ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Electrochemical Study of the Energetics of the Oxygen Evolution Reaction at Nickel Iron (Oxy)Hydroxide Catalysts

View Author Information
Joint Center for Artificial Photosynthesis, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
§ Department of Chemical and Biomolecular Engineering and §Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, Unites States
Cite this: J. Phys. Chem. C 2015, 119, 33, 19022–19029
Publication Date (Web):July 28, 2015
https://doi.org/10.1021/acs.jpcc.5b05861
Copyright © 2015 American Chemical Society

    Article Views

    5692

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Iron-doped nickel (oxy)hydroxide catalysts (FexNi1–xOOH) exhibit high electrocatalytic behavior for the oxygen evolution reaction in base. Recent findings suggest that the incorporation of Fe3+ into a NiOOH lattice leads to nearly optimal adsorption energies for OER intermediates on active Fe sites. Utilizing electrochemical impedance spectroscopy and activation energy measurements, we find that pure NiOOH and FeOOH catalysts exhibit exceedingly high Faradaic resistances and activation energies 40–50 kJ/mol−1 higher than those of the most active FexNi1–xOOH catalysts. Furthermore, the most active FexNi1–xOOH catalysts in this study exhibit activation energies that approach those previously reported for IrO2 OER catalysts.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b05861.

    • Roughness factors for catalyst compositions. Tafel slope and overpotential change with time. Representative Nyquist, phase, and Bode plots for all compositions. Optimal impedance fit parameters. Reported activation energies for select OER catalysts. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 266 publications.

    1. Haoyue Zhang, Lingling Wu, Yuanman Ni, Jianghan Feng, Qu Jiang, Chaoran Zhang, Ashfaq Ahmad, Abdul Majeed, Yao Li, Cuiping Guo, Wang Zhang, Fang Song. Effect of Transport Properties of Crystalline Transition Metal (Oxy)hydroxides on Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2023, 15 (21) , 25575-25583. https://doi.org/10.1021/acsami.3c03270
    2. Raúl A. Márquez, Kenta Kawashima, Yoon Jun Son, Grace Castelino, Nathaniel Miller, Lettie A. Smith, Chikaodili E. Chukwuneke, C. Buddie Mullins. Getting the Basics Right: Preparing Alkaline Electrolytes for Electrochemical Applications. ACS Energy Letters 2023, 8 (2) , 1141-1146. https://doi.org/10.1021/acsenergylett.2c02847
    3. Sun Seo Jeon, Phil Woong Kang, Malte Klingenhof, Hyunjoo Lee, Fabio Dionigi, Peter Strasser. Active Surface Area and Intrinsic Catalytic Oxygen Evolution Reactivity of NiFe LDH at Reactive Electrode Potentials Using Capacitances. ACS Catalysis 2023, 13 (2) , 1186-1196. https://doi.org/10.1021/acscatal.2c04452
    4. Negah Hashemi, Robabeh Bagheri, Subhajit Nandy, Keun Hwa Chae, Mohammad Mahdi Najafpour. Anodization of NiFe Foam for Water-Oxidation Reaction under Neutral Conditions. ACS Applied Energy Materials 2023, 6 (1) , 233-244. https://doi.org/10.1021/acsaem.2c02835
    5. Negah Hashemi, Subhajit Nandy, Keun Hwa Chae, Mohammad Mahdi Najafpour. Anodization of a NiFe Foam: An Efficient and Stable Electrode for Oxygen-Evolution Reaction. ACS Applied Energy Materials 2022, 5 (9) , 11098-11112. https://doi.org/10.1021/acsaem.2c01707
    6. Nandapriya Manivelan, Senthil Karuppanan, Kandasamy Prabakar. Djurleite Copper Sulfide-Coupled Cobalt Sulfide Interface for a Stable and Efficient Electrocatalyst. ACS Applied Materials & Interfaces 2022, 14 (27) , 30812-30823. https://doi.org/10.1021/acsami.2c06010
    7. Tilahun Awoke Zegeye, Wen-Tai Chen, Chun-Cheng Hsu, Joey Andrew A. Valinton, Chun-Hu Chen. Activation Energy Assessing Potential-Dependent Activities and Site Reconstruction for Oxygen Evolution. ACS Energy Letters 2022, 7 (7) , 2236-2243. https://doi.org/10.1021/acsenergylett.2c01103
    8. Fu-Te Tsai, Yun-Yen Chuang, Hung-Hsi Hsieh, Yu-Hsien Chen, Chih-Wen Pao, Jeng-Lung Chen, Chung-Yen Lu, Chia-Kan Hao, Wen-Feng Liaw. Morphological and Electronic Optimization of Nanostructured FeCoNi-Based Electrocatalysts by Al Dopants for Neutral/Alkaline Water Splitting. ACS Applied Energy Materials 2022, 5 (5) , 5886-5900. https://doi.org/10.1021/acsaem.2c00238
    9. A. Usha Vijayakumar, N. Aloni, V. Thazhe Veettil, G. Rahamim, S. S. Hardisty, M. Zysler, S. Tirosh, D. Zitoun. Combinatorial Synthesis and Screening of a Ternary NiFeCoOx Library for the Oxygen Evolution Reaction. ACS Applied Energy Materials 2022, 5 (4) , 4017-4024. https://doi.org/10.1021/acsaem.1c03845
    10. Masafumi Harada, Fukue Kotegawa, Masako Kuwa. Structural Changes of Spinel MCo2O4 (M = Mn, Fe, Co, Ni, and Zn) Electrocatalysts during the Oxygen Evolution Reaction Investigated by In Situ X-ray Absorption Spectroscopy. ACS Applied Energy Materials 2022, 5 (1) , 278-294. https://doi.org/10.1021/acsaem.1c02824
    11. Tess E. Seuferling, Tim R. Larson, Joseph M. Barforoush, Kevin C. Leonard. Carbonate-Derived Multi-Metal Catalysts for Electrochemical Water-Splitting at High Current Densities. ACS Sustainable Chemistry & Engineering 2021, 9 (49) , 16678-16686. https://doi.org/10.1021/acssuschemeng.1c05519
    12. Rutuparna Samal, Pratap Mane, Mahima Bhat, Brahmananda Chakraborty, Dattatray J. Late, Chandra Sekhar Rout. Stabilization of Orthorhombic CoSe2 by 2D-rGO/MWCNT Heterostructures for Efficient Hydrogen Evolution Reaction and Flexible Energy Storage Device Applications. ACS Applied Energy Materials 2021, 4 (10) , 11386-11399. https://doi.org/10.1021/acsaem.1c02205
    13. Shaowei Song, Yaqin Wang, Ryan C. Davis, Zhensong Ren, Xin Xiao, Guang Yang, Dezhi Wang, Jiming Bao, Qinyong Zhang, Shuo Chen, Zhifeng Ren. Electrochemical Insight into NaxCoO2 for the Oxygen Evolution Reaction and the Oxygen Reduction Reaction. Chemistry of Materials 2021, 33 (16) , 6299-6310. https://doi.org/10.1021/acs.chemmater.1c00008
    14. Jingshuai Chen, Zhenzhen Guo, Yuxin Luo, Mengdie Cai, Yixuan Gong, Song Sun, Zhenxing Li, Chang-Jie Mao. Engineering Amorphous Nickel Iron Oxyphosphide as a Highly Efficient Electrocatalyst toward Overall Water Splitting. ACS Sustainable Chemistry & Engineering 2021, 9 (28) , 9436-9443. https://doi.org/10.1021/acssuschemeng.1c02897
    15. Kaiwen Wang, Ronghui Jin, Yuhua Liu, Jing Ai, Zhipeng Liu, Xiaotian Li, Nan Li. Three-Dimensional Ordered Macroporous NiFe2O4 Self-Supporting Electrode with Enhanced Mass Transport for High-Efficiency Oxygen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (1) , 268-274. https://doi.org/10.1021/acsaem.0c02232
    16. Qiucheng Xu, Hao Jiang, Xuezhi Duan, Zheng Jiang, Yanjie Hu, Shannon W. Boettcher, Weiyu Zhang, Shaojun Guo, Chunzhong Li. Fluorination-enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation. Nano Letters 2021, 21 (1) , 492-499. https://doi.org/10.1021/acs.nanolett.0c03950
    17. Jumi Bak, Yoon Heo, Tae Gyu Yun, Sung-Yoon Chung. Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS Nano 2020, 14 (11) , 14323-14354. https://doi.org/10.1021/acsnano.0c06411
    18. Xingyi Deng, Dan C. Sorescu, Iradwikanari Waluyo, Adrian Hunt, Douglas R. Kauffman. Bulk vs Intrinsic Activity of NiFeOx Electrocatalysts in the Oxygen Evolution Reaction: The Influence of Catalyst Loading, Morphology, and Support Material. ACS Catalysis 2020, 10 (20) , 11768-11778. https://doi.org/10.1021/acscatal.0c03109
    19. Suncheol Kim, Hyojong Yoo. Construction of a Pliable Electrode System for Effective Electrochemical Oxygen Evolution Reaction: Direct Growth of Nickel/Iron/Selenide Nanohybrids on Nickel Foil. ACS Sustainable Chemistry & Engineering 2020, 8 (36) , 13859-13867. https://doi.org/10.1021/acssuschemeng.0c05857
    20. Alagan Muthurasu, Su-Hyeong Chae, Taewoo Kim, Tanka Mukhiya, Hak Yong Kim. Template-Assisted Fabrication of ZnO/Co3O4 One-Dimensional Metal–Organic Framework Array Decorated with Amorphous Iron Oxide/Hydroxide Nanoparticles as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. Energy & Fuels 2020, 34 (6) , 7716-7725. https://doi.org/10.1021/acs.energyfuels.0c01101
    21. Tao Li, Ying Xu, Xin Qian, Qin Yue, Yijin Kang. Low-Temperature Molten Salt Synthesis for Ligand-Free Transition Metal Oxide Nanoparticles. ACS Applied Energy Materials 2020, 3 (4) , 3984-3990. https://doi.org/10.1021/acsaem.0c00403
    22. Audrey K. Taylor, Irene Andreu, Mikayla Louie, Byron D. Gates. Electrochemically Aged Ni Electrodes Supporting NiFe2O4 Nanoparticles for the Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (1) , 387-400. https://doi.org/10.1021/acsaem.9b01644
    23. Rida Farhat, Jihan Dhainy, Lara I. Halaoui. OER Catalysis at Activated and Codeposited NiFe-Oxo/Hydroxide Thin Films Is Due to Postdeposition Surface-Fe and Is Not Sustainable without Fe in Solution. ACS Catalysis 2020, 10 (1) , 20-35. https://doi.org/10.1021/acscatal.9b02580
    24. Prashant Acharya, Zachary J. Nelson, Mourad Benamara, Ryan H. Manso, Sergio I. Perez Bakovic, Mojtaba Abolhassani, Sungsik Lee, Benjamin Reinhart, Jingyi Chen, Lauren F. Greenlee. Chemical Structure of Fe–Ni Nanoparticles for Efficient Oxygen Evolution Reaction Electrocatalysis. ACS Omega 2019, 4 (17) , 17209-17222. https://doi.org/10.1021/acsomega.9b01692
    25. Selvasundarasekar Sam Sankar, Kannimuthu Karthick, Kumaravel Sangeetha, Subrata Kundu. In Situ Modified Nitrogen-Enriched ZIF-67 Incorporated ZIF-7 Nanofiber: An Unusual Electrocatalyst for Water Oxidation. Inorganic Chemistry 2019, 58 (20) , 13826-13835. https://doi.org/10.1021/acs.inorgchem.9b01621
    26. Jiangtian Li, Deryn Chu, David R. Baker, Hong Dong, Rongzhong Jiang, Dat T. Tran. Distorted Inverse Spinel Nickel Cobaltite Grown on a MoS2 Plate for Significantly Improved Water Splitting Activity. Chemistry of Materials 2019, 31 (18) , 7590-7600. https://doi.org/10.1021/acs.chemmater.9b02397
    27. Victor Costa Bassetto, Mounir Mensi, Emad Oveisi, Hubert H. Girault, Andreas Lesch. Print-Light-Synthesis of Ni and NiFe-Nanoscale Catalysts for Oxygen Evolution. ACS Applied Energy Materials 2019, 2 (9) , 6322-6331. https://doi.org/10.1021/acsaem.9b00957
    28. Jie Zhang, Yanwen Bai, Chi Zhang, Hui Gao, Jiazheng Niu, Yujun Shi, Ying Zhang, Meijia Song, Zhonghua Zhang. Hybrid Ni(OH)2/FeOOH@NiFe Nanosheet Catalysts toward Highly Efficient Oxygen Evolution Reaction with Ultralong Stability over 1000 Hours. ACS Sustainable Chemistry & Engineering 2019, 7 (17) , 14601-14610. https://doi.org/10.1021/acssuschemeng.9b02296
    29. Avinash A. Chaugule, Vishwanath S. Mane, Harshad A. Bandal, Hern Kim, Avinash S. Kumbhar. Ionic Liquid-Derived Co3O4-N/S-Doped Carbon Catalysts for the Enhanced Water Oxidation. ACS Sustainable Chemistry & Engineering 2019, 7 (17) , 14889-14898. https://doi.org/10.1021/acssuschemeng.9b02997
    30. Kang-Gyu Lee, Mani Balamurugan, Sunghak Park, Heonjin Ha, Kyoungsuk Jin, Hongmin Seo, Ki Tae Nam. Importance of Entropic Contribution to Electrochemical Water Oxidation Catalysis. ACS Energy Letters 2019, 4 (8) , 1918-1929. https://doi.org/10.1021/acsenergylett.9b00541
    31. Kannimuthu Karthick, Sengeni Anantharaj, Swathi Patchaiammal, Sathya Narayanan Jagadeesan, Piyush Kumar, Sivasankara Rao Ede, Deepak Kumar Pattanayak, Subrata Kundu. Advanced Cu3Sn and Selenized Cu3Sn@Cu Foam as Electrocatalysts for Water Oxidation under Alkaline and Near-Neutral Conditions. Inorganic Chemistry 2019, 58 (14) , 9490-9499. https://doi.org/10.1021/acs.inorgchem.9b01467
    32. Chun-Lung Huang, Xui-Fang Chuah, Cheng-Ting Hsieh, Shih-Yuan Lu. NiFe Alloy Nanotube Arrays as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting at High Current Densities. ACS Applied Materials & Interfaces 2019, 11 (27) , 24096-24106. https://doi.org/10.1021/acsami.9b05919
    33. Chanderpratap Singh, Itamar Liberman, Ran Shimoni, Raya Ifraemov, Idan Hod. Pristine versus Pyrolyzed Metal–Organic Framework-based Oxygen Evolution Electrocatalysts: Evaluation of Intrinsic Activity Using Electrochemical Impedance Spectroscopy. The Journal of Physical Chemistry Letters 2019, 10 (13) , 3630-3636. https://doi.org/10.1021/acs.jpclett.9b01232
    34. Nadeem Asghar Khan, Naghmana Rashid, Muhammad Junaid, Muhammad Nadeem Zafar, Muhammad Faheem, Iqbal Ahmad. NiO/NiS Heterostructures: An Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials 2019, 2 (5) , 3587-3594. https://doi.org/10.1021/acsaem.9b00317
    35. Tianyi Kou, Shanwen Wang, Jesse L. Hauser, Mingpeng Chen, Scott R. J. Oliver, Yifan Ye, Jinghua Guo, Yat Li. Ni Foam-Supported Fe-Doped β-Ni(OH)2 Nanosheets Show Ultralow Overpotential for Oxygen Evolution Reaction. ACS Energy Letters 2019, 4 (3) , 622-628. https://doi.org/10.1021/acsenergylett.9b00047
    36. Xui-Fang Chuah, Cheng-Ting Hsieh, Chun-Lung Huang, Duraisamy Senthil Raja, Hao-Wei Lin, Shih-Yuan Lu. In-Situ Grown, Passivator-Modulated Anodization Derived Synergistically Well-Mixed Ni–Fe Oxides from Ni Foam as High-Performance Oxygen Evolution Reaction Electrocatalyst. ACS Applied Energy Materials 2019, 2 (1) , 743-753. https://doi.org/10.1021/acsaem.8b01794
    37. Mohammed Alsultan, Sivakumar Balakrishnan, Jaecheol Choi, Rouhollah Jalili, Prerna Tiwari, Pawel Wagner, Gerhard F. Swiegers. Synergistic Amplification of Water Oxidation Catalysis on Pt by a Thin-Film Conducting Polymer Composite. ACS Applied Energy Materials 2018, 1 (8) , 4235-4246. https://doi.org/10.1021/acsaem.8b00728
    38. Prerna Tiwari, George Tsekouras, Gerhard F. Swiegers, Gordon G. Wallace. Gortex-Based Gas Diffusion Electrodes with Unprecedented Resistance to Flooding and Leaking. ACS Applied Materials & Interfaces 2018, 10 (33) , 28176-28186. https://doi.org/10.1021/acsami.8b05358
    39. Daijiro Inohara, Heishi Maruyama, Yasuo Kakihara, Haruki Kurokawa, Masaharu Nakayama. Cobalt-Doped Goethite-Type Iron Oxyhydroxide (α-FeOOH) for Highly Efficient Oxygen Evolution Catalysis. ACS Omega 2018, 3 (7) , 7840-7845. https://doi.org/10.1021/acsomega.8b01206
    40. Minoh Lee, Michael Shincheon Jee, Seung Yeon Lee, Min Kyung Cho, Jae-Pyoung Ahn, Hyung-Suk Oh, Woong Kim, Yun Jeong Hwang, Byoung Koun Min. Sloughing a Precursor Layer to Expose Active Stainless Steel Catalyst for Water Oxidation. ACS Applied Materials & Interfaces 2018, 10 (29) , 24499-24507. https://doi.org/10.1021/acsami.8b04871
    41. Zhe Xu, Wenchao Li, Yadong Yan, HongXu Wang, Heng Zhu, Meiming Zhao, Shicheng Yan, Zhigang Zou. In-Situ Formed Hydroxide Accelerating Water Dissociation Kinetics on Co3N for Hydrogen Production in Alkaline Solution. ACS Applied Materials & Interfaces 2018, 10 (26) , 22102-22109. https://doi.org/10.1021/acsami.8b04596
    42. Guoxing Zhu, Xulan Xie, Xiaoyun Li, Yuanjun Liu, Xiaoping Shen, Keqiang Xu, Shaowei Chen. Nanocomposites Based on CoSe2-Decorated FeSe2 Nanoparticles Supported on Reduced Graphene Oxide as High-Performance Electrocatalysts toward Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2018, 10 (22) , 19258-19270. https://doi.org/10.1021/acsami.8b04024
    43. Qian Zhou, Yaping Chen, Guoqiang Zhao, Yue Lin, Zhenwei Yu, Xun Xu, Xiaolin Wang, Hua Kun Liu, Wenping Sun, Shi Xue Dou. Active-Site-Enriched Iron-Doped Nickel/Cobalt Hydroxide Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Catalysis 2018, 8 (6) , 5382-5390. https://doi.org/10.1021/acscatal.8b01332
    44. Joseph M. Barforoush, Tess E. Seuferling, Dylan T. Jantz, Kelly R. Song, Kevin C. Leonard. Insights into the Active Electrocatalytic Areas of Layered Double Hydroxide and Amorphous Nickel–Iron Oxide Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials 2018, 1 (4) , 1415-1423. https://doi.org/10.1021/acsaem.8b00190
    45. Zhao Zhang, Tianran Zhang, and Jim Yang Lee . Enhancement Effect of Borate Doping on the Oxygen Evolution Activity of α-Nickel Hydroxide. ACS Applied Nano Materials 2018, 1 (2) , 751-758. https://doi.org/10.1021/acsanm.7b00210
    46. Vladimir Tripkovic, Heine Anton Hansen, and Tejs Vegge . From 3D to 2D Co and Ni Oxyhydroxide Catalysts: Elucidation of the Active Site and Influence of Doping on the Oxygen Evolution Activity. ACS Catalysis 2017, 7 (12) , 8558-8571. https://doi.org/10.1021/acscatal.7b02712
    47. Sriram Kumar, Prasanta Kumar Sahoo, and Ashis Kumar Satpati . Electrochemical and SECM Investigation of MoS2/GO and MoS2/rGO Nanocomposite Materials for HER Electrocatalysis. ACS Omega 2017, 2 (11) , 7532-7545. https://doi.org/10.1021/acsomega.7b00678
    48. Varun Vij, Siraj Sultan, Ahmad M. Harzandi, Abhishek Meena, Jitendra N. Tiwari, Wang-Geun Lee, Taeseung Yoon, and Kwang S. Kim . Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis 2017, 7 (10) , 7196-7225. https://doi.org/10.1021/acscatal.7b01800
    49. Mario Bärtsch, Marta Sarnowska, Olga Krysiak, Christoph Willa, Christian Huber, Lex Pillatsch, Sandra Reinhard, and Markus Niederberger . Multicomposite Nanostructured Hematite–Titania Photoanodes with Improved Oxygen Evolution: The Role of the Oxygen Evolution Catalyst. ACS Omega 2017, 2 (8) , 4531-4539. https://doi.org/10.1021/acsomega.7b00696
    50. Hamed Hajibabaei, Abraham R. Schon, and Thomas W. Hamann . Interface Control of Photoelectrochemical Water Oxidation Performance with Ni1–xFexOy Modified Hematite Photoanodes. Chemistry of Materials 2017, 29 (16) , 6674-6683. https://doi.org/10.1021/acs.chemmater.7b01149
    51. Yuval Elbaz and Maytal Caspary Toroker . Dual Mechanisms: Hydrogen Transfer during Water Oxidation Catalysis of Pure and Fe-Doped Nickel Oxyhydroxide. The Journal of Physical Chemistry C 2017, 121 (31) , 16819-16824. https://doi.org/10.1021/acs.jpcc.7b04142
    52. Pongkarn Chakthranont, Jakob Kibsgaard, Alessandro Gallo, Joonsuk Park, Makoto Mitani, Dimosthenis Sokaras, Thomas Kroll, Robert Sinclair, Mogens B. Mogensen, and Thomas F. Jaramillo . Effects of Gold Substrates on the Intrinsic and Extrinsic Activity of High-Loading Nickel-Based Oxyhydroxide Oxygen Evolution Catalysts. ACS Catalysis 2017, 7 (8) , 5399-5409. https://doi.org/10.1021/acscatal.7b01070
    53. Chaoliang Tan, Xiehong Cao, Xue-Jun Wu, Qiyuan He, Jian Yang, Xiao Zhang, Junze Chen, Wei Zhao, Shikui Han, Gwang-Hyeon Nam, Melinda Sindoro, and Hua Zhang . Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews 2017, 117 (9) , 6225-6331. https://doi.org/10.1021/acs.chemrev.6b00558
    54. Viruthasalam Maruthapandian, Mahendran Mathankumar, Velu Saraswathy, Balasubramanian Subramanian, and Srinivasan Muralidharan . Study of the Oxygen Evolution Reaction Catalytic Behavior of CoxNi1–xFe2O4 in Alkaline Medium. ACS Applied Materials & Interfaces 2017, 9 (15) , 13132-13141. https://doi.org/10.1021/acsami.6b16685
    55. Chao Wang, Reza B. Moghaddam, Michael J. Brett, and Steven H. Bergens . Simple Aqueous Preparation of High Activity and Stability NiFe Hydrous Oxide Catalysts for Water Oxidation. ACS Sustainable Chemistry & Engineering 2017, 5 (1) , 1106-1112. https://doi.org/10.1021/acssuschemeng.6b02391
    56. Toshihiro Takashima, Koki Ishikawa, and Hiroshi Irie . Detection of Intermediate Species in Oxygen Evolution on Hematite Electrodes Using Spectroelectrochemical Measurements. The Journal of Physical Chemistry C 2016, 120 (43) , 24827-24834. https://doi.org/10.1021/acs.jpcc.6b07978
    57. Xin Hong, Karen Chan, Charlie Tsai, and Jens K. Nørskov . How Doped MoS2 Breaks Transition-Metal Scaling Relations for CO2 Electrochemical Reduction. ACS Catalysis 2016, 6 (7) , 4428-4437. https://doi.org/10.1021/acscatal.6b00619
    58. Pingping Zhao, Wei Xu, Xing Hua, Wei Luo, Shengli Chen, and Gongzhen Cheng . Facile Synthesis of a N-Doped Fe3C@CNT/Porous Carbon Hybrid for an Advanced Oxygen Reduction and Water Oxidation Electrocatalyst. The Journal of Physical Chemistry C 2016, 120 (20) , 11006-11013. https://doi.org/10.1021/acs.jpcc.6b03070
    59. Thao T. H. Hoang and Andrew A. Gewirth . High Activity Oxygen Evolution Reaction Catalysts from Additive-Controlled Electrodeposited Ni and NiFe Films. ACS Catalysis 2016, 6 (2) , 1159-1164. https://doi.org/10.1021/acscatal.5b02365
    60. Hyun S. Ahn and Allen J. Bard . Surface Interrogation Scanning Electrochemical Microscopy of Ni1–xFexOOH (0 < x < 0.27) Oxygen Evolving Catalyst: Kinetics of the “fast” Iron Sites. Journal of the American Chemical Society 2016, 138 (1) , 313-318. https://doi.org/10.1021/jacs.5b10977
    61. John R. Morris, John N. Russell, Jr., and Christopher J. Karwacki . An Operando View of the Nanoscale. The Journal of Physical Chemistry Letters 2015, 6 (24) , 4923-4926. https://doi.org/10.1021/acs.jpclett.5b02330
    62. Michaela S. Burke, Lisa J. Enman, Adam S. Batchellor, Shihui Zou, and Shannon W. Boettcher . Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles. Chemistry of Materials 2015, 27 (22) , 7549-7558. https://doi.org/10.1021/acs.chemmater.5b03148
    63. Jeremy A. Bau, Erik J. Luber, and Jillian M. Buriak . Oxygen Evolution Catalyzed by Nickel–Iron Oxide Nanocrystals with a Nonequilibrium Phase. ACS Applied Materials & Interfaces 2015, 7 (35) , 19755-19763. https://doi.org/10.1021/acsami.5b05594
    64. Zhenwei Wan, Yueqi Zhang, Qinglin Ren, Xueru Li, Haitao Yu, Wenkai Zhou, Xinbin Ma, Cuijuan Xuan. Interface engineering of NiS/NiCo2S4 heterostructure with charge redistribution for boosting overall water splitting. Journal of Colloid and Interface Science 2024, 653 , 795-806. https://doi.org/10.1016/j.jcis.2023.09.117
    65. Zilong Wu, Xiangyu Liu, Haijing Li, Zhiyi Sun, Maosheng Cao, Zezhou Li, Chaohe Fang, Jihan Zhou, Chuanbao Cao, Juncai Dong, Shenlong Zhao, Zhuo Chen. A semiconductor-electrocatalyst nano interface constructed for successive photoelectrochemical water oxidation. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38285-z
    66. Ali Saad, Olfa Bechambi, Sajjad Ali, Muhammad Asim Mushtaq, Ghulam Yasin. Tunning the single-phase triggered 3D mesostructured nitride with engineering the thermal nitridation effect for zinc-air batteries. Applied Surface Science 2023, 639 , 158226. https://doi.org/10.1016/j.apsusc.2023.158226
    67. Xuanbing Wang, Junli Wang, Yuantao Yang, Quanshuo Wu, Can Zhang, Jing Wang, Ruidong Xu, Linjing Yang. Boosting the electrocatalytic activity of NiCoS by Zr doping as a promising electrocatalyst for oxygen evolution reaction. Applied Surface Science 2023, 640 , 158361. https://doi.org/10.1016/j.apsusc.2023.158361
    68. Jing Liu, Zebin Yu, Jun Huang, Shuangquan Yao, Ronghua Jiang, Yanping Hou, Wenjun Tang, Pengxin Sun, Hongcheng Huang, Mengqi Wang. Redox-active ligands enhance oxygen evolution reaction activity: Regulating the spin state of ferric ions and accelerating electron transfer. Journal of Colloid and Interface Science 2023, 650 , 1182-1192. https://doi.org/10.1016/j.jcis.2023.07.083
    69. Mohammad Golrokh Siahroudi, Ahmad Ahmadi Daryakenari, Yaser Bahari, Fatemeh Jalali Koldeh, Behrooz Mosallanejad, Majid Karami Keshmarzi, Mohammad Akrami. Stirring-assisted solvothermal synthesis of NGr-Co3O4 nanostructures towards oxygen evolution reaction. International Journal of Electrochemical Science 2023, 18 (10) , 100320. https://doi.org/10.1016/j.ijoes.2023.100320
    70. Muhammad Ali Ehsan, Abuzar Khan, Munzir H. Suliman, Mohamed Javid. Facile deposition of FeNi/Ni hybrid nanoflower electrocatalysts for effective and sustained water oxidation. Nanoscale Advances 2023, 5 (18) , 5122-5130. https://doi.org/10.1039/D3NA00298E
    71. Bo Li, Jun Zhao, Yishang Wu, Guobin Zhang, Haikun Wu, Fucong Lyu, Jun He, Jun Fan, Jian Lu, Yang Yang Li. Identifying Fe as OER Active Sites and Ultralow‐Cost Bifunctional Electrocatalysts for Overall Water Splitting. Small 2023, 19 (37) https://doi.org/10.1002/smll.202301715
    72. Rafael A. Raimundo, Vinícius D. Silva, Luciena S. Ferreira, Francisco J. A. Loureiro, Duncan P. Fagg, Daniel A. Macedo, Uílame U. Gomes, Márcio M. Soares, Rodinei M. Gomes, Marco A. Morales. NiFe Alloy Nanoparticles Tuning the Structure, Magnetism, and Application for Oxygen Evolution Reaction Catalysis. Magnetochemistry 2023, 9 (8) , 201. https://doi.org/10.3390/magnetochemistry9080201
    73. Runze Zhang, Robert Black, Debashish Sur, Parisa Karimi, Kangming Li, Brian DeCost, John R. Scully, Jason Hattrick-Simpers. Editors’ Choice—AutoEIS: Automated Bayesian Model Selection and Analysis for Electrochemical Impedance Spectroscopy. Journal of The Electrochemical Society 2023, 170 (8) , 086502. https://doi.org/10.1149/1945-7111/aceab2
    74. Xue Bai, Jingyi Han, Xiaodi Niu, Jingqi Guan. The d-orbital regulation of isolated manganese sites for enhanced oxygen evolution. Nano Research 2023, 16 (8) , 10796-10802. https://doi.org/10.1007/s12274-023-5859-8
    75. Songhu Bi, Zhen Geng, Yuwei Wang, Zijian Gao, Liming Jin, Mingzhe Xue, Cunman Zhang. Multi‐Stage Porous Nickel–Iron Oxide Electrode for High Current Alkaline Water Electrolysis. Advanced Functional Materials 2023, 33 (31) https://doi.org/10.1002/adfm.202214792
    76. Baghendra Singh, Yu-Cheng Huang, Adyasa Priyadarsini, Pandian Mannu, Sanchaita Dey, Goutam Kumar Lahiri, Bhabani S. Mallik, Chung-Li Dong, Arindam Indra. Structural evolution of a water oxidation catalyst by incorporation of high-valent vanadium from the electrolyte solution. Journal of Materials Chemistry A 2023, 11 (29) , 15906-15914. https://doi.org/10.1039/D3TA01716H
    77. Victoria Kompanijec, Gil M. Repa, Lisa A. Fredin, John R. Swierk. Controlling product selectivity in oxidative desulfurization using an electrodeposited iron oxide film. Dalton Transactions 2023, 52 (28) , 9646-9654. https://doi.org/10.1039/D3DT01074K
    78. Muhammad Mehdi, Byeong‐Seon An, Haesol Kim, Sechan Lee, Changsoo Lee, Myeongmin Seo, Min Wook Noh, Won‐Chul Cho, Chang‐Hee Kim, Chang Hyuck Choi, Byung‐Hyun Kim, MinJoong Kim, Hyun‐Seok Cho. Rational Design of a Stable Fe‐rich Ni‐Fe Layered Double Hydroxide for the Industrially Relevant Dynamic Operation of Alkaline Water Electrolyzers. Advanced Energy Materials 2023, 13 (25) https://doi.org/10.1002/aenm.202204403
    79. Amira Y. Ahmed, Dattatray S. Dhawale, Tarek A. Kandiel. A transparent iron-incorporated nickel hydroxide electrocatalyst for efficient water oxidation. Sustainable Energy & Fuels 2023, 7 (13) , 3025-3033. https://doi.org/10.1039/D3SE00527E
    80. Shantharaja, Giddaerappa, Veeresh A. Sajjan, Koodlur Sannegowda Lokesh. Polymeric cobalt phthalocyanine on nickel foam as an efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy 2023, 48 https://doi.org/10.1016/j.ijhydene.2023.06.023
    81. Dušan Mladenović, Elif Daş, Diogo M. F. Santos, Ayşe Bayrakçeken Yurtcan, Biljana Šljukić. Highly Efficient Oxygen Electrode Obtained by Sequential Deposition of Transition Metal-Platinum Alloys on Graphene Nanoplatelets. Materials 2023, 16 (9) , 3388. https://doi.org/10.3390/ma16093388
    82. Rafael A. Raimundo, Vinícius D. Silva, Luciena S. Ferreira, Francisco J.A. Loureiro, Duncan P. Fagg, Daniel A. Macedo, Uílame U. Gomes, Rodinei M. Gomes, Márcio M. Soares, Marco A. Morales. High magnetic moment of nanoparticle-sphere-like Co, Fe based composites and alloys prepared by proteic sol-gel synthesis: Structure, magnetic study and OER activity. Journal of Alloys and Compounds 2023, 940 , 168783. https://doi.org/10.1016/j.jallcom.2023.168783
    83. Abhisek Majumdar, Pronoy Dutta, Yunho Kang, Golam Masud Karim, Anirban Sikdar, Sujit Kumar Deb, Sang Ouk Kim, Uday Narayan Maiti. Energy-efficient ultrafast microwave crystalline phase evolution for designing highly efficient oxygen evolution catalysts. Applied Surface Science 2023, 617 , 156622. https://doi.org/10.1016/j.apsusc.2023.156622
    84. Susane E.L. Medeiros, Rodolfo B. da Silva, Kelly C. Gomes, Vinícius D. Silva, Juliana A. Gonçalves, Daniel A. Macedo, Annaíres A. Lourenço, Fausthon F. da Silva, Sérgio Azevedo. Influence of particle size on the electrocatalytic activity and optical properties of NiO nanoparticles. Materials Science and Engineering: B 2023, 289 , 116266. https://doi.org/10.1016/j.mseb.2023.116266
    85. Dmitrii A. Rakov. Metal-doped nickel-based chalcogenides and phosphochalcogenides for electrochemical water splitting. Energy Advances 2023, 2 (2) , 235-251. https://doi.org/10.1039/D2YA00152G
    86. Xiangyuan Zhao, Kewei Tang, Xiaomei Wang, Weihong Qi, Hong Yu, Cheng-Feng Du, Qian Ye. A self-supported bifunctional MoNi 4 framework with iron doping for ultra-efficient water splitting. Journal of Materials Chemistry A 2023, 11 (7) , 3408-3417. https://doi.org/10.1039/D2TA08937H
    87. Song Xue, Ru Liu, Yadi Cheng, Sebastian Watzele, Xiangju Song, Mengke Liu, Yajing Zhang, Guanghu He, Oded Nir, Minghua Huang, Heqing Jiang. Monopolar membrane-assisted acid-alkaline amphoteric water electrolysis towards efficient hydrogen generation. Journal of Power Sources 2023, 557 , 232561. https://doi.org/10.1016/j.jpowsour.2022.232561
    88. Ting Zhang, Jingyi Han, Tianmi Tang, Jianrui Sun, Jingqi Guan. Binder-free bifunctional SnFe sulfide/oxyhydroxide heterostructure electrocatalysts for overall water splitting. International Journal of Hydrogen Energy 2023, 48 (12) , 4594-4602. https://doi.org/10.1016/j.ijhydene.2022.11.039
    89. Tianmi Tang, Shihui Jiao, Jingyi Han, Zhenlu Wang, Jingqi Guan. Partially crystallized Ni–Fe oxyhydroxides promotes oxygen evolution. International Journal of Hydrogen Energy 2023, 48 (15) , 5774-5782. https://doi.org/10.1016/j.ijhydene.2022.11.118
    90. Pandiarajan Thangavel, Hojeong Lee, Tae‐Hoon Kong, Seontaek Kwon, Ahmad Tayyebi, Ji‐hoon Lee, Sung Mook Choi, Youngkook Kwon. Immobilizing Low‐Cost Metal Nitrides in Electrochemically Reconstructed Platinum Group Metal (PGM)‐Free Oxy‐(Hydroxides) Surface for Exceptional OER Kinetics in Anion Exchange Membrane Water Electrolysis. Advanced Energy Materials 2023, 13 (6) https://doi.org/10.1002/aenm.202203401
    91. Jiaying Wang, Joseph M. Barforoush, Kevin C. Leonard. Sulfur incorporation into NiFe oxygen evolution electrocatalysts for improved high current density operation. Materials Advances 2023, 4 (1) , 122-133. https://doi.org/10.1039/D2MA00902A
    92. B Shalini Reghunath, Sruthi Rajasekaran, Sunaja Devi K R, Dephan Pinheiro, Jadan Resnik Jaleel UC. N-doped graphene quantum dots incorporated cobalt ferrite/graphitic carbon nitride ternary composite for electrochemical overall water splitting. International Journal of Hydrogen Energy 2023, 48 (8) , 2906-2919. https://doi.org/10.1016/j.ijhydene.2022.10.169
    93. Parul Aggarwal, Bhupendra Singh, Amit Paul. Pore size and electronic tuning in cerium-doped CoFe-LDH for the oxygen evolution reaction. Materials Advances 2023, 488 https://doi.org/10.1039/D3MA00324H
    94. Anagha Usha Vijayakumar, Jael George Mathew, Anya Muzikansky, Hannah-Noa Barad, David Zitoun. Exploration of a NiFeV multi-metal compositional space for the oxygen evolution reaction. Materials Advances 2023, 302 https://doi.org/10.1039/D3MA00368J
    95. Mingyuan Shi, Tianmi Tang, Liyuan Xiao, Jingyi Han, Xue Bai, Yuhang Sun, Siyu Chen, Jingru Sun, Yuanyuan Ma, Jingqi Guan. Nanoflower-like high-entropy Ni–Fe–Cr–Mn–Co (oxy)hydroxides for oxygen evolution. Chemical Communications 2023, 50 https://doi.org/10.1039/D3CC04023B
    96. Rafael A. Prato M., Jan Fransaer, Xochitl Dominguez-Benetton. Self-limiting thin film deposition of amorphous metal oxides from aprotic solvents for oxygen evolution electrocatalysis. Journal of Materials Chemistry A 2023, 103 https://doi.org/10.1039/D3TA02647G
    97. Arunagiri Gayathri, Selvam Mathi, Murugan Vijayarangan, Jayaraman Jayabharathi, Venukopal Thanikachalam. Ultrafine Core‐Shell Nanostructured Iron Cobalt Ferrocyanide with Excellent Electrocatalytic Activity toward Overall Water Splitting. ChemistrySelect 2022, 7 (45) https://doi.org/10.1002/slct.202203616
    98. Jie Zhu, Feng Lin, Yuelan Zhang, Jianghao Wang, Jie Fu, Pingkai Ouyang. High‐Density NiMnFe Hydroxide Nanoparticle‐Nanosheet Arrays for Industrial‐Level Electrochemical Oxygen Evolution Reaction. ChemistrySelect 2022, 7 (45) https://doi.org/10.1002/slct.202203943
    99. Aaron Hodges, Anh Linh Hoang, George Tsekouras, Klaudia Wagner, Chong-Yong Lee, Gerhard F. Swiegers, Gordon G. Wallace. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28953-x
    100. Agnes E. Thorarinsdottir, Samuel S. Veroneau, Daniel G. Nocera. Self-healing oxygen evolution catalysts. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28723-9
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect