Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Signatures of Vibrational Strong Coupling in Raman Scattering
My Activity
CONTENT TYPES

Figure 1Loading Img
    Article

    Signatures of Vibrational Strong Coupling in Raman Scattering
    Click to copy article linkArticle link copied!

    View Author Information
    Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid E-28049, Spain
    Donostia International Physics Center (DIPC), E-20018 Donostia/San Sebastian, Spain
    *E-mail: [email protected] (J.d.P.).
    *E-mail: [email protected] (J.F.).
    *E-mail: [email protected] (F.J.G.-V.).
    Other Access Options

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2015, 119, 52, 29132–29137
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.5b11654
    Published December 8, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We have analyzed theoretically how the emergence of collective strong coupling between vibrational excitations and confined cavity modes affects Raman scattering processes. This work was motivated by recent experiments (Shalabney et al. Angew. Chem., Int. Ed. 2015, 54, 7971) that reported enhancements of up to 3 orders of magnitude in the Raman signal. By using different models within linear response theory, we show that the total Raman cross section is maintained constant when the system evolves from the weak-coupling limit to the strong-coupling regime. A redistribution of the Raman signal among the two polaritons is the main fingerprint of vibrational strong coupling in the Raman spectrum.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 64 publications.

    1. Alberto Barlini, Andrea Bianchi, Enrico Ronca, Henrik Koch. Theory of Magnetic Properties in Quantum Electrodynamics Environments: Application to Molecular Aromaticity. Journal of Chemical Theory and Computation 2024, Article ASAP.
    2. Matthew Du, Yong Rui Poh, Joel Yuen-Zhou. Vibropolaritonic Reaction Rates in the Collective Strong Coupling Regime: Pollak–Grabert–Hänggi Theory. The Journal of Physical Chemistry C 2023, 127 (11) , 5230-5237. https://doi.org/10.1021/acs.jpcc.3c00122
    3. Takahiro Hayashi, Hiro Minamimoto, Kei Murakoshi. Understanding Spatial Distributions of Dye Molecules Coupled to the Surface Lattice Resonance Mode through Electrochemical Reaction Control. The Journal of Physical Chemistry Letters 2023, 14 (9) , 2268-2276. https://doi.org/10.1021/acs.jpclett.2c03442
    4. Giuseppina Simone. Mapping the Optomechanical Coupling Mediated by Light among Mechanical Resonators Including Multilayer Cavity and Molecules. ACS Applied Optical Materials 2023, 1 (1) , 442-452. https://doi.org/10.1021/acsaom.2c00100
    5. Ruben Esteban, Jeremy J. Baumberg, Javier Aizpurua. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering. Accounts of Chemical Research 2022, 55 (14) , 1889-1899. https://doi.org/10.1021/acs.accounts.1c00759
    6. Francesco Verdelli, Jeff J. P. M. Schulpen, Andrea Baldi, Jaime Gómez Rivas. Chasing Vibro-Polariton Fingerprints in Infrared and Raman Spectra Using Surface Lattice Resonances on Extended Metasurfaces. The Journal of Physical Chemistry C 2022, 126 (16) , 7143-7151. https://doi.org/10.1021/acs.jpcc.2c00779
    7. Gergely Németh, Keigo Otsuka, Dániel Datz, Áron Pekker, Shigeo Maruyama, Ferenc Borondics, Katalin Kamarás. Direct Visualization of Ultrastrong Coupling between Luttinger-Liquid Plasmons and Phonon Polaritons. Nano Letters 2022, 22 (8) , 3495-3502. https://doi.org/10.1021/acs.nanolett.1c04807
    8. Wonmi Ahn, B. S. Simpkins. Raman Scattering under Strong Vibration-Cavity Coupling. The Journal of Physical Chemistry C 2021, 125 (1) , 830-835. https://doi.org/10.1021/acs.jpcc.0c10360
    9. Kishan S. Menghrajani, William L. Barnes. Strong Coupling beyond the Light-Line. ACS Photonics 2020, 7 (9) , 2448-2459. https://doi.org/10.1021/acsphotonics.0c00552
    10. Cla Duri Tschannen, Georgy Gordeev, Stephanie Reich, Lei Shi, Thomas Pichler, Martin Frimmer, Lukas Novotny, Sebastian Heeg. Raman Scattering Cross Section of Confined Carbyne. Nano Letters 2020, 20 (9) , 6750-6755. https://doi.org/10.1021/acs.nanolett.0c02632
    11. Aleksandr G. Avramenko, Aaron S. Rury. Interrogating the Structure of Molecular Cavity Polaritons with Resonance Raman Scattering: An Experimentally Motivated Theoretical Description. The Journal of Physical Chemistry C 2019, 123 (50) , 30551-30561. https://doi.org/10.1021/acs.jpcc.9b08716
    12. Vanessa N. Peters, Srujana Prayakarao, Samantha R. Koutsares, Carl E. Bonner, Mikhail A. Noginov. Control of Physical and Chemical Processes with Nonlocal Metal–Dielectric Environments. ACS Photonics 2019, 6 (12) , 3039-3056. https://doi.org/10.1021/acsphotonics.9b00734
    13. Iffat Imran, Giulia E. Nicolai, Nicholas D. Stavinski, Justin R. Sparks. Tuning Vibrational Strong Coupling with Co-Resonators. ACS Photonics 2019, 6 (10) , 2405-2412. https://doi.org/10.1021/acsphotonics.9b01040
    14. Mohsen Kamandar Dezfouli, Reuven Gordon, Stephen Hughes. Molecular Optomechanics in the Anharmonic Cavity-QED Regime Using Hybrid Metal–Dielectric Cavity Modes. ACS Photonics 2019, 6 (6) , 1400-1408. https://doi.org/10.1021/acsphotonics.8b01091
    15. Wonmi Ahn, Igor Vurgaftman, Adam D. Dunkelberger, Jeffrey C. Owrutsky, and Blake S. Simpkins . Vibrational Strong Coupling Controlled by Spatial Distribution of Molecules within the Optical Cavity. ACS Photonics 2018, 5 (1) , 158-166. https://doi.org/10.1021/acsphotonics.7b00583
    16. Luis A. Martínez-Martínez, Raphael F. Ribeiro, Jorge Campos-González-Angulo, and Joel Yuen-Zhou . Can Ultrastrong Coupling Change Ground-State Chemical Reactions?. ACS Photonics 2018, 5 (1) , 167-176. https://doi.org/10.1021/acsphotonics.7b00610
    17. Denis G. Baranov, Martin Wersäll, Jorge Cuadra, Tomasz J. Antosiewicz, and Timur Shegai . Novel Nanostructures and Materials for Strong Light–Matter Interactions. ACS Photonics 2018, 5 (1) , 24-42. https://doi.org/10.1021/acsphotonics.7b00674
    18. M. Ahsan Zeb, Peter G. Kirton, and Jonathan Keeling . Exact States and Spectra of Vibrationally Dressed Polaritons. ACS Photonics 2018, 5 (1) , 249-257. https://doi.org/10.1021/acsphotonics.7b00916
    19. Shaelyn R. Casey and Justin R. Sparks . Vibrational Strong Coupling of Organometallic Complexes. The Journal of Physical Chemistry C 2016, 120 (49) , 28138-28143. https://doi.org/10.1021/acs.jpcc.6b10493
    20. Markus Kowalewski, Kochise Bennett, and Shaul Mukamel . Cavity Femtochemistry: Manipulating Nonadiabatic Dynamics at Avoided Crossings. The Journal of Physical Chemistry Letters 2016, 7 (11) , 2050-2054. https://doi.org/10.1021/acs.jpclett.6b00864
    21. Loïse Attal, Florent Calvo, Cyril Falvo, Pascal Parneix. Coherent state switching using vibrational polaritons in an asymmetric double-well potential. Physical Chemistry Chemical Physics 2024, 26 (9) , 7534-7544. https://doi.org/10.1039/D3CP05568J
    22. Matteo Castagnola, Rosario Roberto Riso, Alberto Barlini, Enrico Ronca, Henrik Koch. Polaritonic response theory for exact and approximate wave functions. WIREs Computational Molecular Science 2024, 14 (1) https://doi.org/10.1002/wcms.1684
    23. Valeria Vento, Santiago Tarrago Velez, Anna Pogrebna, Christophe Galland. Measurement-induced collective vibrational quantum coherence under spontaneous Raman scattering in a liquid. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38483-9
    24. J. A. Campos-Gonzalez-Angulo, Y. R. Poh, M. Du, J. Yuen-Zhou. Swinging between shine and shadow: Theoretical advances on thermally activated vibropolaritonic chemistry. The Journal of Chemical Physics 2023, 158 (23) https://doi.org/10.1063/5.0143253
    25. Bingyu Cui, Abraham Nizan. Collective response in light–matter interactions: The interplay between strong coupling and local dynamics. The Journal of Chemical Physics 2022, 157 (11) https://doi.org/10.1063/5.0101528
    26. Sabur A. Barbhuiya, Aranya B. Bhattacherjee. Cavity molecular dynamics of vibrational modes enhanced non-linear absorption and population dynamics. Optik 2022, 262 , 169217. https://doi.org/10.1016/j.ijleo.2022.169217
    27. Mikhail Tokman, Maria Erukhimova, Qianfan Chen, Alexey Belyanin. Universal model of strong coupling at the nonlinear resonance in open cavity-QED systems. Physical Review A 2022, 105 (5) https://doi.org/10.1103/PhysRevA.105.053707
    28. Tao E. Li, Bingyu Cui, Joseph E. Subotnik, Abraham Nitzan. Molecular Polaritonics: Chemical Dynamics Under Strong Light–Matter Coupling. Annual Review of Physical Chemistry 2022, 73 (1) , 43-71. https://doi.org/10.1146/annurev-physchem-090519-042621
    29. Kishan S. Menghrajani, Mingzhou Chen, Kishan Dholakia, William L. Barnes. Probing Vibrational Strong Coupling of Molecules with Wavelength‐Modulated Raman Spectroscopy. Advanced Optical Materials 2022, 10 (3) https://doi.org/10.1002/adom.202102065
    30. Kewei Sun, Cunzhi Dou, Maxim F. Gelin, Yang Zhao. Dynamics of disordered Tavis–Cummings and Holstein–Tavis–Cummings models. The Journal of Chemical Physics 2022, 156 (2) https://doi.org/10.1063/5.0076485
    31. Mohsen Kamandar Dezfouli, Stephen Hughes. Quantum Optical Theories of Molecular Optomechanics. 2022, 163-204. https://doi.org/10.1007/978-3-030-90339-8_5
    32. M. S. Rider, W. L. Barnes. Something from nothing: linking molecules with virtual light. Contemporary Physics 2021, 62 (4) , 217-232. https://doi.org/10.1080/00107514.2022.2101749
    33. Wassie Mersha Takele, Lukasz Piatkowski, Frank Wackenhut, Sylwester Gawinkowski, Alfred J. Meixner, Jacek Waluk. Scouting for strong light–matter coupling signatures in Raman spectra. Physical Chemistry Chemical Physics 2021, 23 (31) , 16837-16846. https://doi.org/10.1039/D1CP01863A
    34. Stephen Hughes, Alessio Settineri, Salvatore Savasta, Franco Nori. Resonant Raman scattering of single molecules under simultaneous strong cavity coupling and ultrastrong optomechanical coupling in plasmonic resonators: Phonon-dressed polaritons. Physical Review B 2021, 104 (4) https://doi.org/10.1103/PhysRevB.104.045431
    35. Georg Engelhardt, Jianshu Cao. Dynamical Symmetries and Symmetry-Protected Selection Rules in Periodically Driven Quantum Systems. Physical Review Letters 2021, 126 (9) https://doi.org/10.1103/PhysRevLett.126.090601
    36. Sebastian Heeg, Niclas S. Mueller, Sören Wasserroth, Patryk Kusch, Stephanie Reich. Experimental tests of surface‐enhanced Raman scattering: Moving beyond the electromagnetic enhancement theory. Journal of Raman Spectroscopy 2021, 52 (2) , 310-322. https://doi.org/10.1002/jrs.6014
    37. Leonid Yu. Beliaev, Osamu Takayama, Pavel N. Melentiev, Andrei V. Lavrinenko, , , . Photoluminescence control by hyperbolic metamaterials and metasurfaces: a review. Opto-Electronic Advances 2021, 4 (8) , 210031-210031. https://doi.org/10.29026/oea.2021.210031
    38. Yu Tian, Hailong Wang, Yijia Geng, Lili Cong, Yu Liu, Weiqing Xu, Shuping Xu. Boosting a sub-10  nm nanogap array by plasmon-triggered waveguide resonance. Photonics Research 2020, 8 (12) , 1850. https://doi.org/10.1364/PRJ.404092
    39. Jacopo Fregoni, Stefano Corni, Maurizio Persico, Giovanni Granucci. Photochemistry in the strong coupling regime: A trajectory surface hopping scheme. Journal of Computational Chemistry 2020, 41 (23) , 2033-2044. https://doi.org/10.1002/jcc.26369
    40. Johan F. Triana, Federico J. Hernández, Felipe Herrera. The shape of the electric dipole function determines the sub-picosecond dynamics of anharmonic vibrational polaritons. The Journal of Chemical Physics 2020, 152 (23) https://doi.org/10.1063/5.0009869
    41. Jian Huang, Yu-Hong Liu, Jin-Feng Huang, Jie-Qiao Liao. Generation of macroscopic entangled cat states in a longitudinally coupled cavity-QED model. Physical Review A 2020, 101 (4) https://doi.org/10.1103/PhysRevA.101.043841
    42. Felipe Herrera, Jeffrey Owrutsky. Molecular polaritons for controlling chemistry with quantum optics. The Journal of Chemical Physics 2020, 152 (10) https://doi.org/10.1063/1.5136320
    43. Tomáš Neuman, Javier Aizpurua, Ruben Esteban. Quantum theory of surface-enhanced resonant Raman scattering (SERRS) of molecules in strongly coupled plasmon–exciton systems. Nanophotonics 2020, 9 (2) , 295-308. https://doi.org/10.1515/nanoph-2019-0336
    44. Jorge Calvo, David Zueco, Luis Martin-Moreno. Ultrastrong coupling effects in molecular cavity QED. Nanophotonics 2020, 9 (2) , 277-281. https://doi.org/10.1515/nanoph-2019-0403
    45. Javier Galego Pascual. Cavity Ground-State Chemistry. 2020, 121-156. https://doi.org/10.1007/978-3-030-48698-3_6
    46. Federico J. Hernández, Felipe Herrera. Multi-level quantum Rabi model for anharmonic vibrational polaritons. The Journal of Chemical Physics 2019, 151 (14) https://doi.org/10.1063/1.5121426
    47. Tomáš Neuman, Ruben Esteban, Geza Giedke, Mikołaj K. Schmidt, Javier Aizpurua. Quantum description of surface-enhanced resonant Raman scattering within a hybrid-optomechanical model. Physical Review A 2019, 100 (4) https://doi.org/10.1103/PhysRevA.100.043422
    48. Javier Galego, Clàudia Climent, Francisco J. Garcia-Vidal, Johannes Feist. Cavity Casimir-Polder Forces and Their Effects in Ground-State Chemical Reactivity. Physical Review X 2019, 9 (2) https://doi.org/10.1103/PhysRevX.9.021057
    49. Vanessa N. Peters, Md Omar Faruk, Joshua Asane, Rohan Alexander, D’angelo A. Peters, Srujana Prayakarao, Sangeeta Rout, M. A. Noginov. Effect of strong coupling on photodegradation of the semiconducting polymer P3HT. Optica 2019, 6 (3) , 318. https://doi.org/10.1364/OPTICA.6.000318
    50. Manuel Hertzog, Mao Wang, Jürgen Mony, Karl Börjesson. Strong light–matter interactions: a new direction within chemistry. Chemical Society Reviews 2019, 48 (3) , 937-961. https://doi.org/10.1039/C8CS00193F
    51. Branko Kolaric, Bjorn Maes, Koen Clays, Thomas Durt, Yves Caudano. Strong Light–Matter Coupling as a New Tool for Molecular and Material Engineering: Quantum Approach. Advanced Quantum Technologies 2018, 1 (3) https://doi.org/10.1002/qute.201800001
    52. Hai Wang, Hai‐Yu Wang, Hong‐Bo Sun, Andrea Cerea, Andrea Toma, Francesco De Angelis, Xin Jin, Luca Razzari, Dan Cojoc, Daniele Catone, Fangcheng Huang, Remo Proietti Zaccaria. Dynamics of Strongly Coupled Hybrid States by Transient Absorption Spectroscopy. Advanced Functional Materials 2018, 28 (48) https://doi.org/10.1002/adfm.201801761
    53. Fernando J. Gómez-Ruiz, Oscar L. Acevedo, Ferney J. Rodríguez, Luis Quiroga, Neil F. Johnson. Pulsed Generation of Quantum Coherences and Non-classicality in Light-Matter Systems. Frontiers in Physics 2018, 6 https://doi.org/10.3389/fphy.2018.00092
    54. Jonathan Keeling, Peter G. Kirton. Orientational alignment in cavity quantum electrodynamics. Physical Review A 2018, 97 (5) https://doi.org/10.1103/PhysRevA.97.053836
    55. Vivian F. Crum, Shaelyn R. Casey, Justin R. Sparks. Photon-mediated hybridization of molecular vibrational states. Physical Chemistry Chemical Physics 2018, 20 (2) , 850-857. https://doi.org/10.1039/C7CP04418F
    56. Johannes Flick, Michael Ruggenthaler, Heiko Appel, Angel Rubio. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proceedings of the National Academy of Sciences 2017, 114 (12) , 3026-3034. https://doi.org/10.1073/pnas.1615509114
    57. A. D. Dunkelberger, B. T. Spann, K. P. Fears, B. S. Simpkins, J. C. Owrutsky. Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms13504
    58. Javier del Pino, Francisco J. Garcia-Vidal, Johannes Feist. Exploiting Vibrational Strong Coupling to Make an Optical Parametric Oscillator Out of a Raman Laser. Physical Review Letters 2016, 117 (27) https://doi.org/10.1103/PhysRevLett.117.277401
    59. Ning Wu, Johannes Feist, Francisco J. Garcia-Vidal. When polarons meet polaritons: Exciton-vibration interactions in organic molecules strongly coupled to confined light fields. Physical Review B 2016, 94 (19) https://doi.org/10.1103/PhysRevB.94.195409
    60. Eran Sela, Victor Fleurov, Vladimir A. Yurovsky. Molecular spectra in collective Dicke states. Physical Review A 2016, 94 (3) https://doi.org/10.1103/PhysRevA.94.033848
    61. Artem Strashko, Jonathan Keeling. Raman scattering with strongly coupled vibron-polaritons. Physical Review A 2016, 94 (2) https://doi.org/10.1103/PhysRevA.94.023843
    62. Javier del Pino, Francisco J. Garcia-Vidal, Johannes Feist. Fingerprints of strong coupling between molecular vibrations and microcavities. 2016, 2612-2612. https://doi.org/10.1109/PIERS.2016.7735065
    63. Justyna A. Ćwik, Peter Kirton, Simone De Liberato, Jonathan Keeling. Excitonic spectral features in strongly coupled organic polaritons. Physical Review A 2016, 93 (3) https://doi.org/10.1103/PhysRevA.93.033840
    64. Kochise Bennett, Markus Kowalewski, Shaul Mukamel. Novel photochemistry of molecular polaritons in optical cavities. Faraday Discussions 2016, 194 , 259-282. https://doi.org/10.1039/C6FD00095A

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2015, 119, 52, 29132–29137
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.5b11654
    Published December 8, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    2533

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.