ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVC: Physical Properti...C: Physical Properties of Materials and InterfacesNEXT

High-Pressure Mg–Sc–H Phase Diagram and Its Superconductivity from First-Principles Calculations

  • Peng Song*
    Peng Song
    School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
    *Email: [email protected]
    More by Peng Song
  • Zhufeng Hou
    Zhufeng Hou
    State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
    More by Zhufeng Hou
  • Pedro Baptista de Castro
    Pedro Baptista de Castro
    National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
    University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
  • Kousuke Nakano
    Kousuke Nakano
    School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
    International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, 34136, Italy
  • Kenta Hongo
    Kenta Hongo
    Research Center for Advanced Computing Infrastructure, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
    More by Kenta Hongo
  • Yoshihiko Takano
    Yoshihiko Takano
    National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
    University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
  • , and 
  • Ryo Maezono*
    Ryo Maezono
    School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
    *Email: [email protected]
    More by Ryo Maezono
Cite this: J. Phys. Chem. C 2022, 126, 5, 2747–2755
Publication Date (Web):January 26, 2022
https://doi.org/10.1021/acs.jpcc.1c08743

Copyright © 2022 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0.
  • Open Access

Article Views

2213

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (3 MB)
Supporting Info (1)»

Abstract

In this work, a global search for crystal structures of ternary Mg–Sc–H hydrides (MgxScyHz) under high pressure (100 ≤ P ≤ 200 GPa) was performed using the evolutionary algorithm and first-principles calculations. On their basis, we computed the thermodynamic convex hull and pressure-dependent phase diagram of MgxScyHz for a wide range of compositions (x + y = 2, 3, 4 and z = 2–12, 14, 16, 18). Our crystal structure search and convex hull analysis revealed no thermodynamically stable compounds in the hydrogen-rich range (z/(x + y) ⩾ 4). On the other hand, we identified the crystal structures of four thermodynamically stable compounds in the hydrogen-middle range (3 ≤ z/(x + y) < 4), that is, Rm-MgScH6, C2/m-Mg2ScH10, Immm-MgSc2H9, and Pmm-Mg(ScH4)3. Their superconducting transition temperatures were computationally predicted by the McMillan formula combined with first-principles phonon calculations. They were found to exhibit superconductivity; among them, Rm-MgScH6 was predicted to have the highest Tc (i.e., 41 K) at 100 GPa.

This publication is licensed under

CC-BY-NC-ND 4.0.
  • cc licence
  • by licence
  • nc licence
  • nd licence

1. Introduction

ARTICLE SECTIONS
Jump To

Hydrogen-rich hydrides of rare earth metals and alkaline earth metals are now recognized to be viable routes to realize room temperature superconductivity under high pressure. (1−4) These hydrides are usually stabilized with the clathrates consisting of H atoms, which could significantly lower the pressure–volume (PV) term of enthalpy and thus preserve the stability at low pressures. (1,5−12) In these structures, the H atoms can substantially contribute to the electronic density of states around the Fermi level and also the phonon density of states. Such a feature enables them to be the potential candidates to exhibit high-temperature superconductivity. For instance, theoretical calculations recently have predicted that YH10 with H32 cage structure might exhibit room-temperature superconductivity (Tc = 286–326 K). (9)
For binary alkaline earth and rare earth hydrides, a systematic search for their crystal structures and superconductivity has been accomplished mostly by theoretical prediction, with the exception of few magnetic rare earth hydrides. (4,13) The binary hydrides potentially with high-temperature superconductivity have attracted great attention for the experimental verification. Previous theoretical simulations have predicted that Tc values of ScH6, ScH7, ScH9, ScH10, ScH12, and MgH6 are in the range of 120–270 K above 250 GPa. (10−12,14−16) With the further increase of H content, the predicted Tc of ScH14, MgH12, MgH16, and MgH22 becomes much lower, and the H components appear mainly in the form of molecular hydrogen. (17,18) These results imply that the hydrogen-content and the corresponding structures formed by hydrogens are essential for determining Tc values. LaH10, CaH6, YH6, BaH12, and CeH9 are examples of the superconducting clathrate structures confirmed in experiments. (7,19−22) The agreement between the theoretical prediction and the experimental discovery in the superconductivity of these binary hydrides has greatly encouraged the theoretical search for metal hydrides in a more extensive range such as the ternary case.
For ternary cases, a very recent experiment on the La–Y–H system has revealed that the synthesized (La,Y)H10 at P = 180 GPa exhibits a Tc of 253 K. (23) More interestingly, the pressure required for (La,Y)H10 to achieve superconductivity is lower than that of the LaH10 high-temperature superconductor, indicating that the ternary hydride has more potential in the search for low-pressure room-temperature superconductivity. (9,19) The stability analysis and superconductivity prediction for a minor portion of ternary metal hydrides, such as La–Y–H, Ca–Y–H, Sc–Ca–H, Sc–Y–H, Y–Mg–H, and Ca–Mg–H, have been accomplished recently by theoretical calculations. (23−29) The majority of the high-temperature (high-Tc) superconducting compounds in the aforementioned systems prefer the cage-like structures. For example, -CaYH12 with cubic structure preserves the clathrate structure consisting of the H24 cages, as does CaH6 and YH6. Meanwhile, -CaYH12, as compared to CaH6 and YH6, can remain stable above 170 GPa with a Tc value of 254 K. (1,5,25) Theoretical calculations further revealed that the strong electron–phonon coupling (EPC) in these clathrate structures of ternary metal hydrides is associated strongly with the phonon mode of the H–H bond in the cage. (25) Furthermore, the characteristics of these materials look very similar, including the atomic radius, electron number (spd valence electrons), electron negativity, atomic mass of constituent elements, and so on. (4) This might prevent the H cage from collapsing and preserve the same cage structure and superconductivity in the ternary hydride with clathrate structure. ScCaH8 and ScCaH12 are two potential high-Tc superconductor compounds in the Sc–Ca–H system. The cage structure is preserved in these two compounds and the corresponding Tc values are around 212 and 182 K at 200 GPa, respectively. (26) The above-mentioned ternary compounds (La–Y–H, Ca–Y–H, Sc–Ca–H, Sc–Y–H, Y–Mg–H, and Ca–Mg–H) can be considered as combinations of different (stable) binary hydrides AHx and BHy (A and B are different metals). As we mentioned before, for instance, MgH2 and ScH2 are known to be stable phases at ambient pressure. (12,30−34) Therefore, MgH2 and ScH2 can be used to chemically synthesize the ternary Mg–Sc–H compounds (if some stable phases exist), instead of using Mg–Sc binary alloys as an intermediate medium in the reaction. This could further reduce the interference in experiment caused by the use of ammonia borane. (19,22,23,35,36) Despite these, the Mg–Sc–H system has yet to be reported not only experimentally, but also theoretically.
Motivated by the aforementioned studies, herein we concentrated our studies on the Mg–Sc–H system to explore the phase diagram and superconductivity of the associated ternary compounds under high pressure. By employing the evolutionary algorithm for crystal structure prediction, we have found the stable structures of MgScH6, Mg2ScH10, MgSc2H9, and Mg(ScH4)3 under high pressure, which are expected to have the highest hydrogen content in the ternary Mg–Sc–H compounds. In the studied pressure range (i.e., 100–200 GPa), no stable compounds beyond the hydrogen content in the aforementioned compounds were discovered in the hydrogen-rich cases of the Mg–Sc–H system, unlike the La–Y–H, Ca–Y–H, and other ternary systems. (23−29) Although some of the stable structures of ternary Mg–Sc–H compounds are predicted to exhibit superconductivity, their superconducting transition temperatures are high up to only 41 K at 100 GPa, owing to the relatively low density of states at their Fermi level and also a relatively weak electron–phonon coupling (EPC).

2. Computational Methods

ARTICLE SECTIONS
Jump To

We considered the fixed compositions of ternary Mg–Sc–H compounds (MgSc3Hx, MgSc2Hx, MgScHx, Mg2ScHx, and Mg3ScHx, where x = 2–12, 14, 16, and 18) along selected lines in a ternary convex hull at a fixed pressure of 100 and 200 GPa. The crystal-structure search for the Mg–Sc–H systems was performed using the evolutionary algorithm implemented in the Universal Structure Predictor: Evolutionary Xtallography (USPEX) (37) software, together with the first-principles calculations of structural optimization based on density functional theory (DFT). The initial structures are created at random, and the subsequent structures are composed of 40% heredity, 40% random, 10% mutation, and 10% soft mutation.
Our DFT structural optimization and the enthalpies at the considered pressures were carried out using the VASP (Vienna ab initio simulation package) (38−41) code. The electron–ion interaction is described by the projector augmented wave (PAW) (42,43) method. The cutoff energy for the plane-wave basis sets was set to 600 eV. The exchange-correlation functional was treated by the Perdew–Burke–Ernzerhof (PBE) implementation (44) within the generalized gradient approximation (GGA). All structural models were drawn by using VESTA. (45)
The ternary convex hulls of MgxScyHz were constructed by calculating their formation enthalpies with respect to the enthalpies of Mg, Sc, and H single phases as defined below: (46−48)
(1)
where is the enthalpy per formula unit (f.u.) of the Mg–Sc–H compound; , , and are the reference enthalpies of Mg, Sc, and H single phases, respectively. The thermodynamic stability of the predicted phase was determined by comparing the formation enthalpies with respect to the convex hull energy:
(2)
where is a convex hull energy obtained by constraining the minimum value of the total enthalpies of a linear combination of stable phases, (49) which can be computed using the ConvexHull module in scipy. (50)Eabove_hull is energy above the convex hull. Eabove_hull = 0 means that the corresponding ternary phase is stable, namely, such a phase would not decompose into any combination of elementary, binary, or other ternary phases. The stabilities of the predicted phases at a finite temperature can be checked using the similar approach as mentioned above, and their computational details are given in the Supporting Information (SI).
The EPC and phonons of the stable ternary Mg–Sc–H phases were predicted using the QUANTUM ESPRESSO (QE) suite of programs (51−53) with the PAW method and the Perdew–Burke–Ernzerhof (PBE) (44) exchange-correlation functional. The cutoff energy for plane-wave basis sets in the QE calculations was set to 80 Ry. The q-point mesh (k-point mesh for integral of the EPC constant and Tc) in the Brillouin zone was set as follows: 4 × 4 × 4 (16 × 16 × 16) for MgScH6, 5 × 5 × 2 (20 × 20 × 8) for Mg2ScH10, 3 × 4 × 4 (12 × 16 × 16) for MgSc2H9, and 5 × 5 × 5 (20 × 20 × 20) for Mg(ScH4)3, respectively. The McMillan formula (54) and the Eliashberg function derived from the EPC calculation were used to predict the superconducting critical temperature.

3. Results and Discussion

ARTICLE SECTIONS
Jump To

3.1. First-Principles Phase Diagram of the Mg–Sc–H System

To determine the ternary phase diagram of the Mg–Sc–H system under high pressure, we have taken the Mg–H and Sc–H binary systems (1,10−12,18) as well as the simple substances of constituent elements (Mg, Sc, and H) (46−48) as references in the estimation of thermodynamic stability. It is worth noting that the superconducting structures of the Mg–H and Sc–H binary hydride systems have been discovered recently. For instance, MgH6 and ScH7 were predicted to exhibit the highest Tc values of around 260 and 169 K in the Mg–H and Sc–H binary systems, respectively. (1,10−12,18) However, the pressure to stabilize these two superconducting compounds is greater than 300 GPa for both, which is far beyond the mostly focused high-pressure range (i.e., around 200 GPa) of the widely studied metal hydrides in the literature. (1,5,25,55)
To explore the most likely composition for the succeeding experimental synthesis, herein we have sampled a wide phase space of the ternary Mg–Sc–H system at fixed pressures (i.e., 100, 150, and 200 GPa). The ternary phase diagram of the Mg–Sc–H system at 200 GPa is shown in Figure 1, while the results for the pressure at 100 and 150 GPa and the associated formation energies are given in the Supporting Information. Since most high-pressure studies are carried out under laser heating (1000–2000 K), some metastable phases at 0 K can be stabilized at higher temperatures. (23,56) Therefore, we calculated the ternary phase diagram of the Mg–Sc–H system at 200 GPa mainly in three different cases: (i) formation enthalpy without considering the zero point energy (ZPE), (ii) formation enthalpy with the contribution of ZPE and without the contribution of entropy, and (iii) Gibbs free energy with the corresponding entropy contribution at 1000 K.

Figure 1

Figure 1. (a) Ternary convex hulls of the Mg–Sc–H system at a pressure of 200 GPa; (b,c) convex hulls of Gibbs free energy at 0 K and at finite temperature (1000 K), respectively. The stable and metastable phases are shown by circles and diamond, respectively.

Looking at Figure 1, the stable compounds in the ternary convex hull of Mg–Sc–H system without ZPE at 200 GPa were found to be Pmm-Mg3ScH3, Pmm-Mg3ScH4, C2/m-Mg2ScH10, I41/amd-MgScH2, P63/mmc-MgScH3, -MgScH4, Rm-MgScH6, Immm-MgSc2H3, Rm-Mg(ScH2)2, P63/mmc-Mg(ScH2)3, Immm-MgSc2H9, and Pmm-Mg(ScH4)3. It is to be noted that the incorporation of the ZPE contribution leads to the transition of ScH4 from a metastable state to a stable one, which is consistent with the results reported by Ye et al. (12) for the binary Sc–H system. In contrast to the Sc–H binary cases, the ternary hydrides, Pmm-Mg3ScH4, P63/mmc-MgScH3, Rm-MgScH6, and Rm-Mg(ScH2)2 undergo a change from a stable state to a metastable state because of their large ZPE contributions. The four ternary compounds are located on the convex hull planes, with energy differences of 0.003, 0.032, 0.008, and 0.015 eV/atom, respectively. Furthermore, we noticed that at a high temperature of 1000 K, Rm-Mg(ScH2)2 can shift from a metastable state to a stable one due to the entropy contribution of lattice vibration. In the binary Mg–H and Sc–H systems, Cmcm-MgH4 and Cmcm-ScH6 are stable compounds with the greatest H content in the pressure range of 100–200 GPa. (11,12) Despite the fact that most of the existing high-Tc superconducting hydrides are hydrogen-rich compounds, no stable compounds in the extremely hydrogen-rich case have been identified in the pressure range of 100–200 GPa in our search.
We focus on the stabilities of three ternary compounds, Rm-MgScH6, Immm-MgSc2H9, and Pmm-Mg(ScH4)3. To better understand their stabilities, we compare them with reference binary compounds, ScH3, MgH2, and MgH4. Figure 2 shows their binary convex hulls. Note that only a few high-Tc ternary compounds such as (La,Y)H6 and (La,Y)H10 have been successfully realized by chemical synthesis so far. (23,24) Their synthesis conditions are that La–Y alloy and NH3BH3 are mixed under high pressure and then heated to over 2000 K by laser. (23) For the Sc–H and Mg–H systems, the high-pressure experiments clearly showed that only ScH3 and MgH2 exist stably, (57−61) which have been extensively studied by previous theoretical simulations as well. (10−12,14−16) For the chemical synthesis of ScH3, the mixture of Sc and NH3BH3 was used as precursor and then heated by laser under high pressure so that ScH3 can be stabilized. According to the binary diagram shown in Figure 2, Rm-MgScH6, Immm-MgSc2H9, and Pmm-Mg(ScH4)3 can be stabilized at 100 GPa regardless of ambient temperature or high temperature. Therefore, following the similar approach used for (La,Y)H6 and (La,Y)H10, it is expected that these three ternary Mg–Sc–H compounds can be realized via chemical synthesis using the Mg–Sc alloy mixed with NH3BH3 at high temperature and high pressure.

Figure 2

Figure 2. Enthalpy per atom of (MgH2 + MgH4)x as a function of x at the pressure of 100, 150, and 200 GPa, where x is defined as . The stable phase and the metastable phase are connected by solid and dashed lines, respectively.

On the basis of the calculated formation of enthalpy without taking into account the ZPE contribution, Figure 3 summarizes the pressure-dependent phase stability of the Mg–Sc–H system. In particular, several phases including Pmm-Mg(ScH4)3, Immm-MgSc2H10, -MgScH4, and P63/mmc-MgScH3 can be stable in a wide pressure range from 100 to 200 GPa. It is remarkable that the Mg-rich ternary Mg–Sc–H phases tend to be stable in the pressure range toward 200 GPa, while the Sc-rich ones except Rm-Mg(ScH2)2 can also be stabilized at the pressure of 100 GPa. P63/mmc-Mg(ScH2)2 can be stable only in the lower pressure range of 100–130 GPa. This trend might be attributed to the pressure range of stable Mg–H and Sc–H binary hydride systems. At the low pressure, the number of possible stable compounds in the Sc–H system are more than that of the Mg–H system. (11,12)

Figure 3

Figure 3. Phase diagram of Mg–Sc–H in the pressure range of 100–200 GPa.

3.2. Predicted Superconductivity of the Mg–Sc–H System

Previous studies on the alkali metals and alkaline earth hydrides have shown that the superconducting properties of these hydrides are strongly dependent on the hydrogen content and that the higher Tc is more likely to appear in the hydrogen-rich cases. (1,4) Herein we pay more attention to Rm-MgScH6, C2/m-Mg2ScH10, Immm-MgSc2H9, and Pmm-Mg(ScH4)3) for their electronic structures and superconductivity because they contain very high hydrogen content.
The crystal structures and the electron localization function (ELF) of these aforementioned four compounds are shown in Figure 4. Rm-MgScH6 is stable above 100 GPa and has a hexagonal crystal structure, in which each Mg and Sc atom is surrounded by 14 H atoms. The shortest H–H bond length in this structure is about 1.587 Å, and the corresponding ELF value at the H–H bond center is about 0.4, indicating a nearly metallic character. The ultrashort distance between atoms translates to a significant ELF value of around 0.7, indicating that the H–H bond in C2/m-Mg2ScH10 exhibits a strong covalent character. In Immm-MgSc2H9 and Pmm-Mg(ScH4)3, the shortest H–H bond lengths are 1.628 and 1.650 Å, respectively; the corresponding ELF values at the H–H bond center are 0.3 and 0.1. However, the H lattice sites exhibit much greater ELF values. Therefore, the chemical bonding in Immm-MgSc2H9 and Pmm-Mg(ScH4)3 can be regarded as being mostly ionic interaction. Furthermore, Pmm-Mg(ScH4)3 can still form a clathrate structure, in which each Mg and Sc atom is surrounded by the H14 cages. This structure can be regarded as a structure formed when replacing the central Sc in Fmm-ScH3 with Mg. We should point out that the Fmm-ScH3 binary does not exhibit superconductivity, as reported previously by Ye et al. (12) Therefore, the partial substitution of Sc in Fmm-ScH3 by Mg triggers the superconductivity in Pmm-Mg(ScH4)3.

Figure 4

Figure 4. Predicted crystal structures of (a) Rm-MgScH6, (b) C2/m-Mg2ScH10, (c) Immm-MgSc2H9, (d) Pmm-MgSc3H12 at 200 GPa. Bottom panels show the corresponding contour plots of electron localization function (ELF) in these structures.

Figure 5 shows the calculated electronic energy band structure and atom-projected electronic density of states (eDOS) of the aforementioned four structures of great interest. All of them at 200 GPa exhibit metallic features. Among these four structures, Rm-MgScH6 has the most robust density of states at the Fermi level (EF), while Pmm-MgSc3H12 has the least density of states at EF. The dominant contributions to the density of states at EF come from the Sc and H atoms, while the contribution from Mg atoms is negligible. The valence bands in all of these four structures are mainly ascribed to the strong hybridization between the Sc and H atoms. At the EF of Rm-MgScH6, there are doubly degenerated flat bands along the Γ → Z direction (i.e., parallel to the c axis of the hexagonal unit cell of Rm-MgScH6). Such a flat band would aid in enhancing the electron–phonon interaction, (62) thereby leading to the highest Tc of Rm-MgScH6 among these four structures.

Figure 5

Figure 5. Electronic band structures and atom-projected electronic density of states of (a) Rm-MgScH6, (b) C2/m-Mg2ScH10, (c) Immm-MgSc2H9, (d) Pmm-MgSc3H12 at 200 GPa.

Figure 6 demonstrates the phonon band structure, atom-decomposed phonon density of states (pDOS), and Eliashberg spectra of Rm-MgScH6, C2/m-Mg2ScH10, Immm-MgSc2H9, and Pmm-Mg(ScH4)3 at 200 GPa. At first, we can see no imaginary modes appearing in all of these four structures, and hence their structures are dynamically stable. In addition, their phonons can be clearly grouped into three frequency regions. The low frequency region (i.e., below 20 THz) is dominantly ascribed to the vibration of Mg and Sc atoms because of their heavier atomic masses. The middle frequency region (i.e., centered around 40 THz) and the high frequency region (i.e., above 50 THz) are exclusively due to the vibration of the H atom.

Figure 6

Figure 6. Phonon dispersion and atom-projected phonon density of states (pDOS), and Eliashberg spectral of (a) Rm-MgScH6, (b) C2/m-Mg2ScH10, (c) Immm-MgSc2H9, (d) Pmm-MgSc3H12 at 200 GPa.

Table 1 lists computed Tc values and their related properties at 200 GPa. The estimated EPC constants (λ) of these four structures follow the ordering of Rm-MgScH6 > C2/m-Mg2ScH10 > Immm-MgSc2H9 > Pmm-Mg(ScH4)3. Their Tc values exhibit the same ordering. Rm-MgScH6 is found to have the highest Tc (i.e., 23.3 K) among these four structures at 200 GPa. However, this superconducting temperature is much lower than the reported other metal hydrides with high hydrogen content such as LaH10 and YH10. (1,4) In general, the superconducting Tc is determined by the electron–phonon interaction. Although these four ternary Mg–Sc–H compounds possess similar logarithmic phonon average ωlog, which are also similar to those of LaH10 and YH10, they have much different EPC constants. As shown in Figure S3a, the total DOS at the Fermi level (Nt(EF)) of LaH10 and YH10 is higher than those of the above-mentioned four Mg–Sc–H compounds. More specifically, the main difference comes from the contributions of H atoms to Nt(EF), as shown in Figure S3b. According to the BCS theory, (63) the value of superconducting Tc shows a positive correlation with Nt(EF). Therefore, the contribution of H atoms to Nt(EF) of the above four compounds is too low to achieve high-Tc superconductivity.
Table 1. Tc Estimated by McMillan Formula Using First-Principles Phonon Calculations for Mg–Sc–H at Each Pressure. λ and ωlog Are the Parameters Appearing in the Formula
phasespace groupP (GPa)λωlog (K)NEF (states/eV/Å3)Tc (K) at μ = 0.1 – 0.13
MgScH6Rm2000.5361478.840.015 023.34–15.08
Mg2ScH10C2/m2000.5121350.170.012 517.94–11.10
MgSc2H9Immm2000.4101427.390.012 06.88–3.14
Mg(ScH4)3Pmm2000.3531377.730.010 22.61–0.83
It is to be noted that YH3 and Fmm-ScH3 have the same hydrogen content per metal atom with Rm-MgScH6, Immm-MgSc2H9, and Pmm-Mg(ScH4)3. However, YH3 has a strong EPC constant of 1.6 and a Tc value of around 40 K. (64) In contrast, the EPC constant of Fmm-ScH3 is about 0.23 and it hardly leads to the superconductivity. (12) The EPC constants of aforementioned four structures of Mg–Sc–H are in the range from 0.35 to 0.54, and thus their Tc values are lower than that of YH3.
In Figure 7 we present the pressure dependence of the superconducting Tc and the associated properties for Rm-MgScH6, C2/m-Mg2ScH10, Immm-MgSc2H9, and Pmm-Mg(ScH4)3. It is clear to see that their Tc values monotonically decrease with the increase of pressure. However, the behavior of the pressure-dependence of the ωlog and λ is completely opposite to that of the Tc. As shown in Figures S4 and S5, the Nt(EF) of all four compounds decreases with the increase of pressure. The variation of the partial DOS of Mg and Sc atoms at Fermi level with respect to the pressure exhibit an opposite tendency to that of H atoms. The dominant contribution to Nt(EF) comes from H atoms, resulting in a negative pressure-dependence of the Nt(EF). Accordingly the similar trends are observed for the pressure dependence of Tc and λ for these four compounds. The phonon and EPC spectra of these four compounds at different pressures are shown in Figures S6, S7, S8, and S9. It is noticed that the λ values of the four compounds, either for the phonon frequencies of above 20 THz (dominant contribution from H atoms) or below 20 THz (dominant contribution from Mg and Sc atoms), decrease with the increase of pressure. The drop of the λ for the phonon frequencies of above 20 THz with respect to the increase of pressure is more significant than the one for the phonon frequencies of below 20 THz. In the Eliashberg spectral function, the superconducting Tc exhibits a positive correlation with both ωlog and λ. Overall, the EPC constants (λ) of Rm-MgScH6, C2/m-Mg2ScH10, Immm-MgSc2H9, and Pmm-Mg(ScH4)3 decrease as the pressure increases and thus their Tc also decrease.

Figure 7

Figure 7. Pressure-dependent superconductivity of Rm-MgScH6, C2/m-Mg2ScH10, Immm-MgSc2H9, Pmm-MgSc3H12. (a) Tc from the McM equation, (b) EPC constant λ, (c) logarithmic phonon average ωlog and (d)the total DOS at the Fermi level .

Finally, we should point out that the predicted Tc value of Rm-MgScH6 at 100 GPa is 41 K, which is slightly higher than the McMillan limit (39 K). (54) The predicted Tc value of MgH4, which has a greater content ratio of hydrogen over metal as compared to Rm-MgScH6, can reach only 38 K at the same pressure (i.e., 100 GPa). (18) The EPC constant of Rm-MgScH6 is somewhat lower than that of MgH4, although its ωlog (1204 K) is similar to those of LaH10 and YH10. The previous calculations suggest that the Tc for ScH3 might be quite low; (12) however, the recent high-pressure experiment has revealed a Tc of roughly 20 K in the pressure range of 130–160 GPa. (59) In the present study we theoretically demonstrate that Rm-MgScH6 is a stable compound at 100 GPa at both room temperature and high temperature, and that the predicted Tc of Rm-MgScH6 is higher than those of the parent compounds (i.e., ScH3, MgH2, and MgH4). This can be a very promising candidate for high-pressure experiments of superconducting metal hydrides.

4. Conclusion

ARTICLE SECTIONS
Jump To

In summary, we have employed the evolutionary algorithm in the USPEX code and the first-principles calculations to explore the ternary phase diagram of the Mg–Sc–H system under pressure from 100 to 200 GPa. Our calculations show that the Sc-rich ternary Mg–Sc–H compounds are favorable to be stable around 100 GPa, while the Mg-rich ones are more likely to stable above 180 GPa. The ternary Mg–Sc–H hydrides with the hydrogen/metal ratio around three have been predicted to exhibit superconductivity. In particular, the superconducting transition temperature of Rm-MgScH6 is around 41 K at 100 GPa. Although the superconducting transition temperature of Pmm-Mg(ScH4)3 is relatively low, it can be stable in the low range of high pressure toward 100 GPa. Our results provide useful information for the discovery of new low-pressure superconducting hydrides.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.1c08743.

  • Computational details of Gibbs free energy at finite temperature and the superconducting Tc; ternary convex hulls of Mg–Sc–H systems at 100 and 150 GPa; total electronic density of states (DOS) and the partial DOS of H atoms of some representative Mg–Sc–H compounds under high pressure; pressure-dependent phonons and electron–phonon coupling spectra for MgScH6, Mg2ScH10, MgSc2H9, and Mg(ScH4)3; Gibbs free energy (including the enthalpy, zero-point energy (ZPE) correction, and other associated terms) of the main stable and metastable phases in the Mg–Sc–H system at 100, 150, and 200 GPa; structural information of newly predicted structures of ternary Mg–Sc–H compounds (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
  • Authors
    • Zhufeng Hou - State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, ChinaOrcidhttps://orcid.org/0000-0002-0069-5573
    • Pedro Baptista de Castro - National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, JapanUniversity of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
    • Kousuke Nakano - School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, JapanInternational School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, 34136, ItalyOrcidhttps://orcid.org/0000-0001-7756-4355
    • Kenta Hongo - Research Center for Advanced Computing Infrastructure, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, JapanOrcidhttps://orcid.org/0000-0002-2580-0907
    • Yoshihiko Takano - National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, JapanUniversity of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

The computations in this work have been performed using the facilities of Research Center for Advanced Computing Infrastructure (RCACI) at JAIST. K.H. is grateful for financial support from the HPCI System Research Project (Project ID: hp190169) and MEXT-KAKENHI (JP16H06439, JP17K17762, JP19K05029, and JP19H05169) and the Air Force Office of Scientific Research (Award Nos: FA2386-20-1-4036). R.M. is grateful for financial support from MEXT-KAKENHI (19H04692 and 16KK0097), FLAGSHIP2020 (Project Nos. hp190169 and hp190167 at K-computer), Toyota Motor Corporation, I–O DATA Foundation, the Air Force Office of Scientific Research (AFOSR-AOARD/FA2386-17-1-4049;FA2386-19-1-4015), and JSPS Bilateral Joint Projects (with India DST).

References

ARTICLE SECTIONS
Jump To

This article references 64 other publications.

  1. 1
    Peng, F.; Sun, Y.; Pickard, C. J.; Needs, R. J.; Wu, Q.; Ma, Y. Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity. Phys. Rev. Lett. 2017, 119, 107001,  DOI: 10.1103/PhysRevLett.119.107001
  2. 2
    Zurek, E. Hydrides of the Alkali Metals and Alkaline Earth Metals Under Pressure. Comments Inorg. Chem. 2017, 37, 7898,  DOI: 10.1080/02603594.2016.1196679
  3. 3
    Zurek, E.; Bi, T. High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective. J. Chem. Phys. 2019, 150, 050901,  DOI: 10.1063/1.5079225
  4. 4
    Semenok, D. V.; Kruglov, I. A.; Savkin, I. A.; Kvashnin, A. G.; Oganov, A. R. On Distribution of Superconductivity in Metal Hydrides. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100808,  DOI: 10.1016/j.cossms.2020.100808
  5. 5
    Wang, H.; Tse, J. S.; Tanaka, K.; Iitaka, T.; Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 64636466,  DOI: 10.1073/pnas.1118168109
  6. 6
    Hooper, J.; Terpstra, T.; Shamp, A.; Zurek, E. Composition and Constitution of Compressed Strontium Polyhydrides. J. Phys. Chem. C 2014, 118, 64336447,  DOI: 10.1021/jp4125342
  7. 7
    Chen, W.; Semenok, D. V.; Kvashnin, A. G.; Huang, X.; Kruglov, I. A.; Galasso, M.; Song, H.; Duan, D.; Goncharov, A. F.; Prakapenka, V. B. Synthesis of molecular metallic barium superhydride: pseudocubic BaH12. Nat. Commun. 2021, 12, 19,  DOI: 10.1038/s41467-020-20103-5
  8. 8
    Kruglov, I. A.; Semenok, D. V.; Song, H.; Szczesniak, R.; Wrona, I. A.; Akashi, R.; Esfahani, M. M. D.; Duan, D.; Cui, T.; Kvashnin, A. G. Superconductivity of LaH10 and LaH16 polyhydrides. Phys. Rev. B 2020, 101, 024508,  DOI: 10.1103/PhysRevB.101.024508
  9. 9
    Liu, H.; Naumov, I. I.; Hoffmann, R.; Ashcroft, N. W.; Hemley, R. J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 69906995,  DOI: 10.1073/pnas.1704505114
  10. 10
    Qian, S.; Sheng, X.; Yan, X.; Chen, Y.; Song, B. Theoretical study of stability and superconductivity of ScHn(n = 4–8) at high pressure. Phys. Rev. B 2017, 96, 094513,  DOI: 10.1103/PhysRevB.96.094513
  11. 11
    Feng, X.; Zhang, J.; Gao, G.; Liu, H.; Wang, H. Compressed sodalite-like MgH6 as a potential high-temperature superconductor. RSC Adv. 2015, 5, 5929259296,  DOI: 10.1039/C5RA11459D
  12. 12
    Ye, X.; Zarifi, N.; Zurek, E.; Hoffmann, R.; Ashcroft, N. W. High Hydrides of Scandium under Pressure: Potential Superconductors. J. Phys. Chem. C 2018, 122, 62986309,  DOI: 10.1021/acs.jpcc.7b12124
  13. 13
    Flores-Livas, J. A.; Boeri, L.; Sanna, A.; Profeta, G.; Arita, R.; Eremets, M. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep. 2020, 856, 178,  DOI: 10.1016/j.physrep.2020.02.003
  14. 14
    Ye, X.; Hoffmann, R.; Ashcroft, N. W. Theoretical Study of Phase Separation of Scandium Hydrides under High Pressure. J. Phys. Chem. C 2015, 119, 56145625,  DOI: 10.1021/jp512538e
  15. 15
    Abe, K. Hydrogen-rich scandium compounds at high pressures. Phys. Rev. B 2017, 96, 144108,  DOI: 10.1103/PhysRevB.96.144108
  16. 16
    Wei, Y.-K.; Yuan, J.-N.; Khan, F. I.; Ji, G.-F.; Gu, Z.-W.; Wei, D.-Q. Pressure induced superconductivity and electronic structure properties of scandium hydrides using first principles calculations. RSC Adv. 2016, 6, 8153481541,  DOI: 10.1039/C6RA11862C
  17. 17
    Shipley, A. M.; Hutcheon, M. J.; Needs, R. J.; Pickard, C. J. High-throughput discovery of high-temperature conventional superconductors. arXiv (Condensed Matter, Superconductivity) 2105.02296, ver. 3, May 5, 2021, https://arxiv.org/abs/2105.02296.
  18. 18
    Lonie, D. C.; Hooper, J.; Altintas, B.; Zurek, E. Metallization of magnesium polyhydrides under pressure. Phys. Rev. B 2013, 87, 054107,  DOI: 10.1103/PhysRevB.87.054107
  19. 19
    Drozdov, A. P.; Kong, P. P.; Minkov, V. S.; Besedin, S. P.; Kuzovnikov, M. A.; Mozaffari, S.; Balicas, L.; Balakirev, F. F.; Graf, D. E.; Prakapenka, V. B. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 2019, 569, 528531,  DOI: 10.1038/s41586-019-1201-8
  20. 20
    Troyan, I. A.; Semenok, D. V.; Kvashnin, A. G.; Sadakov, A. V.; Sobolevskiy, O. A.; Pudalov, V. M.; Ivanova, A. G.; Prakapenka, V. B.; Greenberg, E.; Gavriliuk, A. G. Anomalous High-Temperature Superconductivity in YH6. Adv. Mater. 2021, 33, 2006832,  DOI: 10.1002/adma.202006832
  21. 21
    Ma, L.; Wang, K.; Xie, Y.; Yang, X.; Wang, Y.; Zhou, M.; Liu, H.; Liu, G.; Wang, H.; Ma, Y. Experimental observation of superconductivity at 215 K in calcium superhydride under high pressures. arXiv (Condensed Matter, Superconductivity) 2103.16282 ver. 3, March 30, 2021, https://arxiv.org/abs/2103.16282.
  22. 22
    Salke, N. P.; Esfahani, M. M. D.; Zhang, Y.; Kruglov, I. A.; Zhou, J.; Wang, Y.; Greenberg, E.; Prakapenka, V. B.; Liu, J.; Oganov, A. R. Synthesis of clathrate cerium superhydride CeH9 at 80–100 GPa with atomic hydrogen sublattice. Nat. Commun. 2019, 10, 110,  DOI: 10.1038/s41467-019-12326-y
  23. 23
    Semenok, D. V.; Troyan, I. A.; Ivanova, A. G.; Kvashnin, A. G.; Kruglov, I. A.; Hanfland, M.; Sadakov, A. V.; Sobolevskiy, O. A.; Pervakov, K. S.; Lyubutin, I. S. Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater. Today 2021, 48, 13697021,  DOI: 10.1016/j.mattod.2021.03.025
  24. 24
    Song, P.; Hou, Z.; de Castro, P. B.; Nakano, K.; Hongo, K.; Takano, Y.; Maezono, R. High-Tc Superconducting Hydrides Formed by LaH24 and YH24 Cage Structures as Basic Blocks. Chem. Mater. 2021, 33, 95019507,  DOI: 10.1021/acs.chemmater.1c02371
  25. 25
    Liang, X.; Bergara, A.; Wang, L.; Wen, B.; Zhao, Z.; Zhou, X.-F.; He, J.; Gao, G.; Tian, Y. Potential high-Tc superconductivity in CaYH12 under pressure. Phys. Rev. B 2019, 99, 100505,  DOI: 10.1103/PhysRevB.99.100505
  26. 26
    Shi, L.-T.; Wei, Y.-K.; Liang, A.-K.; Turnbull, R.; Cheng, C.; Chen, X.-R.; Ji, G.-F. Prediction of pressure-induced superconductivity in the novel ternary system ScCaH2n (n = 1–6). J. Mater. Chem. C 2021, 9, 72847291,  DOI: 10.1039/D1TC00634G
  27. 27
    Wei, Y. K.; Jia, L. Q.; Fang, Y. Y.; Wang, L. J.; Qian, Z. X.; Yuan, J. N.; Selvaraj, G.; Ji, G. F.; Wei, D. Q. Formation and superconducting properties of predicted ternary hydride ScYH6 under pressures. Int. J. Quantum Chem. 2021, 121, e26459  DOI: 10.1002/qua.26459
  28. 28
    Song, P.; Hou, Z.; de Castro, P. B.; Nakano, K.; Takano, Y.; Maezono, R.; Hongo, K. The systematic study on the stability and superconductivity of Y-Mg-H compounds under high pressure. Adv. Theory Simul. 2022 2100364. DOI: 10.1002/adts.202100364
  29. 29
    Sukmas, W.; Tsuppayakorn-aek, P.; Pinsook, U.; Bovornratanaraks, T. Near-room-temperature superconductivity of Mg/Ca substituted metal hexahydride under pressure. J. Alloys Compd. 2020, 849, 156434,  DOI: 10.1016/j.jallcom.2020.156434
  30. 30
    Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002,  DOI: 10.1063/1.4812323
  31. 31
    Yu, R.; Lam, P. K. Electronic and structural properties of MgH2. Phys. Rev. B 1988, 37, 87308737,  DOI: 10.1103/PhysRevB.37.8730
  32. 32
    Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvåg, H. Pressure-Induced Structural Transitions in MgH2. Phys. Rev. Lett. 2002, 89, 175506,  DOI: 10.1103/PhysRevLett.89.175506
  33. 33
    Galakhov, A. V.; Finkelstein, L. D.; Kurmaev, E. Z.; Wilks, R. G.; Moewes, A.; Fedotov, V. K. X-ray spectra and electronic structure of Sc and Ti dihydrides. J. Condens. Matter Phys. 2008, 20, 335224,  DOI: 10.1088/0953-8984/20/33/335224
  34. 34
    Venturini, E.; Morosin, B. Low temperature anomaly in Sc0.995Gd0.005H1.9. Phys. Lett. A 1977, 61, 326328,  DOI: 10.1016/0375-9601(77)90630-2
  35. 35
    Frueh, S.; Kellett, R.; Mallery, C.; Molter, T.; Willis, W. S.; King’ondu, C.; Suib, S. L. Pyrolytic Decomposition of Ammonia Borane to Boron Nitride. Inorg. Chem. 2011, 50, 783792,  DOI: 10.1021/ic101020k
  36. 36
    Bowden, M.; Autrey, T.; Brown, I.; Ryan, M. The thermal decomposition of ammonia borane: A potential hydrogen storage material. Curr. Appl. Phys. 2008, 8, 498500,  DOI: 10.1016/j.cap.2007.10.045
  37. 37
    Glass, C. W.; Oganov, A. R.; Hansen, N. USPEX─Evolutionary crystal structure prediction. Comput. Phys. Commun. 2006, 175, 713720,  DOI: 10.1016/j.cpc.2006.07.020
  38. 38
    Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558561,  DOI: 10.1103/PhysRevB.47.558
  39. 39
    Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 1425114269,  DOI: 10.1103/PhysRevB.49.14251
  40. 40
    Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 1550,  DOI: 10.1016/0927-0256(96)00008-0
  41. 41
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 1116911186,  DOI: 10.1103/PhysRevB.54.11169
  42. 42
    Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 1795317979,  DOI: 10.1103/PhysRevB.50.17953
  43. 43
    Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 17581775,  DOI: 10.1103/PhysRevB.59.1758
  44. 44
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 38653868,  DOI: 10.1103/PhysRevLett.77.3865
  45. 45
    Momma, K.; Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 12721276,  DOI: 10.1107/S0021889811038970
  46. 46
    Liu, Q.; Fan, C.; Zhang, R. First-principles study of high-pressure structural phase transitions of magnesium. J. Appl. Phys. 2009, 105, 123505,  DOI: 10.1063/1.3151687
  47. 47
    Akahama, Y.; Fujihisa, H.; Kawamura, H. New Helical Chain Structure for Scandium at 240 GPa. Phys. Rev. Lett. 2005, 94, 195503,  DOI: 10.1103/PhysRevLett.94.195503
  48. 48
    Pickard, C. J.; Needs, R. J. Structure of phase III of solid hydrogen. Nat. Phys. 2007, 3, 473476,  DOI: 10.1038/nphys625
  49. 49
    Akbarzadeh, A. R.; Ozoliņš, V.; Wolverton, C. First-Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li-Mg-N-H System. Adv. Mater. 2007, 19, 32333239,  DOI: 10.1002/adma.200700843
  50. 50
    Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W. Author Correction: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 352352,  DOI: 10.1038/s41592-020-0772-5
  51. 51
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502,  DOI: 10.1088/0953-8984/21/39/395502
  52. 52
    Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901,  DOI: 10.1088/1361-648X/aa8f79
  53. 53
    Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ruffino, F. F. QuantumESPRESSO toward the exascale. J. Chem. Phys. 2020, 152, 154105,  DOI: 10.1063/5.0005082
  54. 54
    McMillan, W. L. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev. 1968, 167, 331344,  DOI: 10.1103/PhysRev.167.331
  55. 55
    Einaga, M.; Sakata, M.; Ishikawa, T.; Shimizu, K.; Eremets, M. I.; Drozdov, A. P.; Troyan, I. A.; Hirao, N.; Ohishi, Y. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 2016, 12, 835838,  DOI: 10.1038/nphys3760
  56. 56
    Jayaraman, A. Ultrahigh pressures. Rev. Sci. Instrum. 1986, 57, 10131031,  DOI: 10.1063/1.1138654
  57. 57
    Ohmura, A.; Machida, A.; Watanuki, T.; Aoki, K.; Nakano, S.; Takemura, K. Pressure-induced structural change from hexagonal to fcc metal lattice in scandium trihydride. J. Alloys Compd. 2007, 446–447, 598602,  DOI: 10.1016/j.jallcom.2007.04.018
  58. 58
    Kume, T.; Ohura, H.; Takeichi, T.; Ohmura, A.; Machida, A.; Watanuki, T.; Aoki, K.; Sasaki, S.; Shimizu, H.; Takemura, K. High-pressure study of ScH3: Raman, infrared, and visible absorption spectroscopy. Phys. Rev. B 2011, 84, 064132,  DOI: 10.1103/PhysRevB.84.064132
  59. 59
    Shao, M.; Chen, S.; Chen, W.; Zhang, K.; Huang, X.; Cui, T. Superconducting ScH3 and LuH3 at Megabar Pressures. Inorg. Chem. 2021, 60, 1533015335,  DOI: 10.1021/acs.inorgchem.1c01960
  60. 60
    Bortz, M.; Bertheville, B.; Böttger, G.; Yvon, K. Structure of the High Pressure Phase Γ-MgH2 by Neutron Powder Diffraction. J. Alloys Compd. 1999, 287, L4L6,  DOI: 10.1016/S0925-8388(99)00028-6
  61. 61
    Vajeeston, P.; Ravindran, P.; Hauback, B. C.; Fjellvåg, H.; Kjekshus, A.; Furuseth, S.; Hanfland, M. Structural Stability and Pressure-Induced Phase Transitions in MgH2. Phys. Rev. B 2006, 73, 224102,  DOI: 10.1103/PhysRevB.73.224102
  62. 62
    Simon, A. Superconductivity and Chemistry. Angew. Chem., Int. Ed. Engl. 1997, 36, 17881806,  DOI: 10.1002/anie.199717881
  63. 63
    Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Microscopic Theory of Superconductivity. Phys. Rev. 1957, 106, 162164,  DOI: 10.1103/PhysRev.106.162
  64. 64
    Kim, D. Y.; Scheicher, R. H.; Ahuja, R. Predicted High-Temperature Superconducting State in the Hydrogen-Dense Transition-Metal Hydride YH3 at 40 K and 17.7 GPa. Phys. Rev. Lett. 2009, 103, 077002,  DOI: 10.1103/PhysRevLett.103.077002

Cited By

This article is cited by 6 publications.

  1. Wiwittawin Sukmas, Prutthipong Tsuppayakorn-aek, Prayoonsak Pluengphon, Stewart J. Clark, Rajeev Ahuja, Thiti Bovornratanaraks, Wei Luo. First-principles calculations on superconductivity and H-diffusion kinetics in Mg–B–H phases under pressures. International Journal of Hydrogen Energy 2023, 48 (10) , 4006-4015. https://doi.org/10.1016/j.ijhydene.2022.10.232
  2. Qingyin Tian, Cao Wang, Xin Wang, Xiangmin Du, Qingchen Duan, Shugang Tan, Shaohua Liu, Chenhang Xu, Jiayuan Hu, Qi Lu, Shasha Liu, Qiang Jing, Ping Li, Dong Qian. The chemical states and electronic states of layered carbide superconductor ThMo 2 Si 2 C. Physica Scripta 2023, 98 (1) , 015818. https://doi.org/10.1088/1402-4896/aca6b1
  3. Prutthipong Tsuppayakorn‐aek, Prayoonsak Pluengphon, Wiwittawin Sukmas, Burapat Inceesungvorn, Rajeev Ahuja, Thiti Bovornratanaraks, Wei Luo. Pressure‐induced lattice‐dynamical stability and superconductivity of ternary pentahydride MgNiH 5 . International Journal of Energy Research 2022, 46 (15) , 24064-24073. https://doi.org/10.1002/er.8705
  4. Yaqiong Yan, Qun Wei, Haiyan Yan, Zhenhua Wu, Meiguang Zhang. Stability and electronic properties of five new ternary tantalum carbonitrides. Computational Materials Science 2022, 214 , 111728. https://doi.org/10.1016/j.commatsci.2022.111728
  5. P. Song, Z. Hou, K. Nakano, K. Hongo, R. Maezono. Potential high-Tc superconductivity in YCeH and LaCeH under pressure. Materials Today Physics 2022, 28 , 100873. https://doi.org/10.1016/j.mtphys.2022.100873
  6. R. Vocaturo, C. Tresca, G. Ghiringhelli, G. Profeta. Prediction of ambient-pressure superconductivity in ternary hydride PdCuH x . Journal of Applied Physics 2022, 131 (3) , 033903. https://doi.org/10.1063/5.0076728
  • Abstract

    Figure 1

    Figure 1. (a) Ternary convex hulls of the Mg–Sc–H system at a pressure of 200 GPa; (b,c) convex hulls of Gibbs free energy at 0 K and at finite temperature (1000 K), respectively. The stable and metastable phases are shown by circles and diamond, respectively.

    Figure 2

    Figure 2. Enthalpy per atom of (MgH2 + MgH4)x as a function of x at the pressure of 100, 150, and 200 GPa, where x is defined as . The stable phase and the metastable phase are connected by solid and dashed lines, respectively.

    Figure 3

    Figure 3. Phase diagram of Mg–Sc–H in the pressure range of 100–200 GPa.

    Figure 4

    Figure 4. Predicted crystal structures of (a) Rm-MgScH6, (b) C2/m-Mg2ScH10, (c) Immm-MgSc2H9, (d) Pmm-MgSc3H12 at 200 GPa. Bottom panels show the corresponding contour plots of electron localization function (ELF) in these structures.

    Figure 5

    Figure 5. Electronic band structures and atom-projected electronic density of states of (a) Rm-MgScH6, (b) C2/m-Mg2ScH10, (c) Immm-MgSc2H9, (d) Pmm-MgSc3H12 at 200 GPa.

    Figure 6

    Figure 6. Phonon dispersion and atom-projected phonon density of states (pDOS), and Eliashberg spectral of (a) Rm-MgScH6, (b) C2/m-Mg2ScH10, (c) Immm-MgSc2H9, (d) Pmm-MgSc3H12 at 200 GPa.

    Figure 7

    Figure 7. Pressure-dependent superconductivity of Rm-MgScH6, C2/m-Mg2ScH10, Immm-MgSc2H9, Pmm-MgSc3H12. (a) Tc from the McM equation, (b) EPC constant λ, (c) logarithmic phonon average ωlog and (d)the total DOS at the Fermi level .

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 64 other publications.

    1. 1
      Peng, F.; Sun, Y.; Pickard, C. J.; Needs, R. J.; Wu, Q.; Ma, Y. Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity. Phys. Rev. Lett. 2017, 119, 107001,  DOI: 10.1103/PhysRevLett.119.107001
    2. 2
      Zurek, E. Hydrides of the Alkali Metals and Alkaline Earth Metals Under Pressure. Comments Inorg. Chem. 2017, 37, 7898,  DOI: 10.1080/02603594.2016.1196679
    3. 3
      Zurek, E.; Bi, T. High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective. J. Chem. Phys. 2019, 150, 050901,  DOI: 10.1063/1.5079225
    4. 4
      Semenok, D. V.; Kruglov, I. A.; Savkin, I. A.; Kvashnin, A. G.; Oganov, A. R. On Distribution of Superconductivity in Metal Hydrides. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100808,  DOI: 10.1016/j.cossms.2020.100808
    5. 5
      Wang, H.; Tse, J. S.; Tanaka, K.; Iitaka, T.; Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 64636466,  DOI: 10.1073/pnas.1118168109
    6. 6
      Hooper, J.; Terpstra, T.; Shamp, A.; Zurek, E. Composition and Constitution of Compressed Strontium Polyhydrides. J. Phys. Chem. C 2014, 118, 64336447,  DOI: 10.1021/jp4125342
    7. 7
      Chen, W.; Semenok, D. V.; Kvashnin, A. G.; Huang, X.; Kruglov, I. A.; Galasso, M.; Song, H.; Duan, D.; Goncharov, A. F.; Prakapenka, V. B. Synthesis of molecular metallic barium superhydride: pseudocubic BaH12. Nat. Commun. 2021, 12, 19,  DOI: 10.1038/s41467-020-20103-5
    8. 8
      Kruglov, I. A.; Semenok, D. V.; Song, H.; Szczesniak, R.; Wrona, I. A.; Akashi, R.; Esfahani, M. M. D.; Duan, D.; Cui, T.; Kvashnin, A. G. Superconductivity of LaH10 and LaH16 polyhydrides. Phys. Rev. B 2020, 101, 024508,  DOI: 10.1103/PhysRevB.101.024508
    9. 9
      Liu, H.; Naumov, I. I.; Hoffmann, R.; Ashcroft, N. W.; Hemley, R. J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 69906995,  DOI: 10.1073/pnas.1704505114
    10. 10
      Qian, S.; Sheng, X.; Yan, X.; Chen, Y.; Song, B. Theoretical study of stability and superconductivity of ScHn(n = 4–8) at high pressure. Phys. Rev. B 2017, 96, 094513,  DOI: 10.1103/PhysRevB.96.094513
    11. 11
      Feng, X.; Zhang, J.; Gao, G.; Liu, H.; Wang, H. Compressed sodalite-like MgH6 as a potential high-temperature superconductor. RSC Adv. 2015, 5, 5929259296,  DOI: 10.1039/C5RA11459D
    12. 12
      Ye, X.; Zarifi, N.; Zurek, E.; Hoffmann, R.; Ashcroft, N. W. High Hydrides of Scandium under Pressure: Potential Superconductors. J. Phys. Chem. C 2018, 122, 62986309,  DOI: 10.1021/acs.jpcc.7b12124
    13. 13
      Flores-Livas, J. A.; Boeri, L.; Sanna, A.; Profeta, G.; Arita, R.; Eremets, M. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep. 2020, 856, 178,  DOI: 10.1016/j.physrep.2020.02.003
    14. 14
      Ye, X.; Hoffmann, R.; Ashcroft, N. W. Theoretical Study of Phase Separation of Scandium Hydrides under High Pressure. J. Phys. Chem. C 2015, 119, 56145625,  DOI: 10.1021/jp512538e
    15. 15
      Abe, K. Hydrogen-rich scandium compounds at high pressures. Phys. Rev. B 2017, 96, 144108,  DOI: 10.1103/PhysRevB.96.144108
    16. 16
      Wei, Y.-K.; Yuan, J.-N.; Khan, F. I.; Ji, G.-F.; Gu, Z.-W.; Wei, D.-Q. Pressure induced superconductivity and electronic structure properties of scandium hydrides using first principles calculations. RSC Adv. 2016, 6, 8153481541,  DOI: 10.1039/C6RA11862C
    17. 17
      Shipley, A. M.; Hutcheon, M. J.; Needs, R. J.; Pickard, C. J. High-throughput discovery of high-temperature conventional superconductors. arXiv (Condensed Matter, Superconductivity) 2105.02296, ver. 3, May 5, 2021, https://arxiv.org/abs/2105.02296.
    18. 18
      Lonie, D. C.; Hooper, J.; Altintas, B.; Zurek, E. Metallization of magnesium polyhydrides under pressure. Phys. Rev. B 2013, 87, 054107,  DOI: 10.1103/PhysRevB.87.054107
    19. 19
      Drozdov, A. P.; Kong, P. P.; Minkov, V. S.; Besedin, S. P.; Kuzovnikov, M. A.; Mozaffari, S.; Balicas, L.; Balakirev, F. F.; Graf, D. E.; Prakapenka, V. B. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 2019, 569, 528531,  DOI: 10.1038/s41586-019-1201-8
    20. 20
      Troyan, I. A.; Semenok, D. V.; Kvashnin, A. G.; Sadakov, A. V.; Sobolevskiy, O. A.; Pudalov, V. M.; Ivanova, A. G.; Prakapenka, V. B.; Greenberg, E.; Gavriliuk, A. G. Anomalous High-Temperature Superconductivity in YH6. Adv. Mater. 2021, 33, 2006832,  DOI: 10.1002/adma.202006832
    21. 21
      Ma, L.; Wang, K.; Xie, Y.; Yang, X.; Wang, Y.; Zhou, M.; Liu, H.; Liu, G.; Wang, H.; Ma, Y. Experimental observation of superconductivity at 215 K in calcium superhydride under high pressures. arXiv (Condensed Matter, Superconductivity) 2103.16282 ver. 3, March 30, 2021, https://arxiv.org/abs/2103.16282.
    22. 22
      Salke, N. P.; Esfahani, M. M. D.; Zhang, Y.; Kruglov, I. A.; Zhou, J.; Wang, Y.; Greenberg, E.; Prakapenka, V. B.; Liu, J.; Oganov, A. R. Synthesis of clathrate cerium superhydride CeH9 at 80–100 GPa with atomic hydrogen sublattice. Nat. Commun. 2019, 10, 110,  DOI: 10.1038/s41467-019-12326-y
    23. 23
      Semenok, D. V.; Troyan, I. A.; Ivanova, A. G.; Kvashnin, A. G.; Kruglov, I. A.; Hanfland, M.; Sadakov, A. V.; Sobolevskiy, O. A.; Pervakov, K. S.; Lyubutin, I. S. Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater. Today 2021, 48, 13697021,  DOI: 10.1016/j.mattod.2021.03.025
    24. 24
      Song, P.; Hou, Z.; de Castro, P. B.; Nakano, K.; Hongo, K.; Takano, Y.; Maezono, R. High-Tc Superconducting Hydrides Formed by LaH24 and YH24 Cage Structures as Basic Blocks. Chem. Mater. 2021, 33, 95019507,  DOI: 10.1021/acs.chemmater.1c02371
    25. 25
      Liang, X.; Bergara, A.; Wang, L.; Wen, B.; Zhao, Z.; Zhou, X.-F.; He, J.; Gao, G.; Tian, Y. Potential high-Tc superconductivity in CaYH12 under pressure. Phys. Rev. B 2019, 99, 100505,  DOI: 10.1103/PhysRevB.99.100505
    26. 26
      Shi, L.-T.; Wei, Y.-K.; Liang, A.-K.; Turnbull, R.; Cheng, C.; Chen, X.-R.; Ji, G.-F. Prediction of pressure-induced superconductivity in the novel ternary system ScCaH2n (n = 1–6). J. Mater. Chem. C 2021, 9, 72847291,  DOI: 10.1039/D1TC00634G
    27. 27
      Wei, Y. K.; Jia, L. Q.; Fang, Y. Y.; Wang, L. J.; Qian, Z. X.; Yuan, J. N.; Selvaraj, G.; Ji, G. F.; Wei, D. Q. Formation and superconducting properties of predicted ternary hydride ScYH6 under pressures. Int. J. Quantum Chem. 2021, 121, e26459  DOI: 10.1002/qua.26459
    28. 28
      Song, P.; Hou, Z.; de Castro, P. B.; Nakano, K.; Takano, Y.; Maezono, R.; Hongo, K. The systematic study on the stability and superconductivity of Y-Mg-H compounds under high pressure. Adv. Theory Simul. 2022 2100364. DOI: 10.1002/adts.202100364
    29. 29
      Sukmas, W.; Tsuppayakorn-aek, P.; Pinsook, U.; Bovornratanaraks, T. Near-room-temperature superconductivity of Mg/Ca substituted metal hexahydride under pressure. J. Alloys Compd. 2020, 849, 156434,  DOI: 10.1016/j.jallcom.2020.156434
    30. 30
      Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002,  DOI: 10.1063/1.4812323
    31. 31
      Yu, R.; Lam, P. K. Electronic and structural properties of MgH2. Phys. Rev. B 1988, 37, 87308737,  DOI: 10.1103/PhysRevB.37.8730
    32. 32
      Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvåg, H. Pressure-Induced Structural Transitions in MgH2. Phys. Rev. Lett. 2002, 89, 175506,  DOI: 10.1103/PhysRevLett.89.175506
    33. 33
      Galakhov, A. V.; Finkelstein, L. D.; Kurmaev, E. Z.; Wilks, R. G.; Moewes, A.; Fedotov, V. K. X-ray spectra and electronic structure of Sc and Ti dihydrides. J. Condens. Matter Phys. 2008, 20, 335224,  DOI: 10.1088/0953-8984/20/33/335224
    34. 34
      Venturini, E.; Morosin, B. Low temperature anomaly in Sc0.995Gd0.005H1.9. Phys. Lett. A 1977, 61, 326328,  DOI: 10.1016/0375-9601(77)90630-2
    35. 35
      Frueh, S.; Kellett, R.; Mallery, C.; Molter, T.; Willis, W. S.; King’ondu, C.; Suib, S. L. Pyrolytic Decomposition of Ammonia Borane to Boron Nitride. Inorg. Chem. 2011, 50, 783792,  DOI: 10.1021/ic101020k
    36. 36
      Bowden, M.; Autrey, T.; Brown, I.; Ryan, M. The thermal decomposition of ammonia borane: A potential hydrogen storage material. Curr. Appl. Phys. 2008, 8, 498500,  DOI: 10.1016/j.cap.2007.10.045
    37. 37
      Glass, C. W.; Oganov, A. R.; Hansen, N. USPEX─Evolutionary crystal structure prediction. Comput. Phys. Commun. 2006, 175, 713720,  DOI: 10.1016/j.cpc.2006.07.020
    38. 38
      Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558561,  DOI: 10.1103/PhysRevB.47.558
    39. 39
      Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 1425114269,  DOI: 10.1103/PhysRevB.49.14251
    40. 40
      Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 1550,  DOI: 10.1016/0927-0256(96)00008-0
    41. 41
      Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 1116911186,  DOI: 10.1103/PhysRevB.54.11169
    42. 42
      Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 1795317979,  DOI: 10.1103/PhysRevB.50.17953
    43. 43
      Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 17581775,  DOI: 10.1103/PhysRevB.59.1758
    44. 44
      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 38653868,  DOI: 10.1103/PhysRevLett.77.3865
    45. 45
      Momma, K.; Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 12721276,  DOI: 10.1107/S0021889811038970
    46. 46
      Liu, Q.; Fan, C.; Zhang, R. First-principles study of high-pressure structural phase transitions of magnesium. J. Appl. Phys. 2009, 105, 123505,  DOI: 10.1063/1.3151687
    47. 47
      Akahama, Y.; Fujihisa, H.; Kawamura, H. New Helical Chain Structure for Scandium at 240 GPa. Phys. Rev. Lett. 2005, 94, 195503,  DOI: 10.1103/PhysRevLett.94.195503
    48. 48
      Pickard, C. J.; Needs, R. J. Structure of phase III of solid hydrogen. Nat. Phys. 2007, 3, 473476,  DOI: 10.1038/nphys625
    49. 49
      Akbarzadeh, A. R.; Ozoliņš, V.; Wolverton, C. First-Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li-Mg-N-H System. Adv. Mater. 2007, 19, 32333239,  DOI: 10.1002/adma.200700843
    50. 50
      Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W. Author Correction: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 352352,  DOI: 10.1038/s41592-020-0772-5
    51. 51
      Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502,  DOI: 10.1088/0953-8984/21/39/395502
    52. 52
      Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901,  DOI: 10.1088/1361-648X/aa8f79
    53. 53
      Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ruffino, F. F. QuantumESPRESSO toward the exascale. J. Chem. Phys. 2020, 152, 154105,  DOI: 10.1063/5.0005082
    54. 54
      McMillan, W. L. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev. 1968, 167, 331344,  DOI: 10.1103/PhysRev.167.331
    55. 55
      Einaga, M.; Sakata, M.; Ishikawa, T.; Shimizu, K.; Eremets, M. I.; Drozdov, A. P.; Troyan, I. A.; Hirao, N.; Ohishi, Y. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 2016, 12, 835838,  DOI: 10.1038/nphys3760
    56. 56
      Jayaraman, A. Ultrahigh pressures. Rev. Sci. Instrum. 1986, 57, 10131031,  DOI: 10.1063/1.1138654
    57. 57
      Ohmura, A.; Machida, A.; Watanuki, T.; Aoki, K.; Nakano, S.; Takemura, K. Pressure-induced structural change from hexagonal to fcc metal lattice in scandium trihydride. J. Alloys Compd. 2007, 446–447, 598602,  DOI: 10.1016/j.jallcom.2007.04.018
    58. 58
      Kume, T.; Ohura, H.; Takeichi, T.; Ohmura, A.; Machida, A.; Watanuki, T.; Aoki, K.; Sasaki, S.; Shimizu, H.; Takemura, K. High-pressure study of ScH3: Raman, infrared, and visible absorption spectroscopy. Phys. Rev. B 2011, 84, 064132,  DOI: 10.1103/PhysRevB.84.064132
    59. 59
      Shao, M.; Chen, S.; Chen, W.; Zhang, K.; Huang, X.; Cui, T. Superconducting ScH3 and LuH3 at Megabar Pressures. Inorg. Chem. 2021, 60, 1533015335,  DOI: 10.1021/acs.inorgchem.1c01960
    60. 60
      Bortz, M.; Bertheville, B.; Böttger, G.; Yvon, K. Structure of the High Pressure Phase Γ-MgH2 by Neutron Powder Diffraction. J. Alloys Compd. 1999, 287, L4L6,  DOI: 10.1016/S0925-8388(99)00028-6
    61. 61
      Vajeeston, P.; Ravindran, P.; Hauback, B. C.; Fjellvåg, H.; Kjekshus, A.; Furuseth, S.; Hanfland, M. Structural Stability and Pressure-Induced Phase Transitions in MgH2. Phys. Rev. B 2006, 73, 224102,  DOI: 10.1103/PhysRevB.73.224102
    62. 62
      Simon, A. Superconductivity and Chemistry. Angew. Chem., Int. Ed. Engl. 1997, 36, 17881806,  DOI: 10.1002/anie.199717881
    63. 63
      Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Microscopic Theory of Superconductivity. Phys. Rev. 1957, 106, 162164,  DOI: 10.1103/PhysRev.106.162
    64. 64
      Kim, D. Y.; Scheicher, R. H.; Ahuja, R. Predicted High-Temperature Superconducting State in the Hydrogen-Dense Transition-Metal Hydride YH3 at 40 K and 17.7 GPa. Phys. Rev. Lett. 2009, 103, 077002,  DOI: 10.1103/PhysRevLett.103.077002
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.1c08743.

    • Computational details of Gibbs free energy at finite temperature and the superconducting Tc; ternary convex hulls of Mg–Sc–H systems at 100 and 150 GPa; total electronic density of states (DOS) and the partial DOS of H atoms of some representative Mg–Sc–H compounds under high pressure; pressure-dependent phonons and electron–phonon coupling spectra for MgScH6, Mg2ScH10, MgSc2H9, and Mg(ScH4)3; Gibbs free energy (including the enthalpy, zero-point energy (ZPE) correction, and other associated terms) of the main stable and metastable phases in the Mg–Sc–H system at 100, 150, and 200 GPa; structural information of newly predicted structures of ternary Mg–Sc–H compounds (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect