Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Towards First Principles-Based Prediction of Highly Accurate Electrochemical Pourbaix Diagrams

View Author Information
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
Cite this: J. Phys. Chem. C 2015, 119, 32, 18177–18187
Publication Date (Web):July 10, 2015
https://doi.org/10.1021/acs.jpcc.5b03169
Copyright © 2015 American Chemical Society

    Article Views

    4024

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Electrochemical potential/pH (Pourbaix) diagrams underpin many aqueous electrochemical processes and are central to the identification of stable phases of metals for processes ranging from electrocatalysis to corrosion. Even though standard DFT calculations are potentially powerful tools for the prediction of such diagrams, inherent errors in the description of transition metal (hydroxy)oxides, together with neglect of van der Waals interactions, have limited the reliability of such predictions for even the simplest pure metal bulk compounds, and corresponding predictions for more complex alloy or surface structures are even more challenging. In the present work, through synergistic use of a Hubbard U correction, a state-of-the-art dispersion correction, and a water-based bulk reference state for the calculations, these errors are systematically corrected. The approach describes the weak binding that occurs between hydroxyl-containing functional groups in certain compounds in Pourbaix diagrams, corrects for self-interaction errors in transition metal compounds, and reduces residual errors on oxygen atoms by preserving a consistent oxidation state between the reference state, water, and the relevant bulk phases. The strong performance is illustrated on a series of bulk transition metal (Mn, Fe, Co, and Ni) hydroxides, oxyhydroxides, binary, and ternary oxides, where the corresponding thermodynamics of redox and (de)hydration are described with standard errors of 0.04 eV per reaction formula unit. The approach further preserves accurate descriptions of the overall thermodynamics of electrochemically relevant bulk reactions, such as water formation, which is an essential condition for facilitating accurate analysis of reaction energies for electrochemical processes on surfaces. The overall generality and transferability of the scheme suggests that it may find useful application in the construction of a broad array of electrochemical phase diagrams, including both bulk Pourbaix diagrams and surface phase diagrams of interest for corrosion and electrocatalysis.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b03169.

    • Thermodynamics and chemical potential evaluation; electrochemical redox, corrosion, and Pourbaix diagrams (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 100 publications.

    1. Tian-Yu Sun, Jin-Tao Ye, Guoren Zhang, Haibo Li, Ruizhi Qiu, Liang-Feng Huang. Environmental Stability of Actinide Oxides Mapped by Integrated and Accurate First-Principles Calculations. The Journal of Physical Chemistry C 2024, 128 (20) , 8505-8521. https://doi.org/10.1021/acs.jpcc.4c01793
    2. Xueli Liu, Lanlan Yao, Sijia Zhang, Chuanqi Huang, Wenshao Yang. Theoretical Study of Electrocatalytic CO2 Reduction Mechanism on Typical MXenes under Realistic Conditions. Inorganic Chemistry 2024, 63 (14) , 6305-6314. https://doi.org/10.1021/acs.inorgchem.4c00072
    3. Samuel D. Young, Jiadong Chen, Wenhao Sun, Bryan R. Goldsmith, Ghanshyam Pilania. Thermodynamic Stability and Anion Ordering of Perovskite Oxynitrides. Chemistry of Materials 2023, 35 (15) , 5975-5987. https://doi.org/10.1021/acs.chemmater.3c00943
    4. Navid Jameei Moghaddam, Nader Akbari, Subhajit Nandy, Keun Hwa Chae, Mohammad Mahdi Najafpour. Effect of Different Metal Ions between Nanolayers of Manganese Oxide for Water Oxidation Reaction under Acidic Conditions. The Journal of Physical Chemistry C 2023, 127 (20) , 9529-9540. https://doi.org/10.1021/acs.jpcc.3c01760
    5. Xuda Luo, Xiaoyuan Sun, Zhiyu Yi, Le Lin, Yanxiao Ning, Qiang Fu, Xinhe Bao. Periodic Arrays of Metal Nanoclusters on Ultrathin Fe-Oxide Films Modulated by Metal-Oxide Interactions. JACS Au 2023, 3 (1) , 176-184. https://doi.org/10.1021/jacsau.2c00580
    6. Evan Z. Carlson, William C. Chueh, J. Tyler Mefford, Michal Bajdich. Selectivity of Electrochemical Ion Insertion into Manganese Dioxide Polymorphs. ACS Applied Materials & Interfaces 2023, 15 (1) , 1513-1524. https://doi.org/10.1021/acsami.2c16589
    7. Zongzi Jin, Nai Shi, Ranran Peng, Zhenbin Wang, Chengwei Wang, Yalin Lu, Wei Liu. Insights into Hydration Enthalpies of Mixed Proton–Electron Conductors. The Journal of Physical Chemistry C 2022, 126 (31) , 13025-13031. https://doi.org/10.1021/acs.jpcc.2c03434
    8. Oleg Rubel, Thuy Nguyen Thanh Tran, Storm Gourley, Sriram Anand, Andrew Van Bommel, Brian D. Adams, Douglas G. Ivey, Drew Higgins. Electrochemical Stability of ZnMn2O4: Understanding Zn-Ion Rechargeable Battery Capacity and Degradation. The Journal of Physical Chemistry C 2022, 126 (27) , 10957-10967. https://doi.org/10.1021/acs.jpcc.2c01900
    9. Stefan Ringe, Nicolas G. Hörmann, Harald Oberhofer, Karsten Reuter. Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chemical Reviews 2022, 122 (12) , 10777-10820. https://doi.org/10.1021/acs.chemrev.1c00675
    10. Ze-Cheng Yao, Tang Tang, Zhe Jiang, Lu Wang, Jin-Song Hu, Li-Jun Wan. Electrocatalytic Hydrogen Oxidation in Alkaline Media: From Mechanistic Insights to Catalyst Design. ACS Nano 2022, 16 (4) , 5153-5183. https://doi.org/10.1021/acsnano.2c00641
    11. Yao Yang, Cheyenne R. Peltier, Rui Zeng, Roberto Schimmenti, Qihao Li, Xin Huang, Zhifei Yan, Georgia Potsi, Ryan Selhorst, Xinyao Lu, Weixuan Xu, Mariel Tader, Alexander V. Soudackov, Hanguang Zhang, Mihail Krumov, Ellen Murray, Pengtao Xu, Jeremy Hitt, Linxi Xu, Hsin-Yu Ko, Brian G. Ernst, Colin Bundschu, Aileen Luo, Danielle Markovich, Meixue Hu, Cheng He, Hongsen Wang, Jiye Fang, Robert A. DiStasio, Jr., Lena F. Kourkoutis, Andrej Singer, Kevin J. T. Noonan, Li Xiao, Lin Zhuang, Bryan S. Pivovar, Piotr Zelenay, Enrique Herrero, Juan M. Feliu, Jin Suntivich, Emmanuel P. Giannelis, Sharon Hammes-Schiffer, Tomás Arias, Manos Mavrikakis, Thomas E. Mallouk, Joel D. Brock, David A. Muller, Francis J. DiSalvo, Geoffrey W. Coates, Héctor D. Abruña. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews 2022, 122 (6) , 6117-6321. https://doi.org/10.1021/acs.chemrev.1c00331
    12. Fernanda Juarez, Hui Yin, Axel Groß. Composition and Electronic Structure of Mn3O4 and Co3O4 Cathodes in Zinc–Air Batteries: A DFT Study. The Journal of Physical Chemistry C 2022, 126 (5) , 2561-2572. https://doi.org/10.1021/acs.jpcc.1c09963
    13. Hui Ding, Hongfei Liu, Wangsheng Chu, Changzheng Wu, Yi Xie. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews 2021, 121 (21) , 13174-13212. https://doi.org/10.1021/acs.chemrev.1c00234
    14. Hao-Bo Li, Shunsuke Kobayashi, Chengchao Zhong, Morito Namba, Yu Cao, Daichi Kato, Yoshinori Kotani, Qianmei Lin, Maokun Wu, Wei-Hua Wang, Masaki Kobayashi, Koji Fujita, Cédric Tassel, Takahito Terashima, Akihide Kuwabara, Yoji Kobayashi, Hiroshi Takatsu, Hiroshi Kageyama. Dehydration of Electrochemically Protonated Oxide: SrCoO2 with Square Spin Tubes. Journal of the American Chemical Society 2021, 143 (42) , 17517-17525. https://doi.org/10.1021/jacs.1c07043
    15. Lauren N. Walters, Chi Zhang, Vinayak P. Dravid, Kenneth R. Poeppelmeier, James M. Rondinelli. First-Principles Hydrothermal Synthesis Design to Optimize Conditions and Increase the Yield of Quaternary Heteroanionic Oxychalcogenides. Chemistry of Materials 2021, 33 (8) , 2726-2741. https://doi.org/10.1021/acs.chemmater.0c02682
    16. Yifan Li, Le Lin, Lijun Gao, Rentao Mu, Qiang Fu, Xinhe Bao. Predominance of Subsurface and Bulk Oxygen Vacancies in Reduced Manganese Oxide. The Journal of Physical Chemistry C 2021, 125 (14) , 7990-7998. https://doi.org/10.1021/acs.jpcc.1c01203
    17. Siqin Zhao, Le Lin, Wugen Huang, Rankun Zhang, Dongqing Wang, Rentao Mu, Qiang Fu, Xinhe Bao. Design of Lewis Pairs via Interface Engineering of Oxide–Metal Composite Catalyst for Water Activation. The Journal of Physical Chemistry Letters 2021, 12 (5) , 1443-1452. https://doi.org/10.1021/acs.jpclett.0c03760
    18. Tianyi Kou, Shanwen Wang, Yat Li. Perspective on High-Rate Alkaline Water Splitting. ACS Materials Letters 2021, 3 (2) , 224-234. https://doi.org/10.1021/acsmaterialslett.0c00536
    19. Edward F. Holby, Guofeng Wang, Piotr Zelenay. Acid Stability and Demetalation of PGM-Free ORR Electrocatalyst Structures from Density Functional Theory: A Model for “Single-Atom Catalyst” Dissolution. ACS Catalysis 2020, 10 (24) , 14527-14539. https://doi.org/10.1021/acscatal.0c02856
    20. Robert E. Warburton, Fernando C. Castro, Siddharth Deshpande, Kenneth E. Madsen, Kimberly L. Bassett, Roberto dos Reis, Andrew A. Gewirth, Vinayak P. Dravid, Jeffrey Greeley. Oriented LiMn2O4 Particle Fracture from Delithiation-Driven Surface Stress. ACS Applied Materials & Interfaces 2020, 12 (43) , 49182-49191. https://doi.org/10.1021/acsami.0c13305
    21. Matthias Steimecke, Gerda Seiffarth, Christian Schneemann, Florian Oehler, Stefan Förster, Michael Bron. Higher-Valent Nickel Oxides with Improved Oxygen Evolution Activity and Stability in Alkaline Media Prepared by High-Temperature Treatment of Ni(OH)2. ACS Catalysis 2020, 10 (6) , 3595-3603. https://doi.org/10.1021/acscatal.9b04788
    22. Robert E. Warburton, Matthias J. Young, Steven Letourneau, Jeffrey W. Elam, Jeffrey Greeley. Descriptor-Based Analysis of Atomic Layer Deposition Mechanisms on Spinel LiMn2O4 Lithium-Ion Battery Cathodes. Chemistry of Materials 2020, 32 (5) , 1794-1806. https://doi.org/10.1021/acs.chemmater.9b03809
    23. Liang-Feng Huang, Hung M. Ha, Katie Lutton Cwalina, John R. Scully, James M. Rondinelli. Understanding Electrochemical Stabilities of Ni-Based Nanofilms from a Comparative Theory–Experiment Approach. The Journal of Physical Chemistry C 2019, 123 (47) , 28925-28940. https://doi.org/10.1021/acs.jpcc.9b05773
    24. Samji Samira, Xiang-Kui Gu, Eranda Nikolla. Design Strategies for Efficient Nonstoichiometric Mixed Metal Oxide Electrocatalysts: Correlating Measurable Oxide Properties to Electrocatalytic Performance. ACS Catalysis 2019, 9 (11) , 10575-10586. https://doi.org/10.1021/acscatal.9b02505
    25. Samji Samira, Siddharth Deshpande, Charles A. Roberts, Ayad M. Nacy, Joseph Kubal, Kristian Matesić, Owen Oesterling, Jeffrey Greeley, Eranda Nikolla. Nonprecious Metal Catalysts for Tuning Discharge Product Distribution at Solid–Solid Interfaces of Aprotic Li–O2 Batteries. Chemistry of Materials 2019, 31 (18) , 7300-7310. https://doi.org/10.1021/acs.chemmater.9b01817
    26. Qian Li, Qiang Yin, Ya-Shan Zheng, Zhi-Jun Sui, Xing-Gui Zhou, De Chen, Yi-An Zhu. Insights into Hydrogen Transport Behavior on Perovskite Surfaces: Transition from the Grotthuss Mechanism to the Vehicle Mechanism. Langmuir 2019, 35 (30) , 9962-9969. https://doi.org/10.1021/acs.langmuir.8b04138
    27. Guennadi Evmenenko, Robert E. Warburton, Handan Yildirim, Jeffrey P. Greeley, Maria K. Y. Chan, D. Bruce Buchholz, Paul Fenter, Michael J. Bedzyk, Timothy T. Fister. Understanding the Role of Overpotentials in Lithium Ion Conversion Reactions: Visualizing the Interface. ACS Nano 2019, 13 (7) , 7825-7832. https://doi.org/10.1021/acsnano.9b02007
    28. L.-F. Huang, M. J. Hutchison, R. J. Santucci, Jr., J. R. Scully, and J. M. Rondinelli . Improved Electrochemical Phase Diagrams from Theory and Experiment: The Ni–Water System and Its Complex Compounds. The Journal of Physical Chemistry C 2017, 121 (18) , 9782-9789. https://doi.org/10.1021/acs.jpcc.7b02771
    29. Daniil A. Kitchaev, Stephen T. Dacek, Wenhao Sun, and Gerbrand Ceder . Thermodynamics of Phase Selection in MnO2 Framework Structures through Alkali Intercalation and Hydration. Journal of the American Chemical Society 2017, 139 (7) , 2672-2681. https://doi.org/10.1021/jacs.6b11301
    30. Marçal Capdevila-Cortada, Zbigniew Łodziana, and Núria López . Performance of DFT+U Approaches in the Study of Catalytic Materials. ACS Catalysis 2016, 6 (12) , 8370-8379. https://doi.org/10.1021/acscatal.6b01907
    31. Tej Choksi and Jeffrey Greeley . Partial Oxidation of Methanol on MoO3 (010): A DFT and Microkinetic Study. ACS Catalysis 2016, 6 (11) , 7260-7277. https://doi.org/10.1021/acscatal.6b01633
    32. Rongyue Wang, Ugo Bertocci, Haiyan Tan, Leonid A. Bendersky, and Thomas P. Moffat . Self-Terminated Electrodeposition of Ni, Co, and Fe Ultrathin Films. The Journal of Physical Chemistry C 2016, 120 (29) , 16228-16237. https://doi.org/10.1021/acs.jpcc.6b01901
    33. M.J. Muñoz-Portero, T. Nachiondo, J. García-Antón. Pourbaix diagrams for iron-chromium alloys in lithium bromide absorption machines. Electrochimica Acta 2024, 1885 , 144545. https://doi.org/10.1016/j.electacta.2024.144545
    34. Yige Guo, Shuo Wang, Rongtan Li, Jingcheng Yu, Xiaomin Zhang, Mingrun Li, Xusheng Zheng, Junfa Zhu, Yuefeng Song, Guoxiong Wang, Xinhe Bao. In situ exsolved CoFe alloy nanoparticles for stable anodic methane reforming in solid oxide electrolysis cells. Joule 2024, 575 https://doi.org/10.1016/j.joule.2024.04.009
    35. Richard Kang, Yang Zhao, Diptarka Hait, Joseph A. Gauthier, Paul A. Kempler, Kira A. Thurman, Shannon W. Boettcher, Martin Head-Gordon. Understanding ion-transfer reactions in silver electrodissolution and electrodeposition from first-principles calculations and experiments. Chemical Science 2024, 15 (13) , 4996-5008. https://doi.org/10.1039/D3SC05791G
    36. Walter Orellana, Roberto H. Miwa. Fe and Co adatoms on bilayer borophene as single-atom catalysts for the oxygen-reduction reaction: A theoretical study. Physical Review Applied 2024, 21 (3) https://doi.org/10.1103/PhysRevApplied.21.034008
    37. Zhuqing Wan, Xiaolong Guo, Junying Jiang, Yuci Xin, Benzhen Tang, Hong Zhang, Yong Wu, Lei Xia, Peng Yu. Modulating nickel-iron active species via dealloying to boost the oxygen evolution reaction. Dalton Transactions 2024, 53 (5) , 2065-2072. https://doi.org/10.1039/D3DT03008C
    38. Kaustubh J. Sawant, Zhenhua Zeng, Jeffrey P. Greeley. Origin of Stability and Activity Enhancements in Pt‐based Oxygen Reduction Reaction Catalysts via Defect‐Mediated Dopant Adsorption. Angewandte Chemie International Edition 2024, 63 (5) https://doi.org/10.1002/anie.202312747
    39. Kaustubh J. Sawant, Zhenhua Zeng, Jeffrey P. Greeley. Origin of Stability and Activity Enhancements in Pt‐based Oxygen Reduction Reaction Catalysts via Defect‐Mediated Dopant Adsorption. Angewandte Chemie 2024, 136 (5) https://doi.org/10.1002/ange.202312747
    40. Ana S. Dobrota, Igor A. Pašti. Surface electrochemical processes, thermodynamics, and electrocatalysis—from extended surfaces to single atom catalysts. 2024, 307-315. https://doi.org/10.1016/B978-0-323-85669-0.00042-8
    41. Xun Cui, Likun Gao, Xiaoxue Xu, Rui Ma, Chenglong Tang, Yingkui Yang, Zhiqun Lin. Surface self-reconstruction of catalysts in electrocatalytic oxygen evolution reaction. 2024, 316-327. https://doi.org/10.1016/B978-0-323-85669-0.00119-7
    42. María-José Muñoz-Portero, Teresa Nachiondo, José García-Antón. Pourbaix Diagrams for Iron-Chromium Alloys in Lithium Bromide Absorption Machines. 2024https://doi.org/10.2139/ssrn.4822445
    43. Jin-Tao Ren, Lei Chen, Hao-Yu Wang, Yi Feng, Zhong-Yong Yuan. Hydrogen oxidation electrocatalysts for anion-exchange membrane fuel cells: activity descriptors, stability regulation, and perspectives. Energy & Environmental Science 2024, 1 https://doi.org/10.1039/D3EE04251K
    44. Yijing Liu, Rankun Zhang, Le Lin, Yichao Wang, Changping Liu, Rentao Mu, Qiang Fu. Direct observation of accelerating hydrogen spillover via surface-lattice-confinement effect. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36044-8
    45. Qianbao Wu, Junwu Liang, Mengjun Xiao, Chang Long, Lei Li, Zhenhua Zeng, Andraž Mavrič, Xia Zheng, Jing Zhu, Hai-Wei Liang, Hongfei Liu, Matjaz Valant, Wei Wang, Zhengxing Lv, Jiong Li, Chunhua Cui. Non-covalent ligand-oxide interaction promotes oxygen evolution. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36718-3
    46. Zeyu Wang, William A. Goddard, Hai Xiao. Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40011-8
    47. Earl Matthew Davis, Arno Bergmann, Chao Zhan, Helmut Kuhlenbeck, Beatriz Roldan Cuenya. Comparative study of Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film electrocatalysts for the oxygen evolution reaction. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40461-0
    48. Sen Shao, Jian Lv, Hanyu Liu, Wencheng Lu, Peng Liu, Andreas Hermann, Yanchao Wang, Changfeng Chen, Yanming Ma. FeSiO 4 H 2 stabilized at subducting slab conditions: A geologically viable water carrier into the Earth's lower mantle. Physical Review B 2023, 108 (21) https://doi.org/10.1103/PhysRevB.108.214107
    49. Xiaole Jiang, Le Lin, Youwen Rong, Rongtan Li, Qike Jiang, Yaoyue Yang, Dunfeng Gao. Boosting CO2 electroreduction to formate via bismuth oxide clusters. Nano Research 2023, 16 (10) , 12050-12057. https://doi.org/10.1007/s12274-022-5073-0
    50. Changping Liu, Le Lin, Hao Wu, Yijing Liu, Rentao Mu, Qiang Fu. Activating lattice oxygen of single-layer ZnO for the catalytic oxidation reaction. Physical Chemistry Chemical Physics 2023, 25 (29) , 20121-20127. https://doi.org/10.1039/D3CP02580B
    51. Molly E. Vitale-Sullivan, Alvin Chang, Kuan-Hsun Chou, Zhenxing Feng, Kelsey A. Stoerzinger. Surface transformations of electrocatalysts during the oxygen evolution reaction. Chemical Physics Reviews 2023, 4 (2) , 021309. https://doi.org/10.1063/5.0139558
    52. Yuefeng Zhang, Zixun Yu, Fangxin She, Li Wei, Zhiyuan Zeng, Hao Li. Design of molecular M N C dual-atom catalysts for nitrogen reduction starting from surface state analysis. Journal of Colloid and Interface Science 2023, 640 , 983-989. https://doi.org/10.1016/j.jcis.2023.03.033
    53. Houfu Lv, Shuo Wang, Yuxiang Shen, Xiaomin Zhang, Yuefeng Song, Rongtan Li, Na Ta, Tianfu Liu, Guoxiong Wang, Xinhe Bao. Iron-triggered exsolution of FeNi alloy nanoparticles via topotactic cation exchange on Pr0.7Sr0.3Cr0.9Ni0.1O3−δ perovskite for CO2 electrolysis. Next Energy 2023, 1 (2) , 100024. https://doi.org/10.1016/j.nxener.2023.100024
    54. Yan Li, Xiang-Chao Ma, Xi Huang, . Electrochemical Pourbaix diagrams of monolayer MoSSe with different atomic ratios of chalcogens. Acta Physica Sinica 2023, 72 (4) , 046401. https://doi.org/10.7498/aps.72.20221567
    55. Ruirui Song, Jiuhui Han, Masayuki Okugawa, Rodion Belosludov, Takeshi Wada, Jing Jiang, Daixiu Wei, Akira Kudo, Yuan Tian, Mingwei Chen, Hidemi Kato. Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32768-1
    56. Milica S. Ritopečki, Ana S. Dobrota, Natalia V. Skorodumova, Igor A. Pašti. The Local Coordination Effects on the Reactivity and Speciation of Active Sites in Graphene-Embedded Single-Atom Catalysts over Wide pH and Potential Range. Nanomaterials 2022, 12 (23) , 4309. https://doi.org/10.3390/nano12234309
    57. Xiaoxu Li, Anxu Sheng, Yuefei Ding, Juan Liu. A model towards understanding stabilities and crystallization pathways of iron (oxyhydr)oxides in redox-dynamic environments. Geochimica et Cosmochimica Acta 2022, 336 , 92-103. https://doi.org/10.1016/j.gca.2022.09.002
    58. Arslan Hameed, Faiza Zulfiqar, Waheed Iqbal, Hassan Ali, Syed Shoaib Ahmad Shah, Muhammad Arif Nadeem. Electrocatalytic water oxidation on CuO–Cu 2 O modulated cobalt-manganese layered double hydroxide. RSC Advances 2022, 12 (45) , 28954-28960. https://doi.org/10.1039/D2RA05036F
    59. Yue Zhang, Chengxu Zhang, Yunjie Mei, Thiquynhxuan Le, Haodong Shao, Hao Jiang, Yuebin Feng, Jue Hu. NiFe layered double hydroxide as an efficient bifunctional catalyst for electrosynthesis of hydrogen peroxide and oxygen. International Journal of Hydrogen Energy 2022, 47 (87) , 36831-36842. https://doi.org/10.1016/j.ijhydene.2022.08.250
    60. Susan Meñez Aspera, Elvis Flaviano Arguelles, Ryan Lacdao Arevalo, Bhume Chantaramolee, Hiroshi Nakanishi, Hideaki Kasai. Surface facet dependence of Ru and Ru-based alloy oxidation resistance using ab initio thermodynamics calculation. Surface Science 2022, 724 , 122129. https://doi.org/10.1016/j.susc.2022.122129
    61. Houfu Lv, Le Lin, Xiaomin Zhang, Yuefeng Song, Rongtan Li, Jingwei Li, Hiroaki Matsumoto, Na Ta, Chaobin Zeng, Huimin Gong, Qiang Fu, Guoxiong Wang, Xinhe Bao. Redox-manipulated RhO nanoclusters uniformly anchored on Sr2Fe1.45Rh0.05Mo0.5O6–δ perovskite for CO2 electrolysis. Fundamental Research 2022, 370 https://doi.org/10.1016/j.fmre.2022.07.010
    62. Fei Gu, Qing Zhang, Xiao Hui Chen, Ting Li, Hong Chuan Fu, Hong Qun Luo, Nian Bing Li. Electronic regulation and core-shell hybrids engineering of palm-leaf-like NiFe/Co(PO3)2 bifunctional electrocatalyst for efficient overall water splitting. International Journal of Hydrogen Energy 2022, 47 (66) , 28475-28485. https://doi.org/10.1016/j.ijhydene.2022.06.148
    63. Yizhe Liu, Xintong Li, Qidi Sun, Zilong Wang, Wei‐Hsiang Huang, Xuyun Guo, Zhanxi Fan, Ruquan Ye, Ye Zhu, Chu‐Chen Chueh, Chi‐Liang Chen, Zonglong Zhu. Freestanding 2D NiFe Metal–Organic Framework Nanosheets: Facilitating Proton Transfer via Organic Ligands for Efficient Oxygen Evolution Reaction. Small 2022, 18 (26) https://doi.org/10.1002/smll.202201076
    64. Ana S. Dobrota, Natalia V. Skorodumova, Slavko V. Mentus, Igor A. Pašti. Surface pourbaix plots of M@N4-graphene single-atom electrocatalysts from density functional theory thermodynamic modeling. Electrochimica Acta 2022, 412 , 140155. https://doi.org/10.1016/j.electacta.2022.140155
    65. Houfu Lv, Le Lin, Xiaomin Zhang, Rongtan Li, Yuefeng Song, Hiroaki Matsumoto, Na Ta, Chaobin Zeng, Qiang Fu, Guoxiong Wang, Xinhe Bao. Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6−δ via repeated redox manipulations for CO2 electrolysis. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26001-8
    66. Le Lin, Zhenhua Zeng, Qiang Fu, Xinhe Bao. Achieving flexible large-scale reactivity tuning by controlling the phase, thickness and support of two-dimensional ZnO. Chemical Science 2021, 12 (46) , 15284-15290. https://doi.org/10.1039/D1SC04428A
    67. Ana S. Dobrota, Tanja Đokić, Natalia V. Skorodumova, Slavko V. Mentus, Igor A. Pašti. What Is the Real State of Single-Atom Catalysts under Electrochemical Conditions—From Adsorption to Surface Pourbaix Plots?. Catalysts 2021, 11 (10) , 1207. https://doi.org/10.3390/catal11101207
    68. Likun Gao, Xun Cui, Christopher D. Sewell, Jian Li, Zhiqun Lin. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews 2021, 50 (15) , 8428-8469. https://doi.org/10.1039/D0CS00962H
    69. Bor-Rong Chen, Wenhao Sun, Daniil A. Kitchaev, Kevin H. Stone, Ryan C. Davis, Gerbrand Ceder, Laura T. Schelhas, Michael F. Toney. Kinetic origins of the metastable zone width in the manganese oxide Pourbaix diagram. Journal of Materials Chemistry A 2021, 9 (12) , 7857-7867. https://doi.org/10.1039/D0TA12533D
    70. Wenjia Xue, Feng Cheng, Menglu Li, Wenjian Hu, Congping Wu, Bing Wang, Kuowei Liao, ZhenTao Yu, Yingfang Yao, Wenjun Luo, Zhigang Zou. Surpassing electrocatalytic limit of earth-abundant Fe4+ embedded in N-doped graphene for (photo)electrocatalytic water oxidation. Journal of Energy Chemistry 2021, 54 , 274-281. https://doi.org/10.1016/j.jechem.2020.05.053
    71. Fabio Dionigi, Zhenhua Zeng, Ilya Sinev, Thomas Merzdorf, Siddharth Deshpande, Miguel Bernal Lopez, Sebastian Kunze, Ioannis Zegkinoglou, Hannes Sarodnik, Dingxin Fan, Arno Bergmann, Jakub Drnec, Jorge Ferreira de Araujo, Manuel Gliech, Detre Teschner, Jing Zhu, Wei-Xue Li, Jeffrey Greeley, Beatriz Roldan Cuenya, Peter Strasser. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16237-1
    72. Zhenbin Wang, Xingyu Guo, Joseph Montoya, Jens K. Nørskov. Predicting aqueous stability of solid with computed Pourbaix diagram using SCAN functional. npj Computational Materials 2020, 6 (1) https://doi.org/10.1038/s41524-020-00430-3
    73. Le Lin, Zhenhua Zeng, Qiang Fu, Xinhe Bao. Strain and support effects on phase transition and surface reactivity of ultrathin ZnO films: DFT insights. AIP Advances 2020, 10 (12) https://doi.org/10.1063/5.0030624
    74. Garrett M. Mitchell, Kaiwalya D. Sabnis, Fred G. Sollberger, Yanran Cui, Chang Wan Han, Paulami Majumdar, Zhenhua Zeng, Jeffrey T. Miller, Jeffrey Greeley, Volkan Ortalan, Chao Wang, W. Nicholas Delgass, Fabio H. Ribeiro. Effect of cobalt addition on platinum supported on multi-walled carbon nanotubes for water-gas shift. Journal of Catalysis 2020, 391 , 25-34. https://doi.org/10.1016/j.jcat.2020.07.028
    75. Hossein Nourmohamadi, Valeh Aghazadeh, Mehdi D. Esrafili. A comparative DFT study of Fe 3+ and Fe 2+ ions adsorption on (100) and (110) surfaces of pyrite: An electrochemical point of view. Surface and Interface Analysis 2020, 52 (3) , 110-118. https://doi.org/10.1002/sia.6728
    76. Wenhao Sun, Daniil A. Kitchaev, Denis Kramer, Gerbrand Ceder. Non-equilibrium crystallization pathways of manganese oxides in aqueous solution. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-08494-6
    77. Liang-Feng Huang, James M. Rondinelli. Reliable electrochemical phase diagrams of magnetic transition metals and related compounds from high-throughput ab initio calculations. npj Materials Degradation 2019, 3 (1) https://doi.org/10.1038/s41529-019-0088-z
    78. Liang-Feng Huang, John R. Scully, James M. Rondinelli. Modeling Corrosion with First-Principles Electrochemical Phase Diagrams. Annual Review of Materials Research 2019, 49 (1) , 53-77. https://doi.org/10.1146/annurev-matsci-070218-010105
    79. Maxim Shishkin, Hirofumi Sato. Theoretical Analysis of Materials, used in Energy Storage Applications: the Quest for Robust and Accurate Computational Methodologies. The Chemical Record 2019, 19 (4) , 779-791. https://doi.org/10.1002/tcr.201800115
    80. Lei Wang, Zhenhua Zeng, Cheng Ma, Fei Xu, Michael Giroux, Miaofang Chi, Jeffrey Greeley, Chao Wang. Migration of Cobalt Species within Mixed Platinum-Cobalt Oxide Bifunctional Electrocatalysts in Alkaline Electrolytes. Journal of The Electrochemical Society 2019, 166 (7) , F3093-F3097. https://doi.org/10.1149/2.0061907jes
    81. Lina Chong, Jianguo Wen, Joseph Kubal, Fatih G. Sen, Jianxin Zou, Jeffery Greeley, Maria Chan, Heather Barkholtz, Wenjiang Ding, Di-Jia Liu. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362 (6420) , 1276-1281. https://doi.org/10.1126/science.aau0630
    82. Wulv Jiang, Fei Tang, Lin Gan. Electrochemical stability of Au-TEM grid with carbon supporting film in acid and alkaline electrolytes for identical-location TEM study. Journal of Electroanalytical Chemistry 2018, 826 , 46-51. https://doi.org/10.1016/j.jelechem.2018.08.026
    83. Junghyun Noh, Hong Li, Osman I. Osman, Saadullah G. Aziz, Paul Winget, Jean‐Luc Brédas. Impact of Hydroxylation and Hydration on the Reactivity of α‐Fe 2 O 3 (0001) and (102) Surfaces under Environmental and Electrochemical Conditions. Advanced Energy Materials 2018, 8 (21) https://doi.org/10.1002/aenm.201800545
    84. Mohammad Javad Eslamibidgoli, Michael H. Eikerling. Approaching the self-consistency challenge of electrocatalysis with theory and computation. Current Opinion in Electrochemistry 2018, 9 , 189-197. https://doi.org/10.1016/j.coelec.2018.03.038
    85. Rui Ding, Jia-Xiang Shang, Fu-He Wang, Yue Chen. Electrochemical Pourbaix diagrams of Ni Ti alloys from first-principles calculations and experimental aqueous states. Computational Materials Science 2018, 143 , 431-438. https://doi.org/10.1016/j.commatsci.2017.11.033
    86. Denis A. Kuznetsov, Binghong Han, Yang Yu, Reshma R. Rao, Jonathan Hwang, Yuriy Román-Leshkov, Yang Shao-Horn. Tuning Redox Transitions via Inductive Effect in Metal Oxides and Complexes, and Implications in Oxygen Electrocatalysis. Joule 2018, 2 (2) , 225-244. https://doi.org/10.1016/j.joule.2017.11.014
    87. Liang-Feng Huang, James M Rondinelli. Electrochemical phase diagrams of Ni from ab initio simulations: role of exchange interactions on accuracy. Journal of Physics: Condensed Matter 2017, 29 (47) , 475501. https://doi.org/10.1088/1361-648X/aa9140
    88. Vladimir V. Galvita, Hilde Poelman, Esteban Fornero, Mark Saeys, Guy. B. Marin. Development and Performance of Iron Based Oxygen Carriers for Chemical Looping. 2017, 421-448. https://doi.org/10.1002/9783527699827.ch18
    89. Zhenhua Zeng, Kee-Chul Chang, Joseph Kubal, Nenad M. Markovic, Jeffrey Greeley. Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion. Nature Energy 2017, 2 (6) https://doi.org/10.1038/nenergy.2017.70
    90. Ji-Sang Park, Matthew D. Sampson, Alex B.F. Martinson, Maria K.Y. Chan. First-Principles Density Functional Theory Calculation of Metal-Substituted Lead Halide Perovskite. 2017, 1256-1258. https://doi.org/10.1109/PVSC.2017.8366217
    91. Anders Hellman, Baochang Wang. First-Principles View on Photoelectrochemistry: Water-Splitting as Case Study. Inorganics 2017, 5 (2) , 37. https://doi.org/10.3390/inorganics5020037
    92. Lei Wang, Yihan Zhu, Zhenhua Zeng, Chong Lin, Michael Giroux, Lin Jiang, Yu Han, Jeffrey Greeley, Chao Wang, Jian Jin. Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy 2017, 31 , 456-461. https://doi.org/10.1016/j.nanoen.2016.11.048
    93. M. D. Sampson, J. S. Park, R. D. Schaller, M. K. Y. Chan, A. B. F. Martinson. Transition metal-substituted lead halide perovskite absorbers. Journal of Materials Chemistry A 2017, 5 (7) , 3578-3588. https://doi.org/10.1039/C6TA09745F
    94. Mohammad Javad Eslamibidgoli, Axel Groß, Michael Eikerling. Surface configuration and wettability of nickel(oxy)hydroxides: a first-principles investigation. Physical Chemistry Chemical Physics 2017, 19 (34) , 22659-22669. https://doi.org/10.1039/C7CP03396F
    95. Fabio Dionigi, Peter Strasser. NiFe‐Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non‐Acidic Electrolytes. Advanced Energy Materials 2016, 6 (23) https://doi.org/10.1002/aenm.201600621
    96. Zhenhua Zeng, Jeffrey Greeley. Characterization of oxygenated species at water/Pt(111) interfaces from DFT energetics and XPS simulations. Nano Energy 2016, 29 , 369-377. https://doi.org/10.1016/j.nanoen.2016.05.044
    97. S.P. Sun, X.P. Li, H.J. Wang, Y. Jiang, D.Q. Yi. Adsorption of oxygen atom on MoSi 2 (110) surface. Applied Surface Science 2016, 382 , 239-248. https://doi.org/10.1016/j.apsusc.2016.04.133
    98. Jeffrey Greeley. Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design. Annual Review of Chemical and Biomolecular Engineering 2016, 7 (1) , 605-635. https://doi.org/10.1146/annurev-chembioeng-080615-034413
    99. Muhammad Adnan Saqlain, Akhtar Hussain, Muhammad Siddiq, Alexandre A. Leitão. A DFT+U study of the Mars Van Krevelen mechanism of CO oxidation on Au/TiO2 catalysts. Applied Catalysis A: General 2016, 519 , 27-33. https://doi.org/10.1016/j.apcata.2016.03.021
    100. Samira Dabaghmanesh, Erik C. Neyts, Bart Partoens. van der Waals density functionals applied to corundum-type sesquioxides: bulk properties and adsorption of CH 3 and C 6 H 6 on (0001) surfaces. Physical Chemistry Chemical Physics 2016, 18 (33) , 23139-23146. https://doi.org/10.1039/C6CP00346J