ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Insight into the Thermal Quenching Mechanism for Y3Al5O12:Ce3+ through Thermoluminescence Excitation Spectroscopy

View Author Information
Graduate School of Human and Environmental Studies and Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
§ Luminescence Materials Research Group, section FAME-RST, Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft, Netherlands
Debye Institute, Utrecht University, 3508 TA Utrecht, Netherlands
Cite this: J. Phys. Chem. C 2015, 119, 44, 25003–25008
Publication Date (Web):October 9, 2015
https://doi.org/10.1021/acs.jpcc.5b08828
Copyright © 2015 American Chemical Society

    Article Views

    3883

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)

    Abstract

    Abstract Image

    Y3Al5O12(YAG):Ce3+ is the most widely applied phosphor in white LEDs (w-LEDs) because of strong blue absorption and efficient yellow luminescence combined with a high stability and thermal quenching temperature, required for the extreme operating conditions in high-power w-LEDs. The high luminescence quenching temperature (∼600 K) has been well established, but surprisingly, the mechanism for temperature quenching has not been elucidated yet. In this report we investigate the possibility of thermal ionization as a cause of this quenching process by measuring thermoluminescence (TL) excitation spectra at various temperatures. In the TL excitation (TLE) spectrum at room temperature there is no Ce3+:5d1 band (the lowest excited 5d level). However, in the TLE spectrum at 573 K, which corresponds to the onset temperature of luminescence quenching, a TLE band due to the Ce3+:5d1 excitation was observed at around 450 nm. On the basis of our observations we conclude that the luminescence quenching of YAG:Ce3+ at high temperatures is caused by the thermal ionization and not by the thermally activated cross over to the 4f ground state. The conclusion is confirmed by analysis of the positions of the 5d states of Ce3+ relative to the conduction band in the energy band diagram of YAG:Ce3+.

    Cited By

    This article is cited by 266 publications.

    1. Yiyi Ou, Weijie Zhou, Pieter Dorenbos, Hongbin Liang. Cationic Effects on Photo- and X-ray Radioluminescence of K3RE(PO4)2:Ce3+/Pr3+ (RE = La, Gd, and Y) Phosphors toward X-ray Detection. Inorganic Chemistry 2023, 62 (15) , 6181-6188. https://doi.org/10.1021/acs.inorgchem.3c00566
    2. Feng Gao, Qing Pang, Dangli Gao, Chaoyang Jia, Hong Xin, Yong Pan, Yuhua Wang, Sining Yun. Mn2+-Activated Photostimulable Persistent Nanophosphors by Pr3+ Codoping for Rewritable Information Storage. ACS Applied Nano Materials 2023, 6 (4) , 3054-3064. https://doi.org/10.1021/acsanm.2c05552
    3. Kang Zhang, Bo Wang, Tianpeng Liu, Zhiyu Hu, Hongxiang An, Youchao Kong, Qingguang Zeng. Mechanochemical Fabrication of a Mn4+-Activated Inorganic Rb2KTiOF5 Perovskite Red Phosphor for White Light-Emitting Diodes. ACS Applied Optical Materials 2023, 1 (1) , 48-54. https://doi.org/10.1021/acsaom.2c00005
    4. Masato Iwaki, Kazuyoshi Uematsu, Mineo Sato, Kenji Toda. Structure and Luminescence Studies of a Ce3+-Activated Ba5La3MgAl3O15 Green-Emitting Phosphor. Inorganic Chemistry 2023, 62 (3) , 1250-1256. https://doi.org/10.1021/acs.inorgchem.2c04018
    5. Yinghan Wang, Zhengce An, Zhengren Tao, Shuai Zhang, Xiaoyan Yang, Xiaojun Kuang, Shi Ye. Thermodynamics and Kinetics Accounting for Antithermal Quenching of Luminescence in Sc2(MoO4)3: Yb/Er: Perspective beyond Negative Thermal Expansion. The Journal of Physical Chemistry Letters 2022, 13 (51) , 12032-12040. https://doi.org/10.1021/acs.jpclett.2c03449
    6. Xunsheng Zhou, Cai Lin Wang, Yinzhen Wang. Transparent Microcomposite Films Based on a Ce-Doped Li6Gd(BO3)3 Scintillator for Radiation Detection. ACS Omega 2022, 7 (35) , 31567-31576. https://doi.org/10.1021/acsomega.2c04413
    7. Waygen Thor, Hei-Yui Kai, Yonghong Zhang, Ka-Leung Wong, Peter A. Tanner. Thermally Activated Photophysical Processes of Organolanthanide Complexes in Solution. The Journal of Physical Chemistry Letters 2022, 13 (21) , 4800-4806. https://doi.org/10.1021/acs.jpclett.2c01350
    8. Jin He, Nuanhui Cai, Lianshe Fu, Rui Shi. Sensitization of Mn2+ Luminescence by Eu2+: A Combined Study Using Optical Spectroscopy and Luminescence Dynamics Simulations. Inorganic Chemistry 2022, 61 (3) , 1745-1755. https://doi.org/10.1021/acs.inorgchem.1c03623
    9. Fang Su, Bibo Lou, Yiyi Ou, Yunlin Yang, Weijie Zhou, Chang-Kui Duan, Hongbin Liang. VUV–UV–vis Luminescence, Energy Transfer Dynamics, and Potential Applications of Ce3+- and Eu2+-Doped CaMgSi2O6. The Journal of Physical Chemistry C 2021, 125 (10) , 5957-5967. https://doi.org/10.1021/acs.jpcc.1c01320
    10. Christopher Linderälv, Daniel Åberg, Paul Erhart. Luminescence Quenching via Deep Defect States: A Recombination Pathway via Oxygen Vacancies in Ce-Doped YAG. Chemistry of Materials 2021, 33 (1) , 73-80. https://doi.org/10.1021/acs.chemmater.0c02449
    11. Rongfu Zhou, Fengkai Ma, Fang Su, Yiyi Ou, Zeming Qi, Jianhui Zhang, Yan Huang, Pieter Dorenbos, Hongbin Liang. Site Occupancies, VUV-UV–vis Photoluminescence, and X-ray Radioluminescence of Eu2+-Doped RbBaPO4. Inorganic Chemistry 2020, 59 (23) , 17421-17429. https://doi.org/10.1021/acs.inorgchem.0c02714
    12. Mahdi Amachraa, Zhenbin Wang, Chi Chen, Shruti Hariyani, Hanmei Tang, Jakoah Brgoch, Shyue Ping Ong. Predicting Thermal Quenching in Inorganic Phosphors. Chemistry of Materials 2020, 32 (14) , 6256-6265. https://doi.org/10.1021/acs.chemmater.0c02231
    13. Kai Li, Jiaren Du, Dirk Poelman, Henk Vrielinck, Dimitrije Mara, Rik Van Deun. Achieving Efficient Red-Emitting Sr2Ca1−δLnδWO6:Mn4+ (Ln = La, Gd, Y, Lu, δ = 0.10) Phosphors with Extraordinary Luminescence Thermal Stability for Potential UV-LEDs Application via Facile Ion Substitution in Luminescence-Ignorable Sr2CaWO6:Mn4+. ACS Materials Letters 2020, 2 (7) , 771-778. https://doi.org/10.1021/acsmaterialslett.0c00212
    14. Hua Zou, Bing Chen, Yifeng Hu, Qiwei Zhang, Xusheng Wang, Feng Wang. Simultaneous Enhancement and Modulation of Upconversion by Thermal Stimulation in Sc2Mo3O12 Crystals. The Journal of Physical Chemistry Letters 2020, 11 (8) , 3020-3024. https://doi.org/10.1021/acs.jpclett.0c00628
    15. Somrita Dutta, Sudipta Som, Mohan Lal Meena, Rajneesh Chaurasiya, Teng-Ming Chen. Multisite-Occupancy-Driven Intense Narrow-Band Blue Emission from Sr5SiO4Cl6:Eu2+ Phosphor with Excellent Stability and Color Performance. Inorganic Chemistry 2020, 59 (3) , 1928-1939. https://doi.org/10.1021/acs.inorgchem.9b03222
    16. Wei Liu, Enhai Song, Liwei Cheng, Liping Song, Jian Xie, Guodong Li, Yugang Zhang, Yanlong Wang, Yaxing Wang, Zhiguo Xia, Zhifang Chai, Shuao Wang. Introducing Uranium as the Activator toward Highly Stable Narrow-Band Green Emitters with Near-Unity Quantum Efficiency. Chemistry of Materials 2019, 31 (23) , 9684-9690. https://doi.org/10.1021/acs.chemmater.9b03130
    17. Jianwei Qiao, Mahdi Amachraa, Maxim Molokeev, Yu-Chun Chuang, Shyue Ping Ong, Qinyuan Zhang, Zhiguo Xia. Engineering of K3YSi2O7 To Tune Photoluminescence with Selected Activators and Site Occupancy. Chemistry of Materials 2019, 31 (18) , 7770-7778. https://doi.org/10.1021/acs.chemmater.9b02990
    18. Vasilii M. Khanin, Ivan I. Vrubel, Roman G. Polozkov, Ivan D. Venevtsev, Piotr A. Rodnyi, Tansu Tukhvatulina, Kirill Chernenko, Winicjusz Drozdowski, Marcin E. Witkowski, Michal Makowski, Evgenii V. Dorogin, Nikolay V. Rudin, Cees Ronda, Herfried Wieczorek, Jack Boerekamp, Sandra Spoor, Ivan A. Shelykh, Andries Meijerink. Complex Garnets: Microscopic Parameters Characterizing Afterglow. The Journal of Physical Chemistry C 2019, 123 (37) , 22725-22734. https://doi.org/10.1021/acs.jpcc.9b05169
    19. Yuan-Chih Lin, Marco Bettinelli, Maths Karlsson. Unraveling the Mechanisms of Thermal Quenching of Luminescence in Ce3+-Doped Garnet Phosphors. Chemistry of Materials 2019, 31 (11) , 3851-3862. https://doi.org/10.1021/acs.chemmater.8b05300
    20. Rui Shi, Lixin Ning, Yan Huang, Ye Tao, Lirong Zheng, Zhibing Li, Hongbin Liang. Li4SrCa(SiO4)2:Eu2+: A Potential Temperature Sensor with Unique Optical Thermometric Properties. ACS Applied Materials & Interfaces 2019, 11 (10) , 9691-9695. https://doi.org/10.1021/acsami.8b22754
    21. Vasilii M. Khanin, Ivan I. Vrubel, Roman G. Polozkov, Ivan A. Shelykh, Ivan D. Venevtsev, Andries Meijerink, Herfried Wieczorek, Jack Boerekamp, Sandra Spoor, Piotr A. Rodnyi, Cees Ronda. Modeling and Assessment of Afterglow Decay Curves from Thermally Stimulated Luminescence of Complex Garnets. The Journal of Physical Chemistry A 2019, 123 (9) , 1894-1903. https://doi.org/10.1021/acs.jpca.8b11778
    22. Thomas Wylezich, Rolf Böttcher, Atul D. Sontakke, Victor Castaing, Bruno Viana, Andreas Pöppl, Nathalie Kunkel. Lanthanide Ions as Local Probes in Ionic Hydrides: A Pulsed Electron Nuclear Double Resonance and Thermoluminescence Study of Eu2+-Doped Hydride Perovskites. The Journal of Physical Chemistry C 2019, 123 (8) , 5031-5041. https://doi.org/10.1021/acs.jpcc.8b12420
    23. Xiaoyu Ji, Jilin Zhang, Ying Li, Shuzhen Liao, Xinguo Zhang, Zhiyu Yang, Zhengliang Wang, Zhongxian Qiu, Wenli Zhou, Liping Yu, Shixun Lian. Improving Quantum Efficiency and Thermal Stability in Blue-Emitting Ba2–xSrxSiO4:Ce3+ Phosphor via Solid Solution. Chemistry of Materials 2018, 30 (15) , 5137-5147. https://doi.org/10.1021/acs.chemmater.8b01652
    24. Peipei Dang, Sisi Liang, Guogang Li, Yi Wei, Ziyong Cheng, Hongzhou Lian, Mengmeng Shang, Abdulaziz A. Al Kheraif, Jun Lin. Full Color Luminescence Tuning in Bi3+/Eu3+-Doped LiCa3MgV3O12 Garnet Phosphors Based on Local Lattice Distortion and Multiple Energy Transfers. Inorganic Chemistry 2018, 57 (15) , 9251-9259. https://doi.org/10.1021/acs.inorgchem.8b01271
    25. Jun Wen, Zhidong Guo, Hai Guo, Lixin Ning, Chang-Kui Duan, Yucheng Huang, Shengbao Zhan, Min Yin. Thermodynamic Stabilities, Electronic Properties, and Optical Transitions of Intrinsic Defects and Lanthanide Ions (Ce3+, Eu2+, and Eu3+) in Li2SrSiO4. Inorganic Chemistry 2018, 57 (10) , 6142-6151. https://doi.org/10.1021/acs.inorgchem.8b00752
    26. Gauthier Lefevre, Alexander Herfurth, Holger Kohlmann, Adlane Sayede, Thomas Wylezich, Sacha Welinski, Pedro Duarte Vaz, Stewart F. Parker, Jean François Blach, Philippe Goldner, Nathalie Kunkel. Electron–Phonon Coupling in Luminescent Europium-Doped Hydride Perovskites Studied by Luminescence Spectroscopy, Inelastic Neutron Scattering, and First-Principles Calculations. The Journal of Physical Chemistry C 2018, 122 (19) , 10501-10509. https://doi.org/10.1021/acs.jpcc.8b01011
    27. Bibo Lou, Weiguo Jing, Liren Lou, Yongfan Zhang, Min Yin, Chang-Kui Duan. Hybrid Density Functional Study of the Local Structures and Energy Levels of CaAl2O4:Ce3+. The Journal of Physical Chemistry A 2018, 122 (17) , 4306-4312. https://doi.org/10.1021/acs.jpca.8b01913
    28. Jiyou Zhong, Weiren Zhao, Fu Du, Jun Wen, Weidong Zhuang, Ronghui Liu, Chang-Kui Duan, Ligen Wang, Kun Lin. Identifying the Emission Centers and Probing the Mechanism for Highly Efficient and Thermally Stable Luminescence in the La3Si6N11:Ce3+ Phosphor. The Journal of Physical Chemistry C 2018, 122 (14) , 7849-7858. https://doi.org/10.1021/acs.jpcc.8b00683
    29. Yi Wei, Ling Cao, Lemin Lv, Guogang Li, Jiarui Hao, Junsong Gao, Chaochin Su, Chun Che Lin, Ho Seong Jang, Peipei Dang, Jun Lin. Highly Efficient Blue Emission and Superior Thermal Stability of BaAl12O19:Eu2+ Phosphors Based on Highly Symmetric Crystal Structure. Chemistry of Materials 2018, 30 (7) , 2389-2399. https://doi.org/10.1021/acs.chemmater.8b00464
    30. Rui Shi, Xiaojun Wang, Yan Huang, Ye Tao, Lirong Zheng, Hongbin Liang. Site Occupancy and VUV–UV–Vis Photoluminescence of the Lanthanide Ions in BaY2Si3O10. The Journal of Physical Chemistry C 2018, 122 (13) , 7421-7431. https://doi.org/10.1021/acs.jpcc.8b01118
    31. Yuan-Chih Lin, Paul Erhart, Marco Bettinelli, Nathan C. George, Stewart F. Parker, Maths Karlsson. Understanding the Interactions between Vibrational Modes and Excited State Relaxation in Y3–xCexAl5O12: Design Principles for Phosphors Based on 5d–4f Transitions. Chemistry of Materials 2018, 30 (6) , 1865-1877. https://doi.org/10.1021/acs.chemmater.7b04348
    32. Clayton Cozzan, Guillaume Lheureux, Nicholas O’Dea, Emily E. Levin, Jake Graser, Taylor D. Sparks, Shuji Nakamura, Steven P. DenBaars, Claude Weisbuch, and Ram Seshadri . Stable, Heat-Conducting Phosphor Composites for High-Power Laser Lighting. ACS Applied Materials & Interfaces 2018, 10 (6) , 5673-5681. https://doi.org/10.1021/acsami.8b00074
    33. Yixi Zhuang, Ying Lv, Le Wang, Wenwei Chen, Tian-Liang Zhou, Takashi Takeda, Naoto Hirosaki, and Rong-Jun Xie . Trap Depth Engineering of SrSi2O2N2:Ln2+,Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) Persistent Luminescence Materials for Information Storage Applications. ACS Applied Materials & Interfaces 2018, 10 (2) , 1854-1864. https://doi.org/10.1021/acsami.7b17271
    34. Takuya Hasegawa, Yusuke Abe, Atsuya Koizumi, Tadaharu Ueda, Kenji Toda, and Mineo Sato . Bluish-White Luminescence in Rare-Earth-Free Vanadate Garnet Phosphors: Structural Characterization of LiCa3MV3O12 (M = Zn and Mg). Inorganic Chemistry 2018, 57 (2) , 857-866. https://doi.org/10.1021/acs.inorgchem.7b02820
    35. Suchinder K. Sharma, Marco Bettinelli, Irene Carrasco, and Maths Karlsson . Influence of Ce3+ Concentration on the Thermal Stability and Charge-Trapping Dynamics in the Green Emitting Phosphor CaSc2O4:Ce3+. The Journal of Physical Chemistry C 2017, 121 (41) , 23096-23103. https://doi.org/10.1021/acs.jpcc.7b08263
    36. Litian Lin, Rui Shi, Rongfu Zhou, Qi Peng, Chunmeng Liu, Ye Tao, Yan Huang, Pieter Dorenbos, and Hongbin Liang . The Effect of Sr2+ on Luminescence of Ce3+-Doped (Ca,Sr)2Al2SiO7. Inorganic Chemistry 2017, 56 (20) , 12476-12484. https://doi.org/10.1021/acs.inorgchem.7b01939
    37. Jiyou Zhong, Weiren Zhao, Weidong Zhuang, Wei Xiao, Yaling Zheng, Fu Du, and Ligen Wang . Origin of Spectral Blue Shift of Lu3+-Codoped YAG:Ce3+ Phosphor: First-Principles Study. ACS Omega 2017, 2 (9) , 5935-5941. https://doi.org/10.1021/acsomega.7b00304
    38. Chunpei Yan, Zhanning Liu, Weidong Zhuang, Ronghui Liu, Xianran Xing, Yuanhong Liu, Guantong Chen, Yanfeng Li, and Xiaole Ma . YScSi4N6C:Ce3+—A Broad Cyan-Emitting Phosphor To Weaken the Cyan Cavity in Full-Spectrum White Light-Emitting Diodes. Inorganic Chemistry 2017, 56 (18) , 11087-11095. https://doi.org/10.1021/acs.inorgchem.7b01408
    39. Jumpei Ueda, Ryomei Maki, and Setsuhisa Tanabe . Vacuum Referred Binding Energy (VRBE)-Guided Design of Orange Persistent Ca3Si2O7:Eu2+ Phosphors. Inorganic Chemistry 2017, 56 (17) , 10353-10360. https://doi.org/10.1021/acs.inorgchem.7b01214
    40. Xian Qin, Xiaowang Liu, Wei Huang, Marco Bettinelli, and Xiaogang Liu . Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects. Chemical Reviews 2017, 117 (5) , 4488-4527. https://doi.org/10.1021/acs.chemrev.6b00691
    41. Chun-Feng Lai, Jia-Sian Li, and Chung-Wen Shen . High-Efficiency Robust Free-Standing Composited Phosphor Films with 2D and 3D Nanostructures for High-Power Remote White LEDs. ACS Applied Materials & Interfaces 2017, 9 (5) , 4851-4859. https://doi.org/10.1021/acsami.6b12531
    42. Nathalie Kunkel, Atul D. Sontakke, Stephan Kohaut, Bruno Viana, and Pieter Dorenbos . Thermally Stimulated Luminescence and First-Principle Study of Defect Configurations in the Perovskite-Type Hydrides LiMH3:Eu2+ (M = Sr, Ba) and the Corresponding Deuterides. The Journal of Physical Chemistry C 2016, 120 (51) , 29414-29422. https://doi.org/10.1021/acs.jpcc.6b10088
    43. Hongde Luo, Lixin Ning, Yuanyuan Dong, Adrie J. J. Bos, and Pieter Dorenbos . Electronic Structure and Site Occupancy of Lanthanide-Doped (Sr, Ca)3(Y, Lu)2Ge3O12 Garnets: A Spectroscopic and First-Principles Study. The Journal of Physical Chemistry C 2016, 120 (50) , 28743-28752. https://doi.org/10.1021/acs.jpcc.6b09077
    44. Julija Grigorjevaite and Arturas Katelnikovas . Luminescence and Luminescence Quenching of K2Bi(PO4)(MoO4):Eu3+ Phosphors with Efficiencies Close to Unity. ACS Applied Materials & Interfaces 2016, 8 (46) , 31772-31782. https://doi.org/10.1021/acsami.6b11766
    45. Atul D. Sontakke, Jumpei Ueda, Jian Xu, Kazuki Asami, Misaki Katayama, Yasuhiro Inada, and Setsuhisa Tanabe . A Comparison on Ce3+ Luminescence in Borate Glass and YAG Ceramic: Understanding the Role of Host’s Characteristics. The Journal of Physical Chemistry C 2016, 120 (31) , 17683-17691. https://doi.org/10.1021/acs.jpcc.6b04159
    46. Rui Shi, Jinzhong Xu, Guokui Liu, Xuejie Zhang, Weijie Zhou, Fengjuan Pan, Yan Huang, Ye Tao, and Hongbin Liang . Spectroscopy and Luminescence Dynamics of Ce3+ and Sm3+ in LiYSiO4. The Journal of Physical Chemistry C 2016, 120 (8) , 4529-4537. https://doi.org/10.1021/acs.jpcc.5b12501
    47. Qi Peng, Chunmeng Liu, Dejian Hou, Weijie Zhou, Chong-Geng Ma, Guokui Liu, Mikhail G. Brik, Ye Tao, and Hongbin Liang . Luminescence of Ce3+-Doped MB2Si2O8 (M = Sr, Ba): A Deeper Insight into the Effects of Electronic Structure and Stokes Shift. The Journal of Physical Chemistry C 2016, 120 (1) , 569-580. https://doi.org/10.1021/acs.jpcc.5b10355
    48. J. Collins, K.C. Mishra. A statistical model of thermal ionization of excited Ce ions in YAG. Journal of Luminescence 2024, 266 , 120254. https://doi.org/10.1016/j.jlumin.2023.120254
    49. G. Ouertani, K. Maciejewska, W. Piotrowski, K. Horchani-Naifer, L. Marciniak, M. Ferhi. High thermal stability of warm white emitting single phase GdPO4: Dy3+/ Sm3+ phosphor for UV excited wLEDs. Journal of Luminescence 2024, 265 , 120228. https://doi.org/10.1016/j.jlumin.2023.120228
    50. G. Souadi, Ümit H. Kaynar, M. Sonsuz, S. Akça-Özalp, M. Ayvacikli, M. Topaksu, O.T. Ozmen, N. Can. Unravelling the impact of unusual heating rate, dose-response and trap parameters on the thermoluminescence of Sm3+ activated GdAl3(BO3)4 phosphors exposed to beta particle irradiation. Radiation Physics and Chemistry 2023, 213 , 111211. https://doi.org/10.1016/j.radphyschem.2023.111211
    51. Po Lun Chu, Wei-Lun Huang, Sheng-Yuan Chu. Effect of silica encapsulation on the stability and photoluminescence emission of FAxCs1-xPbX3 quantum dots for white mini light emitting diodes. Journal of Luminescence 2023, 263 , 120093. https://doi.org/10.1016/j.jlumin.2023.120093
    52. Yun Mou, Yang Peng, Xinzhong Wang, Jiaxin Liu, Jiuzhou Zhao, Ziliang Hao, Zikang Yu, Qing Wang, Jianming Xu. Unique sandwich and microstructure design of phosphor-in-glass film for high brightness laser-driven white lighting. Journal of the European Ceramic Society 2023, 2 https://doi.org/10.1016/j.jeurceramsoc.2023.11.062
    53. Shanshan Hu, Chenzhang Gu, Shuang Lu, Ying Hong, Qi Wu, Mengmeng Fu, Puxian Xiong, Yinzhen Wang. UVA-emitting composite film based on LaB3O6:Ce3+ phosphor for X-ray imaging. Dyes and Pigments 2023, 215 , 111216. https://doi.org/10.1016/j.dyepig.2023.111216
    54. Pieter Dorenbos. Thermal quenching of lanthanide luminescence via charge transfer states in inorganic materials. Journal of Materials Chemistry C 2023, 11 (24) , 8129-8145. https://doi.org/10.1039/D2TC04439K
    55. Greta Merkininkaite, Akvilė Zabiliūtė-Karaliūnė, Thomas Jüstel, Vaidas Klimkevicius, Simas Sakirzanovas, Arturas Katelnikovas. Ce 3 + → Cr3+ energy transfer in Y 3 Al 3 MgSiO12 garnet host and application in horticultural lighting. Ceramics International 2023, 49 (11) , 16796-16808. https://doi.org/10.1016/j.ceramint.2023.02.040
    56. Jun Qiao, Siyan Jia, Shuai He, Jia Liu, Yonghong Ma. Modification of the green CSS:Ce3+ phosphor by ion substitution for obtaining an orange phosphor for white LEDs. Journal of Materials Science: Materials in Electronics 2023, 34 (13) https://doi.org/10.1007/s10854-023-10493-9
    57. Zhiyu Yang, Yifei Zhao, Jumpei Ueda, Maxim S. Molokeev, Mengmeng Shang, Zhiguo Xia. Engineering charge-transfer interactions for red-emitting SrLa(Sc,Ga)O4:Ce3+ phosphor with improved thermal stability. Science China Materials 2023, 66 (5) , 1989-1996. https://doi.org/10.1007/s40843-022-2315-9
    58. Jiamin Tang, Jiayong Si, Guodong Xie, Gemei Cai. Strong energy transfer and color tunable emission in Eu2+ and Mn2+ co-doped Na2BaSr(PO4)2 phosphor. Ceramics International 2023, 49 (10) , 15581-15587. https://doi.org/10.1016/j.ceramint.2023.01.147
    59. Minzhen Wen, Baotong Guo, Shanghuan Chen, Xiao Hu, Xuejun Fan, Guoqi Zhang, Jiajie Fan. Hydrolysis Mechanism Analysis of (Ca, Sr)AlSiN₃:Eu²⁺ Red Phosphor Aged Under Pressure Cooker Test and 85°C&85%RH Test: Kinetics Modeling and First-principles Calculation. 2023, 1-7. https://doi.org/10.1109/EuroSimE56861.2023.10100750
    60. Tianshuai Lyu, Pieter Dorenbos, Zhanhua Wei. Designing LiTaO3:Ln3+,Eu3+ (Ln = Tb or Pr) perovskite dosimeter with excellent charge carrier storage capacity and stability for anti-counterfeiting and flexible X-ray imaging. Chemical Engineering Journal 2023, 461 , 141685. https://doi.org/10.1016/j.cej.2023.141685
    61. Shaokun Ling, Xiaoyan Qin, Chang chen, Kai Meng, Yifeng Yan, Junyun Ming, Sen Liao, Yingheng Huang, Lei Hou. Intrinsic imperfect and zero thermal quenching property for a novel β-NaYF4:Eu3+,Tb3+ red-light emitting phosphor for NUV LEDs. Journal of Alloys and Compounds 2023, 940 , 168923. https://doi.org/10.1016/j.jallcom.2023.168923
    62. J. Collins, K. C. Mishra. A Model of the Temperature Dependence of Concentration Quenching of Luminescence in Doped Insulators. ECS Journal of Solid State Science and Technology 2023, 12 (4) , 046007. https://doi.org/10.1149/2162-8777/accd1e
    63. Le Wang, Guozhen Ding, Shuxing Li, Shiro Funahashi, Takashi Takeda, Lu Yin, Pei Liang, Naoto Hirosaki, Rong-Jun Xie. Broadband orange-emitting Sr 3 Si 8 O 4 N 10 :Eu 2+ phosphor discovered by a modified single-particle-diagnosis approach. Journal of Advanced Ceramics 2023, 12 (4) , 734-746. https://doi.org/10.26599/JAC.2023.9220716
    64. Arnoldus J. van Bunningen, Atul D. Sontakke, Ruben van der Vliet, Vincent G. Spit, Andries Meijerink. Luminescence Temperature Quenching in Mn 2+ Phosphors. Advanced Optical Materials 2023, 11 (6) https://doi.org/10.1002/adom.202202794
    65. Yang Wang, Shuai Zhou, Po Hu, Wei Zhong, Jiajun Fu. Temperature-sensitive lanthanide-doped core-multishell nanocrystals with excitation-wavelength-dependent bimodal luminescence thermo-behaviors and their application in dynamic anticounterfeiting. Journal of Alloys and Compounds 2023, 938 , 168442. https://doi.org/10.1016/j.jallcom.2022.168442
    66. Chenfei Xiang, Xiuping Wu, Yanjie Zhang, Zihan Zhao, Desheng Li, Hao Song, Bing Li. Versatile phosphor-in-glass based on Sn–F–P–O matrix with ultra-high color rendering for white LEDs/LDs. Journal of Luminescence 2023, 255 , 119593. https://doi.org/10.1016/j.jlumin.2022.119593
    67. Guang‐Hsun Tan, Yu‐Neng Chen, Yung‐Tang Chuang, Hao‐Cheng Lin, Chung‐An Hsieh, Yi‐Sheng Chen, Tzu‐Yi Lee, Wen‐Chien Miao, Hao‐Chung Kuo, Li‐Yin Chen, Ken‐Tsung Wong, Hao‐Wu Lin. Highly Luminescent Earth‐Benign Organometallic Manganese Halide Crystals with Ultrahigh Thermal Stability of Emission from 4 to 623 K. Small 2023, 19 (8) https://doi.org/10.1002/smll.202205981
    68. Zheng Lu, Dashuai Sun, Zeyu Lyu, Sida Shen, Lixuan Wang, Jianhui Wang, Hanwei Zhao, Hongpeng You. Novel efficient SrMgY 3 (SiO 4 ) 3 F:Ce 3+ ,Tb 3+ phosphor with tunable color and thermal stability through energy transfer. Journal of the American Ceramic Society 2023, 106 (2) , 1182-1193. https://doi.org/10.1111/jace.18844
    69. Hui Lin, Yutong Duan, Yuxin Pan, Sa Chu Rong Gui, Yukun Li, Ruijin Hong, Dawei Zhang. Spark plasma sintering of MgAl 2 O 4 :Mn 2+ transparent ceramic phosphors with low thermal quenching, narrow-band green emission. Optics Express 2023, 31 (1) , 95. https://doi.org/10.1364/OE.474562
    70. Yangmin Tang, Mingxue Deng, Machao Wang, Xiaofeng Liu, Zhenzhen Zhou, Jiacheng Wang, Qian Liu. Bismuth‐Activated Persistent Phosphors. Advanced Optical Materials 2023, 11 (2) https://doi.org/10.1002/adom.202201827
    71. Mohan Lal Meena, Sudipta Som, Chung-Hsin Lu, Ranveer Singh Badgoti, Somrita Dutta, Rajan Kumar Singh, Shawn D. Lin, Hendrik C. Swart. Metal oxides based materials for display devices. 2023, 297-330. https://doi.org/10.1016/B978-0-323-85241-8.00010-4
    72. Yingjie Song, Jigao Song, Menglin Qiu, Guangfu Wang, Jinfu Zhang. Temperature and fluence dependence of the luminescence properties of Ce:YAG single crystals with ion beam-induced luminescence. Radiation Measurements 2023, 160 , 106878. https://doi.org/10.1016/j.radmeas.2022.106878
    73. Shirun Yan. On The Validity of the Defect- Induced Negative Thermal Quenching of Eu 2+ -Doped Phosphors. ECS Journal of Solid State Science and Technology 2023, 12 (1) , 016001. https://doi.org/10.1149/2162-8777/acaf16
    74. Shaokun Ling, Xiaoyan Qin, Yifeng Yan, Chang Chen, Kai Meng, Junyun Ming, Sen Liao, Yingheng Huang, Lei Hou. Crystal defect induced zero thermal quenching β-NaYF 4 : Eu 3+ , Sm 3+ red-emitting phosphor. RSC Advances 2022, 13 (1) , 534-546. https://doi.org/10.1039/D2RA06567C
    75. Nihui Huang, Guojun Lu, Bihai Bai, Zijun Chen, Min Zhang, Yuechan Li, Chunyan Cao, An Xie. Preparation and Photoluminescent Properties of Tb3+-Doped Lu2W3O12 and Lu2Mo3O12 Green Phosphors. Chemosensors 2022, 10 (12) , 533. https://doi.org/10.3390/chemosensors10120533
    76. Kang Zhang, Bo Wang, Tianpeng Liu, Hongxiang An, Shuwei Deng, Zhiyu Hu, Youchao Kong, Qingguang Zeng. Sc dopant induced tailoring of persistent luminescence in Na 3 YSi 3 O 9 :Eu 2+ for information recording. Journal of Materials Chemistry C 2022, 10 (42) , 15967-15980. https://doi.org/10.1039/D2TC03235J
    77. Renjie Jiang, Jie Chen, Yanna Tian, Xuezhuan Yi, Yanru Tang, Mingqin Li, Shiji Shen, Shengming Zhou. Phase composition design of high performance Al2O3-YAG: Ce ceramic phosphors for high-power laser lighting. Optical Materials 2022, 133 , 113014. https://doi.org/10.1016/j.optmat.2022.113014
    78. Shaokun Ling, Chang Chen, Kai Meng, Yifeng Yan, Junyun Ming, Sen Liao, Yingheng Huang. A crystal defect led zero thermal quenching β-NaYF 4  : Eu 3+ ,Dy 3+ red emitting phosphor. RSC Advances 2022, 12 (47) , 30803-30816. https://doi.org/10.1039/D2RA05674G
    79. Yiyi Ou, Yunlin Yang, Fengkai Ma, Zeming Qi, Mikhail G. Brik, Hongbin Liang. Concentration palette enabling temperature-responsive luminescence co-modulations of inorganic phosphors for a thermally triggered security tag. Journal of Materials Chemistry C 2022, 10 (40) , 15096-15104. https://doi.org/10.1039/D2TC03374G
    80. Yun Mou, Zikang Yu, Zhenyu Lei, Mingxiang Chen, Yang Peng. Enhancing opto-thermal performances of white laser lighting by high reflective phosphor converter. Journal of Alloys and Compounds 2022, 918 , 165637. https://doi.org/10.1016/j.jallcom.2022.165637
    81. Feiyong Yang, Haihua He, Zhenxiang Liu, Zixiu Chen, Wenxia Zhang, Zhunian Jin, Jin Min. Synthesis, enhanced photoluminescence, and multifunctional applications of CaSr2(VO4)2:Sm3+ phosphor via co-doping with alkali metal (Li+, Na+, K+) ions. Physica B: Condensed Matter 2022, 642 , 414137. https://doi.org/10.1016/j.physb.2022.414137
    82. Tianshuai Lyu, Pieter Dorenbos, Canhua Li, Zhanhua Wei. Wide Range X‐Ray to Infrared Photon Detection and Energy Storage in LiTaO 3 :Bi 3+ ,Dy 3+ Perovskite. Laser & Photonics Reviews 2022, 16 (9) https://doi.org/10.1002/lpor.202200055
    83. Yuuki Kitagawa, Jumpei Ueda, Setsuhisa Tanabe. Time-resolved and temperature-dependent spectroscopy for blue luminescence of monoclinic YSiO2N:Ce3+ phosphor. Journal of Luminescence 2022, 249 , 118943. https://doi.org/10.1016/j.jlumin.2022.118943
    84. Mocharla Purna Durga Parimala, M. C. Rao, K. Suresh, Ch. Vijay Anil Dai, K. V. R. Murthy, Vikas Dubey. Luminescence studies of a Li 2 Ca 1−x SiO 4 :xSm 3+ phosphor for the generation of white light under NUV‐excited phosphor converting LEDs. Luminescence 2022, 37 (8) , 1284-1289. https://doi.org/10.1002/bio.4294
    85. Dongcheng Jiang, Lei Geng, Shaoshuai Zhou, Yunjian Wang. Photoluminescence properties and energy transfer in the Sm3+ and Eu3+ co-doped Ca3Bi(PO4)3 red phosphor. Inorganic Chemistry Communications 2022, 142 , 109668. https://doi.org/10.1016/j.inoche.2022.109668
    86. Oskari Ville Pakari, Jeppe Brage Christensen, Eduardo Gardenali Yukihara, Lily Bossin. The effect of shallow and deep traps on the determination of thermal quenching using pulsed optically stimulated luminescence: The case of Al2O3:C. Journal of Luminescence 2022, 248 , 118982. https://doi.org/10.1016/j.jlumin.2022.118982
    87. Gabriel Ferro, Davy Carole, François Cauwet, Loren Acher, Hyewon Ji, Rodica Chiriac, François Toche, Arnaud Brioude. Thermochromic properties of some colored oxide materials. Optical Materials: X 2022, 15 , 100167. https://doi.org/10.1016/j.omx.2022.100167
    88. Takahiko Horiai, Jan Pejchal, Juraj Paterek, Romana Kucerkova, Yuui Yokota, Akira Yoshikawa, Martin Nikl. Crystal growth and optical properties of Ce-doped (Y, Lu)AlO 3 single crystal. Japanese Journal of Applied Physics 2022, 61 (7) , 072002. https://doi.org/10.35848/1347-4065/ac7271
    89. Jianwei Zhou, Hongxing Cai, Yu Ren, Shuang Li, Chunxu Jiang, Zhong Lv, Guannan Qu, Yong Tan, Jing Shi, Tingting Wang, Quansheng Liu. Research on NCFCP compact broadband NIR detector imaging and energy transfer function. Optics Express 2022, 30 (13) , 23716. https://doi.org/10.1364/OE.460761
    90. Dagmara Kulesza, Adrie J.J. Bos, Eugeniusz Zych. The effect of temperature and excitation energy of the high- and low-spin 4f→5d transitions on charging of traps in Lu2O3:Tb,M (M = Ti, Hf). Acta Materialia 2022, 231 , 117852. https://doi.org/10.1016/j.actamat.2022.117852
    91. Masato Iwaki, Honoka Takahashi, Kazuyoshi Uematsu, Kenji Toda, Mineo Sato. Emission color shift from green yellow to reddish orange in Eu2+-activated Ca6BaP4O17 by doping high amount of activator ion. Journal of Luminescence 2022, 246 , 118810. https://doi.org/10.1016/j.jlumin.2022.118810
    92. Faiz Rahman. Diode laser-excited phosphor-converted light sources: a review. Optical Engineering 2022, 61 (06) https://doi.org/10.1117/1.OE.61.6.060901
    93. Xingsen Wang, Quan Jiang, Zixiang Wang, Biqing Song, Hailan Hou, Liang Xu, LiBin Xia. High performance Sr 4 Al 14 O 25 :Mn 4+ phosphor: structure calculation and optical properties. Journal of Materials Chemistry C 2022, 10 (20) , 7909-7916. https://doi.org/10.1039/D2TC00795A
    94. Xiaoxue Huo, Zhijun Wang, Chunjing Tao, Nan Zhang, Dawei Wang, Jinxin Zhao, Zhiping Yang, Panlai Li. Single-component white emitting phosphor Mg2Y2Al2Si2O12:Tb3+, Eu3+, Tm3+ for white LEDs. Journal of Alloys and Compounds 2022, 902 , 163823. https://doi.org/10.1016/j.jallcom.2022.163823
    95. Ang Feng, Jonas J. Joos, Jiaren Du, Philippe F. Smet. Revealing trap depth distributions in persistent phosphors with a thermal barrier for charging. Physical Review B 2022, 105 (20) https://doi.org/10.1103/PhysRevB.105.205101
    96. Xianli Wang, Yuanbing Mao. Achieving Ultraviolet C and Ultraviolet B Dual‐Band Persistent Luminescence by Manipulating the Garnet Structure. Advanced Optical Materials 2022, 10 (5) https://doi.org/10.1002/adom.202102157
    97. Jin He, Rui Shi, Zhiqiang Wang, Minsi Li, Tsun‐Kong Sham, Lianshe Fu. Suppression of Eu 2+ Luminescence Loss. Advanced Optical Materials 2022, 10 (1) https://doi.org/10.1002/adom.202101751
    98. gabriel ferro, Davy CAROLE, François CAUWET, Loren ACHER, Hyewon JI, Rodica Chiriac, François TOCHE, Arnaud BRIOUDE. Thermochromic Properties of Some Colored Oxide Materials. SSRN Electronic Journal 2022, 68 https://doi.org/10.2139/ssrn.4065706
    99. Jumpei Ueda. How to Design and Analyze Persistent Phosphors?. Bulletin of the Chemical Society of Japan 2021, 94 (12) , 2807-2821. https://doi.org/10.1246/bcsj.20210255
    100. Ying Fu, Shixiang Huang, Feng Zhang, Chao Li, Zhangyue Wu, Zhengzheng Zhang. Site occupancies, photoluminescence, and temperature sensing properties of a K7ZnSc2B15O30:Ce3+, Tb3+ phosphor. Journal of Materials Science: Materials in Electronics 2021, 32 (24) , 28335-28345. https://doi.org/10.1007/s10854-021-07209-2
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect