Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUESpecial Issue Prefac...Special Issue PrefaceNEXT

Nanophotonics for Chemical Imaging and Spectroscopy

Cite this: J. Phys. Chem. C 2022, 126, 41, 17471–17473
Publication Date (Web):October 20, 2022
https://doi.org/10.1021/acs.jpcc.2c06603

Copyright © Published 2022 by American Chemical Society. This publication is available under these Terms of Use.

  • Free to Read

Article Views

1661

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (2 MB)

 Special Issue

Published as part of The Journal of Physical Chemistry virtual special issue “Nanophotonics for Chemical Imaging and Spectroscopy”.

The manipulation of light and light–matter interactions on the nanoscale is enabled by the unique optical properties of plasmonic metal nanostructures and nanoparticles. Indeed, engineered hybrid molecular-plasmonic nanostructures have enabled single molecule detection and identification via surface-enhanced Raman scattering (SERS). (1,2) The same effect is at the core of visualizing single molecules with subnanometer spatial resolution via tip-enhanced Raman scattering (TERS). (3−5) More generally, modern applications of plasmon-enhanced spectroscopy and microscopy fueled advances in fields as diverse as quantum and semiconductor materials, heterogeneous catalysis, and the health sciences, to name a few. (6,7) All of these exciting developments and many more are addressed in this virtual special issue (VSI) on nanophotonics. From ultraprecise chemical imaging measurements performed in a scanning tunneling microscope chamber (3−5) to single molecule spectroscopic measurements performed at solid–air and solid–liquid interfaces, (8,9) this VSI includes contributions from active practitioners that are all striving to better understand increasingly complex interfaces encountered in the biological, materials, and chemical sciences (see Figure 1).

Figure 1

Figure 1. Two studies that are included in this VSI are 3D SERS imaging of gold–silver nanostructures by Ozaki and co-workers (10) (left) and high resolution TERS spectral imaging of a single molecule by Dong and co-workers (11) (right). Reproduced with permission from refs (10) and (11). Copyright 2022 American Chemical Society.

The quest to characterize transition metal dichalcogenides (TMDs) on the nanoscale led to the wide adoption of TERS and tip-enhanced photoluminescence (TEPL) by active practitioners in this exciting field of low-dimensional quantum materials. (12,13) In this VSI, TERS and TEPL were used to better understand the optoelectronic properties of grain boundaries in single layer WSe2, (14) to characterize the interplay between 2D materials and plasmonic nanoparticles, (15) and to rationalize the excitation wavelength dependence of nano-Raman spectral images of TMDs. (16) An interesting theoretical analysis of the optical and electronic properties of TMD heterostructures (17) is one of several fundamental TERS studies in this issue. The influence of an imperfect AFM probe on ambient TERS spectra and images (18) as well as the information content in STM-TERS spectral images of a three-dimensional double-decker molecule (3) are also reported as part of this VSI.

The above-echoed goal of characterizing increasingly complex interfaces comprises a recurrent theme in modern SERS-based spectroscopy and imaging studies. This VSI therefore includes a variety of SERS studies covering a broad range of fundamental and applied studies. (19−21) From work aimed at better understanding the unique optical properties of a single rod on a mirror (22) to the ultrasensitive detection of plant biomarkers (23) and herbicides, (24) and through 3D SERS imaging of nanoporous gold–silver microstructures, (10) the scope of SERS work in this issue is appropriately and exquisitely diverse. An interesting contribution that analyzed SERS hotspot dynamics in dry and aqueous environments is worth singling out. (9) Indeed, this work dissects the contributions of different phenomena to SERS (and ambient TERS) signal fluctuations, which continue to puzzle practitioners, even at this (late) stage of evolution of both techniques. (25,26) Equally interesting contributions analyzed ligand binding on silver nanoparticles, (27,28) a detailed understanding of which is a prerequisite to rationalizing the enhanced optical spectra and chemical properties of molecules on plasmonic nanostructures. Finally, both conventional and machine-learning-assisted analyses of nanoparticles and nanoparticle–cyanobacteria assemblies were described, (29) with a goal of interfacing advanced theoretical treatments with SERS to significantly broaden the application space of this powerful technique.

Photothermal, infrared, and nonlinear spectroscopy and microscopy approaches are an integral part of this VSI. Indeed, various flavors of photothermal microscopy and nanoscopy, (30,31) unique applications of infrared-based near-field optical microscopy and spectroscopy, (32,33) and coherent Raman-based nanoimaging and nanospectroscopy studies are described. (34) In the latter, reproducible enhanced molecular coherent anti-Stokes Raman scattering (CARS) was reported, using a (gently irradiated) Si particle on a mirror platform. This study overcomes the limitations of all-metallic platforms and paves the way for next-generation coherent Raman-based (nano)imaging and (nano)spectroscopy studies that are complementary to SERS and TERS.

The breadth and healthy mix of fundamental and applied science that is covered in this VSI reflects the multifaceted nature of research in the general area of nanophotonics. Indeed, from molecules to quantum material and through heterogeneous plasmonic catalysis─the reach of research under the general umbrella of nanophotonics is ever-expanding. We hope that the research that is included in this VSI stimulates further collaboration and cross-disciplinary research thrusts that take advantage of the unique interplay between matter and light on the nanoscale.

Author Information

ARTICLE SECTIONS
Jump To

Editor's Note

ARTICLE SECTIONS
Jump To

Views expressed in this editorial are those of the authors and not necessarily the views of the ACS.

References

ARTICLE SECTIONS
Jump To

This article references 34 other publications.

  1. 1
    Le Ru, E. C.; Etchegoin, P. G. Single-Molecule Surface-Enhanced Raman Spectroscopy. Annu. Rev. Phys. Chem. 2012, 63, 6587,  DOI: 10.1146/annurev-physchem-032511-143757
  2. 2
    Zrimsek, A. B.; Wong, N. L.; Van Duyne, R. P. Single Molecule Surface-Enhanced Raman Spectroscopy: A Critical Analysis of the Bianalyte versus Isotopologue Proof. J. Phys. Chem. C 2016, 120, 51335142,  DOI: 10.1021/acs.jpcc.6b00606
  3. 3
    Mahapatra, S.; Schultz, J. F.; Li, L.; Zhang, X.; Jiang, N. Chemical Characterization of a Three-Dimensional Double-Decker Molecule on a Surface via Scanning-Tunneling-Microscopy-Based Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2022, 126, 87348741,  DOI: 10.1021/acs.jpcc.2c01434
  4. 4
    Seydou, M.; Sall, S.; Lafolet, F.; Lemercier, G.; Maurel, F.; Lacroix, J. C.; Sun, X. Nanopatterning by Length-Dependent Self-Assembly from Fluorene-Terpyridine Derivatives. J. Phys. Chem. C 2022, 126, 1083310841,  DOI: 10.1021/acs.jpcc.2c01550
  5. 5
    Aiga, N.; Takeuchi, S. Single-Molecule Raman Spectroscopy of a Pentacene Derivative Adsorbed on Non-Flat Surface of a Metallic Tip. J. Phys. Chem. C 2022, 126, 1622716235,  DOI: 10.1021/acs.jpcc.2c03067
  6. 6
    El-Khoury, P. Z.; Schultz, Z. D. From SERS to TERS and Beyond: Molecules as Probes of Nanoscopic Optical Fields. J. Phys. Chem. C 2020, 124, 2726727275,  DOI: 10.1021/acs.jpcc.0c08337
  7. 7
    Feng, Y.; Kochovski, Z.; Arenz, C.; Lu, Y.; Kneipp, J. Structure and Interaction of Ceramide-Containing Liposomes with Gold Nanoparticles as Characterized by SERS and Cryo-EM. J. Phys. Chem. C 2022, 126, 1323713246,  DOI: 10.1021/acs.jpcc.2c01930
  8. 8
    Rigor, J.; Kurouski, D.; Large, N. Plasmonic Heating Effects in Tip-Enhanced Raman Spectroscopy (TERS). J. Phys. Chem. C 2022, 126, 1398613993,  DOI: 10.1021/acs.jpcc.2c03881
  9. 9
    Lindquist, N. C.; Bido, A. T.; Brolo, A. G. Single-Molecule SERS Hotspot Dynamics in Both Dry and Aqueous Environments. J. Phys. Chem. C 2022, 126, 71177126,  DOI: 10.1021/acs.jpcc.2c00319
  10. 10
    Sukmanee, T.; Vantasin, S.; Gatemala, H.; Ekgasit, S.; Pienpinijtham, P.; Ozaki, Y. 3D SERS Imaging of Nanoporous Gold–Silver Microstructures: Exploring the Formation Mechanism Based on Galvanic Replacement Reaction. J. Phys. Chem. C 2022, 126, 56175627,  DOI: 10.1021/acs.jpcc.1c10295
  11. 11
    Wang, R.-P.; Hu, C.-R.; Han, Y.; Yang, B.; Chen, G.; Zhang, Y.; Zhang, Y.; Dong, Z.-C. Sub-Nanometer Resolved Tip-Enhanced Raman Spectroscopy of a Single Molecule on the Si(111) Substrate. J. Phys. Chem. C 2022, 126, 1212112128,  DOI: 10.1021/acs.jpcc.2c03614
  12. 12
    Ambardar, S.; Hrim, H. N.; Tang, C.; Jia, S.; Chen, W.; Lou, J.; Voronine, D. V. Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence. J. Phys. Chem. C 2022, 126, 1382113829,  DOI: 10.1021/acs.jpcc.2c03728
  13. 13
    Lu, D.; Hou, S.; Liu, S.; Xiong, Q.; Chen, Y.; Duan, H. Amphiphilic Janus Magnetoplasmonic Nanoparticles: pH-Triggered Self-Assembly and Fluorescence Modulation. J. Phys. Chem. C 2022, 126, 14967,  DOI: 10.1021/acs.jpcc.2c03753
  14. 14
    Su, W.; Kumar, N.; Shu, H.; Lancry, O.; Chaigneau, M. In Situ Visualization of Optoelectronic Behavior of Grain Boundaries in Monolayer WSe2 at the Nanoscale. J. Phys. Chem. C 2021, 125, 2688326891,  DOI: 10.1021/acs.jpcc.1c08064
  15. 15
    Farhat, P.; Avilés, O. M.; Legge, S.; Wang, Z.; Sham, T.-K.; Laugné-Labarthet, F. Tip-Enhanced Raman Spectroscopy and Tip-Enhanced Photoluminescence of MoS2 Flakes Decorated with Gold Nanoparticles. J. Phys. Chem. C 2022, 126, 70867095,  DOI: 10.1021/acs.jpcc.1c10186
  16. 16
    Krayev, A.; Chen, P.; Terrones, H.; Duan, X.; Zhang, Z.; Duan, X. Importance of Multiple Excitation Wavelengths for TERS Characterization of TMDCs and Their Vertical Heterostructures. J. Phys. Chem. C 2022, 126, 52185223,  DOI: 10.1021/acs.jpcc.1c10469
  17. 17
    Marmolejo-Tejada, J. M.; Fix, J. P.; Kung, P.; Borys, N. J.; Mosquera, M. A. Theoretical Analysis of the Nanoscale Composition, Tip-Enhanced Raman Spectroscopy, and Electronic Properties of Alloys in 2D MoS2–WS2 Heterostructures. J. Phys. Chem. C 2022, 126, 90999108,  DOI: 10.1021/acs.jpcc.2c01535
  18. 18
    Wang, C.-F.; O’Callahan, B. T.; Arey, B. W.; Kurouski, D.; El-Khoury, P. Z. High-Resolution Raman Nano-Imaging with an Imperfect Probe. J. Phys. Chem. C 2022, 126, 40894094,  DOI: 10.1021/acs.jpcc.1c10459
  19. 19
    Sun, S.; Rathnayake, D. T. N.; Guo, Y. Asymmetrical Spectral Continuum between Anti-Stokes and Stokes Scattering Revealed in Low-Frequency Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2022, 126, 1119311120,  DOI: 10.1021/acs.jpcc.2c02486
  20. 20
    Shao, S.; Zhu, X.; Ten, V.; Kim, M. J.; Xia, X. Understanding the Impact of Wall Thickness on Thermal Stability of Silver–Gold Nanocages. J. Phys. Chem. C 2022, 126, 73377345,  DOI: 10.1021/acs.jpcc.2c01433
  21. 21
    Wang, A.; Zou, S. Effects of Near- and Far-Field Coupling on the Enhancement Factor of the Radiative Decay Rate of Multiple Emitters Near a Silver Nanoparticle Sphere. J. Phys. Chem. C 2022, 126, 97949802,  DOI: 10.1021/acs.jpcc.2c01392
  22. 22
    Filbrun, S. L.; Huang, T.-X.; Zhao, F.; Chen, K.; Dong, B.; Fang, N. Combinatorial Single Particle Spectro-Microscopic Analysis of Plasmon Coupling of Gold Nanorods on Mirror. J. Phys. Chem. C 2021, 125, 2662726634,  DOI: 10.1021/acs.jpcc.1c08262
  23. 23
    Song, C.; Wang, Y.; Lei, Y.; Zhao, J. SERS-Enabled Sensitive Detection of Plant Volatile Biomarker Methyl Salicylate. J. Phys. Chem. C 2022, 126, 772778,  DOI: 10.1021/acs.jpcc.1c09185
  24. 24
    Albarghouthi, N.; Eisnor, M. M.; Pye, C. C.; Brosseau, C. L. Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) and Computational Study of Atrazine: Toward Point-of-Need Detection of Prevalent Herbicides. J. Phys. Chem. C 2022, 126, 98369842,  DOI: 10.1021/acs.jpcc.2c02337
  25. 25
    Gieseking, R. L. M. Quantum Mechanical Effects in High-Resolution Tip-Enhanced Raman Imaging. J. Phys. Chem. C 2022, 126, 1169011700,  DOI: 10.1021/acs.jpcc.2c03309
  26. 26
    Zoltowski, C. M.; Shoup, D. N.; Schultz, Z. D. Investigation of SERS Frequency Fluctuations Relevant to Sensing and Catalysis. J. Phys. Chem. C 2022, 126, 1454714557,  DOI: 10.1021/acs.jpcc.2c03150
  27. 27
    Scher, K. M. R.; Wang, Z.; Nair, A.; Wu, Y.; Bartoli, M.; Rovere, M.; Tagliaferro, A.; Rangan, S.; Wang, L.; Fabris, L. Concentration and Surface Chemistry-Dependent Analyte Orientation on Nanoparticle Surfaces. J. Phys. Chem. C 2022, 126, 1649916513,  DOI: 10.1021/acs.jpcc.2c05007
  28. 28
    Zhang, Y.; Prabakar, S.; Le Ru, E. C. Coadsorbed Species with Halide Ligands on Silver Nanoparticles with Different Binding Affinities. J. Phys. Chem. C 2022, 126, 86928702,  DOI: 10.1021/acs.jpcc.2c01092
  29. 29
    Gao, K.; Zhu, H.; Charron, B.; Mochizuki, T.; Dong, C.; Ding, H.; Cui, Y.; Lu, W.; Peng, W.; Zhu, S.; Hong, L.; Masson, J.-F. Combining Dense Au Nanoparticle Layers and 2D Surface-Enhanced Raman Scattering Arrays for the Identification of Mutant Cyanobacteria Using Machine Learning. J. Phys. Chem. C 2022, 126, 94469455,  DOI: 10.1021/acs.jpcc.2c00584
  30. 30
    Xie, Q.; Wang, H.; Xu, X. G. Dual-Frequency Peak Force Photothermal Microscopy for Simultaneously Spatial Mapping Chemical Distributions and Energy Dissipation. J. Phys. Chem. C 2022, 126, 83938399,  DOI: 10.1021/acs.jpcc.2c01431
  31. 31
    Brown, B. S.; Hartland, G. V. Influence of Thermal Diffusion on the Spatial Resolution in Photothermal Microscopy. J. Phys. Chem. C 2022, 126, 35603568,  DOI: 10.1021/acs.jpcc.1c10494
  32. 32
    Ritchie, E. T.; Casper, C. B.; Lee, T. A.; Atkin, J. M. Quantitative Local Conductivity Imaging of Semiconductors Using Near-Field Optical Microscopy. J. Phys. Chem. C 2022, 126, 45154521,  DOI: 10.1021/acs.jpcc.1c10498
  33. 33
    Tesema, T. E.; McFarland-Porter, R.; Zerai, E.; Grey, J.; Habteyes, T. G. Hierarchical Self-Assembly and Chemical Imaging of Nanoscale Domains in Polymer Blend Thin Films. J. Phys. Chem. C 2022, 126, 77647772,  DOI: 10.1021/acs.jpcc.2c01289
  34. 34
    Abedin, S.; Roy, K.; Jin, X.; Xia, H.; Brueck, S. R. J.; Potma, E. O. Surface-Enhanced Coherent Anti-Stokes Raman Scattering of Molecules near Metal–Dielectric Nanojunctions. J. Phys. Chem. C 2022, 126, 87608767,  DOI: 10.1021/acs.jpcc.2c01642

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 1 publications.

  1. Patrick Z. El-Khoury. High spatial resolution ambient tip-enhanced (multipolar) Raman scattering. Chemical Communications 2023, 59 (24) , 3536-3541. https://doi.org/10.1039/D3CC00434A
  • Figure 1

    Figure 1. Two studies that are included in this VSI are 3D SERS imaging of gold–silver nanostructures by Ozaki and co-workers (10) (left) and high resolution TERS spectral imaging of a single molecule by Dong and co-workers (11) (right). Reproduced with permission from refs (10) and (11). Copyright 2022 American Chemical Society.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 34 other publications.

    1. 1
      Le Ru, E. C.; Etchegoin, P. G. Single-Molecule Surface-Enhanced Raman Spectroscopy. Annu. Rev. Phys. Chem. 2012, 63, 6587,  DOI: 10.1146/annurev-physchem-032511-143757
    2. 2
      Zrimsek, A. B.; Wong, N. L.; Van Duyne, R. P. Single Molecule Surface-Enhanced Raman Spectroscopy: A Critical Analysis of the Bianalyte versus Isotopologue Proof. J. Phys. Chem. C 2016, 120, 51335142,  DOI: 10.1021/acs.jpcc.6b00606
    3. 3
      Mahapatra, S.; Schultz, J. F.; Li, L.; Zhang, X.; Jiang, N. Chemical Characterization of a Three-Dimensional Double-Decker Molecule on a Surface via Scanning-Tunneling-Microscopy-Based Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2022, 126, 87348741,  DOI: 10.1021/acs.jpcc.2c01434
    4. 4
      Seydou, M.; Sall, S.; Lafolet, F.; Lemercier, G.; Maurel, F.; Lacroix, J. C.; Sun, X. Nanopatterning by Length-Dependent Self-Assembly from Fluorene-Terpyridine Derivatives. J. Phys. Chem. C 2022, 126, 1083310841,  DOI: 10.1021/acs.jpcc.2c01550
    5. 5
      Aiga, N.; Takeuchi, S. Single-Molecule Raman Spectroscopy of a Pentacene Derivative Adsorbed on Non-Flat Surface of a Metallic Tip. J. Phys. Chem. C 2022, 126, 1622716235,  DOI: 10.1021/acs.jpcc.2c03067
    6. 6
      El-Khoury, P. Z.; Schultz, Z. D. From SERS to TERS and Beyond: Molecules as Probes of Nanoscopic Optical Fields. J. Phys. Chem. C 2020, 124, 2726727275,  DOI: 10.1021/acs.jpcc.0c08337
    7. 7
      Feng, Y.; Kochovski, Z.; Arenz, C.; Lu, Y.; Kneipp, J. Structure and Interaction of Ceramide-Containing Liposomes with Gold Nanoparticles as Characterized by SERS and Cryo-EM. J. Phys. Chem. C 2022, 126, 1323713246,  DOI: 10.1021/acs.jpcc.2c01930
    8. 8
      Rigor, J.; Kurouski, D.; Large, N. Plasmonic Heating Effects in Tip-Enhanced Raman Spectroscopy (TERS). J. Phys. Chem. C 2022, 126, 1398613993,  DOI: 10.1021/acs.jpcc.2c03881
    9. 9
      Lindquist, N. C.; Bido, A. T.; Brolo, A. G. Single-Molecule SERS Hotspot Dynamics in Both Dry and Aqueous Environments. J. Phys. Chem. C 2022, 126, 71177126,  DOI: 10.1021/acs.jpcc.2c00319
    10. 10
      Sukmanee, T.; Vantasin, S.; Gatemala, H.; Ekgasit, S.; Pienpinijtham, P.; Ozaki, Y. 3D SERS Imaging of Nanoporous Gold–Silver Microstructures: Exploring the Formation Mechanism Based on Galvanic Replacement Reaction. J. Phys. Chem. C 2022, 126, 56175627,  DOI: 10.1021/acs.jpcc.1c10295
    11. 11
      Wang, R.-P.; Hu, C.-R.; Han, Y.; Yang, B.; Chen, G.; Zhang, Y.; Zhang, Y.; Dong, Z.-C. Sub-Nanometer Resolved Tip-Enhanced Raman Spectroscopy of a Single Molecule on the Si(111) Substrate. J. Phys. Chem. C 2022, 126, 1212112128,  DOI: 10.1021/acs.jpcc.2c03614
    12. 12
      Ambardar, S.; Hrim, H. N.; Tang, C.; Jia, S.; Chen, W.; Lou, J.; Voronine, D. V. Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence. J. Phys. Chem. C 2022, 126, 1382113829,  DOI: 10.1021/acs.jpcc.2c03728
    13. 13
      Lu, D.; Hou, S.; Liu, S.; Xiong, Q.; Chen, Y.; Duan, H. Amphiphilic Janus Magnetoplasmonic Nanoparticles: pH-Triggered Self-Assembly and Fluorescence Modulation. J. Phys. Chem. C 2022, 126, 14967,  DOI: 10.1021/acs.jpcc.2c03753
    14. 14
      Su, W.; Kumar, N.; Shu, H.; Lancry, O.; Chaigneau, M. In Situ Visualization of Optoelectronic Behavior of Grain Boundaries in Monolayer WSe2 at the Nanoscale. J. Phys. Chem. C 2021, 125, 2688326891,  DOI: 10.1021/acs.jpcc.1c08064
    15. 15
      Farhat, P.; Avilés, O. M.; Legge, S.; Wang, Z.; Sham, T.-K.; Laugné-Labarthet, F. Tip-Enhanced Raman Spectroscopy and Tip-Enhanced Photoluminescence of MoS2 Flakes Decorated with Gold Nanoparticles. J. Phys. Chem. C 2022, 126, 70867095,  DOI: 10.1021/acs.jpcc.1c10186
    16. 16
      Krayev, A.; Chen, P.; Terrones, H.; Duan, X.; Zhang, Z.; Duan, X. Importance of Multiple Excitation Wavelengths for TERS Characterization of TMDCs and Their Vertical Heterostructures. J. Phys. Chem. C 2022, 126, 52185223,  DOI: 10.1021/acs.jpcc.1c10469
    17. 17
      Marmolejo-Tejada, J. M.; Fix, J. P.; Kung, P.; Borys, N. J.; Mosquera, M. A. Theoretical Analysis of the Nanoscale Composition, Tip-Enhanced Raman Spectroscopy, and Electronic Properties of Alloys in 2D MoS2–WS2 Heterostructures. J. Phys. Chem. C 2022, 126, 90999108,  DOI: 10.1021/acs.jpcc.2c01535
    18. 18
      Wang, C.-F.; O’Callahan, B. T.; Arey, B. W.; Kurouski, D.; El-Khoury, P. Z. High-Resolution Raman Nano-Imaging with an Imperfect Probe. J. Phys. Chem. C 2022, 126, 40894094,  DOI: 10.1021/acs.jpcc.1c10459
    19. 19
      Sun, S.; Rathnayake, D. T. N.; Guo, Y. Asymmetrical Spectral Continuum between Anti-Stokes and Stokes Scattering Revealed in Low-Frequency Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2022, 126, 1119311120,  DOI: 10.1021/acs.jpcc.2c02486
    20. 20
      Shao, S.; Zhu, X.; Ten, V.; Kim, M. J.; Xia, X. Understanding the Impact of Wall Thickness on Thermal Stability of Silver–Gold Nanocages. J. Phys. Chem. C 2022, 126, 73377345,  DOI: 10.1021/acs.jpcc.2c01433
    21. 21
      Wang, A.; Zou, S. Effects of Near- and Far-Field Coupling on the Enhancement Factor of the Radiative Decay Rate of Multiple Emitters Near a Silver Nanoparticle Sphere. J. Phys. Chem. C 2022, 126, 97949802,  DOI: 10.1021/acs.jpcc.2c01392
    22. 22
      Filbrun, S. L.; Huang, T.-X.; Zhao, F.; Chen, K.; Dong, B.; Fang, N. Combinatorial Single Particle Spectro-Microscopic Analysis of Plasmon Coupling of Gold Nanorods on Mirror. J. Phys. Chem. C 2021, 125, 2662726634,  DOI: 10.1021/acs.jpcc.1c08262
    23. 23
      Song, C.; Wang, Y.; Lei, Y.; Zhao, J. SERS-Enabled Sensitive Detection of Plant Volatile Biomarker Methyl Salicylate. J. Phys. Chem. C 2022, 126, 772778,  DOI: 10.1021/acs.jpcc.1c09185
    24. 24
      Albarghouthi, N.; Eisnor, M. M.; Pye, C. C.; Brosseau, C. L. Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) and Computational Study of Atrazine: Toward Point-of-Need Detection of Prevalent Herbicides. J. Phys. Chem. C 2022, 126, 98369842,  DOI: 10.1021/acs.jpcc.2c02337
    25. 25
      Gieseking, R. L. M. Quantum Mechanical Effects in High-Resolution Tip-Enhanced Raman Imaging. J. Phys. Chem. C 2022, 126, 1169011700,  DOI: 10.1021/acs.jpcc.2c03309
    26. 26
      Zoltowski, C. M.; Shoup, D. N.; Schultz, Z. D. Investigation of SERS Frequency Fluctuations Relevant to Sensing and Catalysis. J. Phys. Chem. C 2022, 126, 1454714557,  DOI: 10.1021/acs.jpcc.2c03150
    27. 27
      Scher, K. M. R.; Wang, Z.; Nair, A.; Wu, Y.; Bartoli, M.; Rovere, M.; Tagliaferro, A.; Rangan, S.; Wang, L.; Fabris, L. Concentration and Surface Chemistry-Dependent Analyte Orientation on Nanoparticle Surfaces. J. Phys. Chem. C 2022, 126, 1649916513,  DOI: 10.1021/acs.jpcc.2c05007
    28. 28
      Zhang, Y.; Prabakar, S.; Le Ru, E. C. Coadsorbed Species with Halide Ligands on Silver Nanoparticles with Different Binding Affinities. J. Phys. Chem. C 2022, 126, 86928702,  DOI: 10.1021/acs.jpcc.2c01092
    29. 29
      Gao, K.; Zhu, H.; Charron, B.; Mochizuki, T.; Dong, C.; Ding, H.; Cui, Y.; Lu, W.; Peng, W.; Zhu, S.; Hong, L.; Masson, J.-F. Combining Dense Au Nanoparticle Layers and 2D Surface-Enhanced Raman Scattering Arrays for the Identification of Mutant Cyanobacteria Using Machine Learning. J. Phys. Chem. C 2022, 126, 94469455,  DOI: 10.1021/acs.jpcc.2c00584
    30. 30
      Xie, Q.; Wang, H.; Xu, X. G. Dual-Frequency Peak Force Photothermal Microscopy for Simultaneously Spatial Mapping Chemical Distributions and Energy Dissipation. J. Phys. Chem. C 2022, 126, 83938399,  DOI: 10.1021/acs.jpcc.2c01431
    31. 31
      Brown, B. S.; Hartland, G. V. Influence of Thermal Diffusion on the Spatial Resolution in Photothermal Microscopy. J. Phys. Chem. C 2022, 126, 35603568,  DOI: 10.1021/acs.jpcc.1c10494
    32. 32
      Ritchie, E. T.; Casper, C. B.; Lee, T. A.; Atkin, J. M. Quantitative Local Conductivity Imaging of Semiconductors Using Near-Field Optical Microscopy. J. Phys. Chem. C 2022, 126, 45154521,  DOI: 10.1021/acs.jpcc.1c10498
    33. 33
      Tesema, T. E.; McFarland-Porter, R.; Zerai, E.; Grey, J.; Habteyes, T. G. Hierarchical Self-Assembly and Chemical Imaging of Nanoscale Domains in Polymer Blend Thin Films. J. Phys. Chem. C 2022, 126, 77647772,  DOI: 10.1021/acs.jpcc.2c01289
    34. 34
      Abedin, S.; Roy, K.; Jin, X.; Xia, H.; Brueck, S. R. J.; Potma, E. O. Surface-Enhanced Coherent Anti-Stokes Raman Scattering of Molecules near Metal–Dielectric Nanojunctions. J. Phys. Chem. C 2022, 126, 87608767,  DOI: 10.1021/acs.jpcc.2c01642