenberger, Yong Yan. Perovskite Photocatalytic CO 2 Reduction or Photoredox Organic Transformation?. Angewandte Chemie 2022, 134 (39) https://doi.org/10.1002/ange.202205572
    42. Jovan San Martin, Nhu Dang, Emily Raulerson, Matthew C. Beard, Joseph Hartenberger, Yong Yan. Perovskite Photocatalytic CO 2 Reduction or Photoredox Organic Transformation?. Angewandte Chemie International Edition 2022, 61 (39) https://doi.org/10.1002/anie.202205572
    43. Goutam Ghosh, Kritiman Marjit, Srijon Ghosh, Debarati Ghosh, Amitava Patra. Evidence of Hot Charge Carrier Transfer in Hybrid CsPbBr 3 /Functionalized Graphene. ChemNanoMat 2022, 8 (8) https://doi.org/10.1002/cnma.202200172
    44. Lei Zhang, Wenguang Hu, Shaofeng Shao. Dye-modified halide perovskite materials. Organic Electronics 2022, 107 , 106545. https://doi.org/10.1016/j.orgel.2022.106545
    45. Goutam Ghosh, Raju K Biswas, Kritiman Marjit, Srijon Ghosh, Arnab Ghosh, Swapan K Pati, Amitava Patra. Impacts of CsPbBr 3 /PbSe Heterostructures on Carrier Cooling Dynamics at Low Carrier Density. Advanced Optical Materials 2022, 10 (9) https://doi.org/10.1002/adom.202200030
    46. Abha Jha, Hari Shankar, Sandeep Kumar, Muniappan Sankar, Prasenjit Kar. Efficient charge transfer from organometal lead halide perovskite nanocrystals to free base meso -tetraphenylporphyrins. Nanoscale Advances 2022, 4 (7) , 1779-1785. https://doi.org/10.1039/D1NA00835H
    47. Arnab Ghosh, Srijon Ghosh, Goutam Ghosh, Amitava Patra. Implications of relaxation dynamics of collapsed conjugated polymeric nanoparticles for light-harvesting applications. Physical Chemistry Chemical Physics 2021, 23 (27) , 14549-14563. https://doi.org/10.1039/D1CP01618K

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2021, 125, 10, 5859–5869
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.0c11289
    Published March 8, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    2320

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.