ACS Publications. Most Trusted. Most Cited. Most Read
Optimization of Band Alignment by Organic Molecules for Perovskite Solar Cells
My Activity

Figure 1Loading Img
    C: Energy Conversion and Storage

    Optimization of Band Alignment by Organic Molecules for Perovskite Solar Cells
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2025, 129, 18, 8500–8508
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.4c08776
    Published April 28, 2025
    Copyright © 2025 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A methodology for optimization of band alignment in perovskite solar cells using organic molecule adsorption is investigated by using first-principles calculations. We focused on the modification of the work function after the adsorption of hole-collecting monolayer (HCM) materials bearing alkyl phosphonic acid anchoring groups on indium tin oxide (ITO), a transparent electrode substrate. The optimized structures of adsorbed HCM molecules and the ITO surface were obtained, and then the modification of the work function due to the influence of the electric double layer was determined. The calculated results show that the face-on oriented tripodal triazatruxene derivative (3PATAT-C3) has a better energy level tunability and higher stability than the edge-on oriented monopodal carbazole-based 2PACz, which is well-known as one of the representative HCM materials, and explain the advantage of 3PATAT-C3 for perovskite solar cells with a higher power conversion efficiency.

    Copyright © 2025 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.4c08776.

    • Investigation of Sn substitution sites in ITO, evaluation of adsorption energy (binding energy) for all nonequivalent adsorption sites to assess the stability of phosphonic acid group adsorption on ITO, and work function analysis of each HCM-ITO system after correcting the ITO work function (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2025, 129, 18, 8500–8508
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.4c08776
    Published April 28, 2025
    Copyright © 2025 American Chemical Society

    Article Views

    383

    Altmetric

    -

    Citations

    -
    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.