ACS Publications. Most Trusted. Most Cited. Most Read
Instability of Ionic Liquid-Based Electrolytes in Li–O2 Batteries
My Activity

Figure 1Loading Img
    Article

    Instability of Ionic Liquid-Based Electrolytes in Li–O2 Batteries
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
    Haldor Topsøe A/S, Nymøllevej 55, DK-2800 Kgs. Lyngby, Denmark
    § Department of Applied Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
    Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2015, 119, 32, 18084–18090
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.5b04950
    Published July 16, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Ionic liquids (ILs) have been proposed as promising solvents for Li–air battery electrolytes. Here, several ILs have been investigated using differential electrochemical mass spectrometry (DEMS) to investigate the electrochemical stability in a Li–O2 system, by means of quantitative determination of the rechargeability (OER/ORR), and thereby the Coulombic efficiency of discharge and charge. None of the IL-based electrolytes are found to behave as needed for a functional Li–O2 battery but perform better than commonly used organic solvents. Also the extent of rechargeability/reversibility has been found to be strongly dependent on the choice of IL cation and anion as well as various impurities.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional figures of galvanostatic discharge–charge curves, XRD patterns, and cyclic voltammetry. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b04950.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 79 publications.

    1. J. Wayne Mullinax, Charles W. Bauschlicher, Jr., Kristian B. Knudsen, Pedro L. Arrechea, Rocco P. Viggiano, Donald A. Dornbusch, Justin B. Haskins, Baochau Nguyen, Bryan D. McCloskey, John W. Lawson. Amide and Urea Based Solvents for Li–O2 Batteries. Part II: Evaluation of Decomposition Pathways Using Density Functional Theory. The Journal of Physical Chemistry C 2023, 127 (15) , 7043-7053. https://doi.org/10.1021/acs.jpcc.2c08942
    2. Rishat I. Aminov, Ravil I. Khusnutdinov. Synthesis of Polycyclic Hydrocarbons C14H20 by Hydrogenation of exo–exo-, exo–endo-, endo–exo-, and endo–endo-Hexacyclo[9.2.1.02,10.03,8.04,6.05,9]tetradec-12-enes with H2SO4 and Isomerization of the Products to Diamantane Induced by Ionic Liquids. Industrial & Engineering Chemistry Research 2021, 60 (34) , 12776-12782. https://doi.org/10.1021/acs.iecr.1c02082
    3. Jin-Hyuk Kang, Jiyoung Lee, Ji-Won Jung, Jiwon Park, Taegyu Jang, Hyun-Soo Kim, Jong-Seok Nam, Haeseong Lim, Ki Ro Yoon, Won-Hee Ryu, Il-Doo Kim, Hye Ryung Byon. Lithium–Air Batteries: Air-Breathing Challenges and Perspective. ACS Nano 2020, 14 (11) , 14549-14578. https://doi.org/10.1021/acsnano.0c07907
    4. Tao Liu, J. Padmanabhan Vivek, Evan Wenbo Zhao, Jiang Lei, Nuria Garcia-Araez, Clare P. Grey. Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries. Chemical Reviews 2020, 120 (14) , 6558-6625. https://doi.org/10.1021/acs.chemrev.9b00545
    5. Won-Jin Kwak, Rosy, Daniel Sharon, Chun Xia, Hun Kim, Lee R. Johnson, Peter G. Bruce, Linda F. Nazar, Yang-Kook Sun, Aryeh A. Frimer, Malachi Noked, Stefan A. Freunberger, Doron Aurbach. Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chemical Reviews 2020, 120 (14) , 6626-6683. https://doi.org/10.1021/acs.chemrev.9b00609
    6. Richard Gondosiswanto, D. Brynn Hibbert, Yu Fang, and Chuan Zhao . Ionic Liquid Microstrips Impregnated with Magnetic Nanostirrers for Sensitive Gas Sensors. ACS Applied Materials & Interfaces 2017, 9 (49) , 43377-43385. https://doi.org/10.1021/acsami.7b14657
    7. Masayoshi Watanabe, Morgan L. Thomas, Shiguo Zhang, Kazuhide Ueno, Tomohiro Yasuda, and Kaoru Dokko . Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical Reviews 2017, 117 (10) , 7190-7239. https://doi.org/10.1021/acs.chemrev.6b00504
    8. Asim Khan, Christian A. Gunawan, and Chuan Zhao . Oxygen Reduction Reaction in Ionic Liquids: Fundamentals and Applications in Energy and Sensors. ACS Sustainable Chemistry & Engineering 2017, 5 (5) , 3698-3715. https://doi.org/10.1021/acssuschemeng.7b00388
    9. Mie Møller Storm, Mathias Kjærgård Christensen, Reza Younesi, and Poul Norby . In Situ Analysis of the Li–O2 Battery with Thermally Reduced Graphene Oxide Cathode: Influence of Water Addition. The Journal of Physical Chemistry C 2016, 120 (38) , 21211-21217. https://doi.org/10.1021/acs.jpcc.6b06018
    10. Yuka Horikawa, Takashi Tokushima, Osamu Takahashi, Hiroshi Hoke, and Toshiyuki Takamuku . Correlation between Soft X-ray Absorption and Emission Spectra of the Nitrogen Atoms within Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B 2016, 120 (30) , 7480-7487. https://doi.org/10.1021/acs.jpcb.6b04132
    11. Daniel Sharon, Daniel Hirsberg, Michael Salama, Michal Afri, Aryeh A. Frimer, Malachi Noked, Wonjin Kwak, Yang-Kook Sun, and Doron Aurbach . Mechanistic Role of Li+ Dissociation Level in Aprotic Li–O2 Battery. ACS Applied Materials & Interfaces 2016, 8 (8) , 5300-5307. https://doi.org/10.1021/acsami.5b11483
    12. Kristian B. Knudsen, Alan C. Luntz, Søren H. Jensen, Tejs Vegge, and Johan Hjelm . Redox Probing Study of the Potential Dependence of Charge Transport Through Li2O2. The Journal of Physical Chemistry C 2015, 119 (51) , 28292-28299. https://doi.org/10.1021/acs.jpcc.5b08757
    13. Jin Xie, Qi Dong, Ian Madden, Xiahui Yao, Qingmei Cheng, Paul Dornath, Wei Fan, and Dunwei Wang . Achieving Low Overpotential Li–O2 Battery Operations by Li2O2 Decomposition through One-Electron Processes. Nano Letters 2015, 15 (12) , 8371-8376. https://doi.org/10.1021/acs.nanolett.5b04097
    14. Giuseppe Antonio Elia, Dominic Bresser, Jakub Reiter, Philipp Oberhumer, Yang-Kook Sun, Bruno Scrosati, Stefano Passerini, and Jusef Hassoun . Interphase Evolution of a Lithium-Ion/Oxygen Battery. ACS Applied Materials & Interfaces 2015, 7 (40) , 22638-22643. https://doi.org/10.1021/acsami.5b07414
    15. Yaying Dou, Shuochao Xing, Zhang Zhang, Zhen Zhou. Solving the Singlet Oxygen Puzzle in Metal-O2 Batteries: Current Progress and Future Directions. Electrochemical Energy Reviews 2024, 7 (1) https://doi.org/10.1007/s41918-023-00201-w
    16. Akihiro Nomura, Kimihiko Ito, Denis Y.W. Yu, Yoshimi Kubo. Gravimetric analysis of lithium-air batteries during discharge/charge cycles. Journal of Power Sources 2024, 592 , 233924. https://doi.org/10.1016/j.jpowsour.2023.233924
    17. Xuanxuan Bi, Yi Jiang, Ruiting Chen, Yuncheng Du, Yun Zheng, Rong Yang, Rongyue Wang, Jiantao Wang, Xin Wang, Zhongwei Chen. Rechargeable Zinc–Air versus Lithium–Air Battery: from Fundamental Promises Toward Technological Potentials. Advanced Energy Materials 2024, 14 (6) https://doi.org/10.1002/aenm.202302388
    18. Zhuojun Zhang, Xu Xiao, Xingbao Zhu, Peng Tan. Addressing Transport Issues in Non-Aqueous Li–air Batteries to Achieving High Electrochemical Performance. Electrochemical Energy Reviews 2023, 6 (1) https://doi.org/10.1007/s41918-022-00157-3
    19. Sergey Pavlov, Sergey Kislenko. Mixture of an ionic liquid and organic solvent at graphene: interface structure and ORR mechanism. Physical Chemistry Chemical Physics 2023, 25 (28) , 19245-19253. https://doi.org/10.1039/D3CP01820B
    20. Zenonas Jusys, R. Jürgen Behm. Mechanistic Aspects and Side Reactions during Reversible Mg Deposition and Oxygen Reduction on a Pt Film Electrode in BMP‐TFSI‐Based Electrolytes: A DEMS Study. ChemElectroChem 2023, 10 (13) https://doi.org/10.1002/celc.202300090
    21. Syed Shoaib Hassan Zaidi, Xianglin Li. Li–O 2 /Air Batteries Using Ionic Liquids – A Comprehensive Review. Advanced Energy Materials 2023, 13 (28) https://doi.org/10.1002/aenm.202300985
    22. Ningning Feng, Chaoqiang Wang, Jing Wang, Yang Lin, Gang Yang. A High-Performance Li-O2/Air Battery System with Dual Redox Mediators in the Hydrophobic Ionic Liquid-Based Gel Polymer Electrolyte. Batteries 2023, 9 (5) , 243. https://doi.org/10.3390/batteries9050243
    23. Yichao Cai, Yunpeng Hou, Yong Lu, Qiu Zhang, Zhenhua Yan, Jun Chen. Ionic Liquid Electrolyte with Weak Solvating Molecule Regulation for Stable Li Deposition in High‐Performance Li−O 2 Batteries. Angewandte Chemie International Edition 2023, 62 (17) https://doi.org/10.1002/anie.202218014
    24. Yichao Cai, Yunpeng Hou, Yong Lu, Qiu Zhang, Zhenhua Yan, Jun Chen. Ionic Liquid Electrolyte with Weak Solvating Molecule Regulation for Stable Li Deposition in High‐Performance Li−O 2 Batteries. Angewandte Chemie 2023, 135 (17) https://doi.org/10.1002/ange.202218014
    25. Zhenzhen Wu, Yuhui Tian, Hao Chen, Liguang Wang, Shangshu Qian, Tianpin Wu, Shanqing Zhang, Jun Lu. Evolving aprotic Li–air batteries. Chemical Society Reviews 2022, 51 (18) , 8045-8101. https://doi.org/10.1039/D2CS00003B
    26. Hyunjee Yoon, Seoyoon Shin, Sooyeol Park, Moo Whan Shin. Low-viscosity quaternary ammonium-based ionic liquid electrolytes for lithium air batteries. Journal of Molecular Liquids 2022, 359 , 119352. https://doi.org/10.1016/j.molliq.2022.119352
    27. Zhonghao Rao, Peizhao Lyu, Peixing Du, Deqing He, Yutao Huo, Chenzhen Liu. Thermal safety and thermal management of batteries. Battery Energy 2022, 1 (3) https://doi.org/10.1002/bte2.20210019
    28. Yayun Zheng, Di Wang, Shubham Kaushik, Shaoning Zhang, Tomoki Wada, Jinkwang Hwang, Kazuhiko Matsumoto, Rika Hagiwara. Ionic Liquid Electrolytes for Next-generation Electrochemical Energy Devices. EnergyChem 2022, 4 (3) , 100075. https://doi.org/10.1016/j.enchem.2022.100075
    29. Ziaur Rahman, Sudhir Kumar Das. Ionic liquids for sustainable energy-storage devices. 2022, 189-205. https://doi.org/10.1016/B978-0-12-824545-3.00012-X
    30. Yichao Cai, Qiu Zhang, Yong Lu, Zhimeng Hao, Youxuan Ni, Jun Chen. An Ionic Liquid Electrolyte with Enhanced Li + Transport Ability Enables Stable Li Deposition for High‐Performance Li‐O 2 Batteries. Angewandte Chemie 2021, 133 (49) , 26177-26184. https://doi.org/10.1002/ange.202111360
    31. Yichao Cai, Qiu Zhang, Yong Lu, Zhimeng Hao, Youxuan Ni, Jun Chen. An Ionic Liquid Electrolyte with Enhanced Li + Transport Ability Enables Stable Li Deposition for High‐Performance Li‐O 2 Batteries. Angewandte Chemie International Edition 2021, 60 (49) , 25973-25980. https://doi.org/10.1002/anie.202111360
    32. David Carrasco‐Busturia, Steen Lysgaard, Piotr Jankowski, Tejs Vegge, Arghya Bhowmik, Juan María García‐Lastra. Ab initio Molecular Dynamics Investigations of the Speciation and Reactivity of Deep Eutectic Electrolytes in Aluminum Batteries. ChemSusChem 2021, 14 (9) , 2034-2041. https://doi.org/10.1002/cssc.202100163
    33. Supti Das, Dhanya Radhakrishnan, Venkata S. Bhadram, Chandrabhas Narayana, Aninda J. Bhattacharyya. Brillouin light scattering study of microscopic structure and dynamics in pyrrolidinium salt based ionic liquids. Solid State Ionics 2021, 363 , 115603. https://doi.org/10.1016/j.ssi.2021.115603
    34. Laura Garcia‐Quintana, Fangfang Chen, Nagore Ortiz‐Vitoriano, Yafei Zhang, Luke A. O'Dell, Douglas R. MacFarlane, Maria Forsyth, Alan M. Bond, Patrick C. Howlett, Cristina Pozo‐Gonzalo. Unravelling the Role of Speciation in Glyme:Ionic Liquid Hybrid Electrolytes for Na−O 2 Batteries. Batteries & Supercaps 2021, 4 (3) , 513-521. https://doi.org/10.1002/batt.202000261
    35. Lili Liu, Haipeng Guo, Lijun Fu, Shulei Chou, Simon Thiele, Yuping Wu, Jiazhao Wang. Critical Advances in Ambient Air Operation of Nonaqueous Rechargeable Li–Air Batteries. Small 2021, 17 (9) https://doi.org/10.1002/smll.201903854
    36. Yi-Ting Lu, Alex R. Neale, Chi-Chang Hu, Laurence J. Hardwick. Divalent Nonaqueous Metal-Air Batteries. Frontiers in Energy Research 2021, 8 https://doi.org/10.3389/fenrg.2020.602918
    37. Mohit R. Mehta, Kristian B. Knudsen, William R. Bennett, Bryan D. McCloskey, John W. Lawson. Li-O 2 batteries for high specific power applications: A multiphysics simulation study for a single discharge. Journal of Power Sources 2021, 484 , 229261. https://doi.org/10.1016/j.jpowsour.2020.229261
    38. Huan Du, Shihao Feng, Wen Luo, Liang Zhou, Liqiang Mai. Advanced Li-Se S battery system: Electrodes and electrolytes. Journal of Materials Science & Technology 2020, 55 , 1-15. https://doi.org/10.1016/j.jmst.2020.01.001
    39. Makoto Ue, Ken Sakaushi, Kohei Uosaki. Basic knowledge in battery research bridging the gap between academia and industry. Materials Horizons 2020, 7 (8) , 1937-1954. https://doi.org/10.1039/D0MH00067A
    40. Yann K. Petit, Eléonore Mourad, Stefan A. Freunberger. Lithium–Oxygen Batteries. 2020, 1-42. https://doi.org/10.1002/9783527610426.bard110017
    41. Jingning Lai, Yi Xing, Nan Chen, Li Li, Feng Wu, Renjie Chen. Elektrolyte für wiederaufladbare Lithium‐Luft‐Batterien. Angewandte Chemie 2020, 132 (8) , 2994-3019. https://doi.org/10.1002/ange.201903459
    42. Jingning Lai, Yi Xing, Nan Chen, Li Li, Feng Wu, Renjie Chen. Electrolytes for Rechargeable Lithium–Air Batteries. Angewandte Chemie International Edition 2020, 59 (8) , 2974-2997. https://doi.org/10.1002/anie.201903459
    43. Forrest S. Gittleson, Donald K. Ward, Reese E. Jones, Ryan A. Zarkesh, Tanvi Sheth, Michael E. Foster. Correlating structure and transport behavior in Li + and O 2 containing pyrrolidinium ionic liquids. Physical Chemistry Chemical Physics 2019, 21 (31) , 17176-17189. https://doi.org/10.1039/C9CP02355K
    44. Eléonore Mourad, Yann K. Petit, Riccardo Spezia, Aleksej Samojlov, Francesco F. Summa, Christian Prehal, Christian Leypold, Nika Mahne, Christian Slugovc, Olivier Fontaine, Sergio Brutti, Stefan A. Freunberger. Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O 2 batteries. Energy & Environmental Science 2019, 12 (8) , 2559-2568. https://doi.org/10.1039/C9EE01453E
    45. Imanol Landa-Medrano, Iñigo Lozano, Nagore Ortiz-Vitoriano, Idoia Ruiz de Larramendi, Teófilo Rojo. Redox mediators: a shuttle to efficacy in metal–O 2 batteries. Journal of Materials Chemistry A 2019, 7 (15) , 8746-8764. https://doi.org/10.1039/C8TA12487F
    46. Etienne Knipping, Christophe Aucher, Gonzalo Guirado, Laurent Aubouy. Suitability of Blended Ionic Liquid‐Dimethylsulfoxide Electrolyte for Lithium‐Oxygen Battery. Batteries & Supercaps 2019, 2 (3) , 200-204. https://doi.org/10.1002/batt.201800078
    47. Zhimei Huang, Haipeng Zeng, Meilan Xie, Xing Lin, Zhaoming Huang, Yue Shen, Yunhui Huang. A Stable Lithium–Oxygen Battery Electrolyte Based on Fully Methylated Cyclic Ether. Angewandte Chemie 2019, 131 (8) , 2367-2371. https://doi.org/10.1002/ange.201812983
    48. Zhimei Huang, Haipeng Zeng, Meilan Xie, Xing Lin, Zhaoming Huang, Yue Shen, Yunhui Huang. A Stable Lithium–Oxygen Battery Electrolyte Based on Fully Methylated Cyclic Ether. Angewandte Chemie International Edition 2019, 58 (8) , 2345-2349. https://doi.org/10.1002/anie.201812983
    49. Heung Chan Lee, Jung Ock Park, Mokwon Kim, Hyuk Jae Kwon, Joon-Hee Kim, Kyoung Hwan Choi, Kihong Kim, Dongmin Im. High-Energy-Density Li-O2 Battery at Cell Scale with Folded Cell Structure. Joule 2019, 3 (2) , 542-556. https://doi.org/10.1016/j.joule.2018.11.016
    50. Zenonas Jusys, Johannes Schnaidt, R. Jürgen Behm. O2 reduction on a Au film electrode in an ionic liquid in the absence and presence of Mg2+ ions: Product formation and adlayer dynamics. The Journal of Chemical Physics 2019, 150 (4) https://doi.org/10.1063/1.5051982
    51. Bojie Li, Yijie Liu, Xiaoyu Zhang, Ping He, Haoshen Zhou. Hybrid polymer electrolyte for Li–O2 batteries. Green Energy & Environment 2019, 4 (1) , 3-19. https://doi.org/10.1016/j.gee.2018.08.002
    52. Alex R. Neale, Peter Goodrich, Christopher Hardacre, Johan Jacquemin. Electrolytes for Li – O 2 Batteries. 2018, 65-94. https://doi.org/10.1002/9783527807666.ch4
    53. K. Pranay Reddy, Philipp Fischer, Mario Marinaro, Margret Wohlfahrt‐Mehrens. Improved Li–Metal Cycling Performance in High Concentrated Electrolytes for Li‐O 2 Batteries. ChemElectroChem 2018, 5 (19) , 2758-2766. https://doi.org/10.1002/celc.201800686
    54. Haipeng Guo, Wenbin Luo, Jun Chen, Shulei Chou, Huakun Liu, Jiazhao Wang. Review of Electrolytes in Nonaqueous Lithium–Oxygen Batteries. Advanced Sustainable Systems 2018, 2 (8-9) https://doi.org/10.1002/adsu.201700183
    55. Abhishek Lahiri, Natalia Borisenko, Frank Endres. Electrochemical Synthesis of Battery Electrode Materials from Ionic Liquids. Topics in Current Chemistry 2018, 376 (2) https://doi.org/10.1007/s41061-018-0186-3
    56. Ulderico Ulissi, Giuseppe Antonio Elia, Sangsik Jeong, Jakub Reiter, Nikolaos Tsiouvaras, Stefano Passerini, Jusef Hassoun. New Electrode and Electrolyte Configurations for Lithium‐Oxygen Battery. Chemistry – A European Journal 2018, 24 (13) , 3178-3185. https://doi.org/10.1002/chem.201704293
    57. Ulderico Ulissi, Giuseppe Antonio Elia, Sangsik Jeong, Franziska Mueller, Jakub Reiter, Nikolaos Tsiouvaras, Yang‐Kook Sun, Bruno Scrosati, Stefano Passerini, Jusef Hassoun. Low‐Polarization Lithium–Oxygen Battery Using [DEME][TFSI] Ionic Liquid Electrolyte. ChemSusChem 2018, 11 (1) , 229-236. https://doi.org/10.1002/cssc.201701696
    58. Murat Farsak, Gülfeza Kardaş. 2.12 Electrolytic Materials. 2018, 329-367. https://doi.org/10.1016/B978-0-12-809597-3.00225-X
    59. Qiwei Yang, Zhaoqiang Zhang, Xiao-Guang Sun, Yong-Sheng Hu, Huabin Xing, Sheng Dai. Ionic liquids and derived materials for lithium and sodium batteries. Chemical Society Reviews 2018, 47 (6) , 2020-2064. https://doi.org/10.1039/C7CS00464H
    60. Petar M. Radjenovic, Laurence J. Hardwick. Time-resolved SERS study of the oxygen reduction reaction in ionic liquid electrolytes for non-aqueous lithium–oxygen cells. Faraday Discussions 2018, 206 , 379-392. https://doi.org/10.1039/C7FD00170C
    61. E. Knipping, C. Aucher, G. Guirado, L. Aubouy. Room temperature ionic liquids versus organic solvents as lithium–oxygen battery electrolytes. New Journal of Chemistry 2018, 42 (6) , 4693-4699. https://doi.org/10.1039/C8NJ00449H
    62. Tejs Vegge, Juan Maria Garcia-Lastra, Donald J. Siegel. Lithium–oxygen batteries: At a crossroads?. Current Opinion in Electrochemistry 2017, 6 (1) , 100-107. https://doi.org/10.1016/j.coelec.2017.10.014
    63. Hyuk Jae Kwon, Heung Chan Lee, Jeongsik Ko, In Sun Jung, Hyun Chul Lee, Hyunpyo Lee, Mokwon Kim, Dong Joon Lee, Hyunjin Kim, Tae Young Kim, Dongmin Im. Effects of oxygen partial pressure on Li-air battery performance. Journal of Power Sources 2017, 364 , 280-287. https://doi.org/10.1016/j.jpowsour.2017.08.052
    64. Nelson A. Galiote, Sangsik Jeong, William G. Morais, Stefano Passerini, Fritz Huguenin. The Role of Ionic Liquid in Oxygen Reduction Reaction for Lithium-air Batteries. Electrochimica Acta 2017, 247 , 610-616. https://doi.org/10.1016/j.electacta.2017.06.137
    65. Mara Olivares-Marín, Andrea Sorrentino, Eva Pereiro, Dino Tonti. Discharge products of ionic liquid-based Li-O2 batteries observed by energy dependent soft x-ray transmission microscopy. Journal of Power Sources 2017, 359 , 234-241. https://doi.org/10.1016/j.jpowsour.2017.05.039
    66. Bin Liu, Wu Xu, Pengfei Yan, Sun Tai Kim, Mark H. Engelhard, Xiuliang Sun, Donghai Mei, Jaephil Cho, Chong‐Min Wang, Ji‐Guang Zhang. Stabilization of Li Metal Anode in DMSO‐Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O 2 Batteries. Advanced Energy Materials 2017, 7 (14) https://doi.org/10.1002/aenm.201602605
    67. Shoichi Matsuda, Kohei Uosaki, Shuji Nakanishi. Improved charging performance of Li–O2 batteries by forming Ba-incorporated Li2O2 as the discharge product. Journal of Power Sources 2017, 353 , 138-143. https://doi.org/10.1016/j.jpowsour.2017.04.012
    68. E. Knipping, C. Aucher, G. Guirado, F. Fauth, L. Aubouy. In operando X-ray diffraction of lithium–oxygen batteries using an ionic liquid as an electrolyte co-solvent. New Journal of Chemistry 2017, 41 (15) , 7267-7272. https://doi.org/10.1039/C7NJ01027C
    69. Shuting Feng, Mao Chen, Livia Giordano, Mingjun Huang, Wenxu Zhang, Chibueze V. Amanchukwu, Robinson Anandakathir, Yang Shao-Horn, Jeremiah A. Johnson. Mapping a stable solvent structure landscape for aprotic Li–air battery organic electrolytes. Journal of Materials Chemistry A 2017, 5 (45) , 23987-23998. https://doi.org/10.1039/C7TA08321A
    70. Yunchuan Tu, Dehui Deng, Xinhe Bao. Nanocarbons and their hybrids as catalysts for non-aqueous lithium–oxygen batteries. Journal of Energy Chemistry 2016, 25 (6) , 957-966. https://doi.org/10.1016/j.jechem.2016.10.012
    71. Y.T. Law, J. Schnaidt, S. Brimaud, R.J. Behm. Oxygen reduction and evolution in an ionic liquid ([BMP][TFSA]) based electrolyte: A model study of the cathode reactions in Mg-air batteries. Journal of Power Sources 2016, 333 , 173-183. https://doi.org/10.1016/j.jpowsour.2016.09.025
    72. Chaolumen Wu, Chen-Bo Liao, Lei Li, Jun Yang. Ethylene sulfite based electrolyte for non-aqueous lithium oxygen batteries. Chinese Chemical Letters 2016, 27 (9) , 1485-1489. https://doi.org/10.1016/j.cclet.2016.03.023
    73. Robert Black, Abhinandan Shyamsunder, Parvin Adeli, Dipan Kundu, Graham K. Murphy, Linda F. Nazar. The Nature and Impact of Side Reactions in Glyme‐based Sodium–Oxygen Batteries. ChemSusChem 2016, 9 (14) , 1795-1803. https://doi.org/10.1002/cssc.201600034
    74. Xin Zhang, Xin-Gai Wang, Zhaojun Xie, Zhen Zhou. Recent progress in rechargeable alkali metal–air batteries. Green Energy & Environment 2016, 1 (1) , 4-17. https://doi.org/10.1016/j.gee.2016.04.004
    75. Lorenzo Grande, Anders Ochel, Simone Monaco, Marina Mastragostino, Dino Tonti, Pablo Palomino, Elie Paillard, Stefano Passerini. Li/air Flow Battery Employing Ionic Liquid Electrolytes. Energy Technology 2016, 4 (1) , 85-89. https://doi.org/10.1002/ente.201500247
    76. Alex R. Neale, Peilin Li, Johan Jacquemin, Peter Goodrich, Sarah C. Ball, Richard G. Compton, Christopher Hardacre. Effect of cation structure on the oxygen solubility and diffusivity in a range of bis{(trifluoromethyl)sulfonyl}imide anion based ionic liquids for lithium–air battery electrolytes. Physical Chemistry Chemical Physics 2016, 18 (16) , 11251-11262. https://doi.org/10.1039/C5CP07160G
    77. J. Scheers, D. Lidberg, K. Sodeyama, Z. Futera, Y. Tateyama. Life of superoxide in aprotic Li–O 2 battery electrolytes: simulated solvent and counter-ion effects. Physical Chemistry Chemical Physics 2016, 18 (15) , 9961-9968. https://doi.org/10.1039/C5CP08056H
    78. Manfred Kerner, Nareerat Plylahan, Johan Scheers, Patrik Johansson. Thermal stability and decomposition of lithium bis(fluorosulfonyl)imide (LiFSI) salts. RSC Advances 2016, 6 (28) , 23327-23334. https://doi.org/10.1039/C5RA25048J
    79. Forrest S. Gittleson, Won-Hee Ryu, Mark Schwab, Xiao Tong, André D. Taylor. Pt and Pd catalyzed oxidation of Li 2 O 2 and DMSO during Li–O 2 battery charging. Chemical Communications 2016, 52 (39) , 6605-6608. https://doi.org/10.1039/C6CC01778A

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2015, 119, 32, 18084–18090
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.5b04950
    Published July 16, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    1794

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.