Signatures of Vibrational Strong Coupling in Raman ScatteringClick to copy article linkArticle link copied!
Abstract
We have analyzed theoretically how the emergence of collective strong coupling between vibrational excitations and confined cavity modes affects Raman scattering processes. This work was motivated by recent experiments (Shalabney et al. Angew. Chem., Int. Ed. 2015, 54, 7971) that reported enhancements of up to 3 orders of magnitude in the Raman signal. By using different models within linear response theory, we show that the total Raman cross section is maintained constant when the system evolves from the weak-coupling limit to the strong-coupling regime. A redistribution of the Raman signal among the two polaritons is the main fingerprint of vibrational strong coupling in the Raman spectrum.
Cited By
This article is cited by 64 publications.
- Alberto Barlini, Andrea Bianchi, Enrico Ronca, Henrik Koch. Theory of Magnetic Properties in Quantum Electrodynamics Environments: Application to Molecular Aromaticity. Journal of Chemical Theory and Computation 2024, Article ASAP.
- Matthew Du, Yong Rui Poh, Joel Yuen-Zhou. Vibropolaritonic Reaction Rates in the Collective Strong Coupling Regime: Pollak–Grabert–Hänggi Theory. The Journal of Physical Chemistry C 2023, 127
(11)
, 5230-5237. https://doi.org/10.1021/acs.jpcc.3c00122
- Takahiro Hayashi, Hiro Minamimoto, Kei Murakoshi. Understanding Spatial Distributions of Dye Molecules Coupled to the Surface Lattice Resonance Mode through Electrochemical Reaction Control. The Journal of Physical Chemistry Letters 2023, 14
(9)
, 2268-2276. https://doi.org/10.1021/acs.jpclett.2c03442
- Giuseppina Simone. Mapping the Optomechanical Coupling Mediated by Light among Mechanical Resonators Including Multilayer Cavity and Molecules. ACS Applied Optical Materials 2023, 1
(1)
, 442-452. https://doi.org/10.1021/acsaom.2c00100
- Ruben Esteban, Jeremy J. Baumberg, Javier Aizpurua. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering. Accounts of Chemical Research 2022, 55
(14)
, 1889-1899. https://doi.org/10.1021/acs.accounts.1c00759
- Francesco Verdelli, Jeff J. P. M. Schulpen, Andrea Baldi, Jaime Gómez Rivas. Chasing Vibro-Polariton Fingerprints in Infrared and Raman Spectra Using Surface Lattice Resonances on Extended Metasurfaces. The Journal of Physical Chemistry C 2022, 126
(16)
, 7143-7151. https://doi.org/10.1021/acs.jpcc.2c00779
- Gergely Németh, Keigo Otsuka, Dániel Datz, Áron Pekker, Shigeo Maruyama, Ferenc Borondics, Katalin Kamarás. Direct Visualization of Ultrastrong Coupling between Luttinger-Liquid Plasmons and Phonon Polaritons. Nano Letters 2022, 22
(8)
, 3495-3502. https://doi.org/10.1021/acs.nanolett.1c04807
- Wonmi Ahn, B. S. Simpkins. Raman Scattering under Strong Vibration-Cavity Coupling. The Journal of Physical Chemistry C 2021, 125
(1)
, 830-835. https://doi.org/10.1021/acs.jpcc.0c10360
- Kishan S. Menghrajani, William L. Barnes. Strong Coupling beyond the Light-Line. ACS Photonics 2020, 7
(9)
, 2448-2459. https://doi.org/10.1021/acsphotonics.0c00552
- Cla Duri Tschannen, Georgy Gordeev, Stephanie Reich, Lei Shi, Thomas Pichler, Martin Frimmer, Lukas Novotny, Sebastian Heeg. Raman Scattering Cross Section of Confined Carbyne. Nano Letters 2020, 20
(9)
, 6750-6755. https://doi.org/10.1021/acs.nanolett.0c02632
- Aleksandr G. Avramenko, Aaron S. Rury. Interrogating the Structure of Molecular Cavity Polaritons with Resonance Raman Scattering: An Experimentally Motivated Theoretical Description. The Journal of Physical Chemistry C 2019, 123
(50)
, 30551-30561. https://doi.org/10.1021/acs.jpcc.9b08716
- Vanessa N. Peters, Srujana Prayakarao, Samantha R. Koutsares, Carl E. Bonner, Mikhail A. Noginov. Control of Physical and Chemical Processes with Nonlocal Metal–Dielectric Environments. ACS Photonics 2019, 6
(12)
, 3039-3056. https://doi.org/10.1021/acsphotonics.9b00734
- Iffat Imran, Giulia E. Nicolai, Nicholas D. Stavinski, Justin R. Sparks. Tuning Vibrational Strong Coupling with Co-Resonators. ACS Photonics 2019, 6
(10)
, 2405-2412. https://doi.org/10.1021/acsphotonics.9b01040
- Mohsen Kamandar Dezfouli, Reuven Gordon, Stephen Hughes. Molecular Optomechanics in the Anharmonic Cavity-QED Regime Using Hybrid Metal–Dielectric Cavity Modes. ACS Photonics 2019, 6
(6)
, 1400-1408. https://doi.org/10.1021/acsphotonics.8b01091
- Wonmi Ahn, Igor Vurgaftman, Adam D. Dunkelberger, Jeffrey C. Owrutsky, and Blake S. Simpkins . Vibrational Strong Coupling Controlled by Spatial Distribution of Molecules within the Optical Cavity. ACS Photonics 2018, 5
(1)
, 158-166. https://doi.org/10.1021/acsphotonics.7b00583
- Luis A. Martínez-Martínez, Raphael F. Ribeiro, Jorge Campos-González-Angulo, and Joel Yuen-Zhou . Can Ultrastrong Coupling Change Ground-State Chemical Reactions?. ACS Photonics 2018, 5
(1)
, 167-176. https://doi.org/10.1021/acsphotonics.7b00610
- Denis G. Baranov, Martin Wersäll, Jorge Cuadra, Tomasz J. Antosiewicz, and Timur Shegai . Novel Nanostructures and Materials for Strong Light–Matter Interactions. ACS Photonics 2018, 5
(1)
, 24-42. https://doi.org/10.1021/acsphotonics.7b00674
- M. Ahsan Zeb, Peter G. Kirton, and Jonathan Keeling . Exact States and Spectra of Vibrationally Dressed Polaritons. ACS Photonics 2018, 5
(1)
, 249-257. https://doi.org/10.1021/acsphotonics.7b00916
- Shaelyn R. Casey and Justin R. Sparks . Vibrational Strong Coupling of Organometallic Complexes. The Journal of Physical Chemistry C 2016, 120
(49)
, 28138-28143. https://doi.org/10.1021/acs.jpcc.6b10493
- Markus Kowalewski, Kochise Bennett, and Shaul Mukamel . Cavity Femtochemistry: Manipulating Nonadiabatic Dynamics at Avoided Crossings. The Journal of Physical Chemistry Letters 2016, 7
(11)
, 2050-2054. https://doi.org/10.1021/acs.jpclett.6b00864
- Loïse Attal, Florent Calvo, Cyril Falvo, Pascal Parneix. Coherent state switching using vibrational polaritons in an asymmetric double-well potential. Physical Chemistry Chemical Physics 2024, 26
(9)
, 7534-7544. https://doi.org/10.1039/D3CP05568J
- Matteo Castagnola, Rosario Roberto Riso, Alberto Barlini, Enrico Ronca, Henrik Koch. Polaritonic response theory for exact and approximate wave functions. WIREs Computational Molecular Science 2024, 14
(1)
https://doi.org/10.1002/wcms.1684
- Valeria Vento, Santiago Tarrago Velez, Anna Pogrebna, Christophe Galland. Measurement-induced collective vibrational quantum coherence under spontaneous Raman scattering in a liquid. Nature Communications 2023, 14
(1)
https://doi.org/10.1038/s41467-023-38483-9
- J. A. Campos-Gonzalez-Angulo, Y. R. Poh, M. Du, J. Yuen-Zhou. Swinging between shine and shadow: Theoretical advances on thermally activated vibropolaritonic chemistry. The Journal of Chemical Physics 2023, 158
(23)
https://doi.org/10.1063/5.0143253
- Bingyu Cui, Abraham Nizan. Collective response in light–matter interactions: The interplay between strong coupling and local dynamics. The Journal of Chemical Physics 2022, 157
(11)
https://doi.org/10.1063/5.0101528
- Sabur A. Barbhuiya, Aranya B. Bhattacherjee. Cavity molecular dynamics of vibrational modes enhanced non-linear absorption and population dynamics. Optik 2022, 262 , 169217. https://doi.org/10.1016/j.ijleo.2022.169217
- Mikhail Tokman, Maria Erukhimova, Qianfan Chen, Alexey Belyanin. Universal model of strong coupling at the nonlinear resonance in open cavity-QED systems. Physical Review A 2022, 105
(5)
https://doi.org/10.1103/PhysRevA.105.053707
- Tao E. Li, Bingyu Cui, Joseph E. Subotnik, Abraham Nitzan. Molecular Polaritonics: Chemical Dynamics Under Strong Light–Matter Coupling. Annual Review of Physical Chemistry 2022, 73
(1)
, 43-71. https://doi.org/10.1146/annurev-physchem-090519-042621
- Kishan S. Menghrajani, Mingzhou Chen, Kishan Dholakia, William L. Barnes. Probing Vibrational Strong Coupling of Molecules with Wavelength‐Modulated Raman Spectroscopy. Advanced Optical Materials 2022, 10
(3)
https://doi.org/10.1002/adom.202102065
- Kewei Sun, Cunzhi Dou, Maxim F. Gelin, Yang Zhao. Dynamics of disordered Tavis–Cummings and Holstein–Tavis–Cummings models. The Journal of Chemical Physics 2022, 156
(2)
https://doi.org/10.1063/5.0076485
- Mohsen Kamandar Dezfouli, Stephen Hughes. Quantum Optical Theories of Molecular Optomechanics. 2022, 163-204. https://doi.org/10.1007/978-3-030-90339-8_5
- M. S. Rider, W. L. Barnes. Something from nothing: linking molecules with virtual light. Contemporary Physics 2021, 62
(4)
, 217-232. https://doi.org/10.1080/00107514.2022.2101749
- Wassie Mersha Takele, Lukasz Piatkowski, Frank Wackenhut, Sylwester Gawinkowski, Alfred J. Meixner, Jacek Waluk. Scouting for strong light–matter coupling signatures in Raman spectra. Physical Chemistry Chemical Physics 2021, 23
(31)
, 16837-16846. https://doi.org/10.1039/D1CP01863A
- Stephen Hughes, Alessio Settineri, Salvatore Savasta, Franco Nori. Resonant Raman scattering of single molecules under simultaneous strong cavity coupling and ultrastrong optomechanical coupling in plasmonic resonators: Phonon-dressed polaritons. Physical Review B 2021, 104
(4)
https://doi.org/10.1103/PhysRevB.104.045431
- Georg Engelhardt, Jianshu Cao. Dynamical Symmetries and Symmetry-Protected Selection Rules in Periodically Driven Quantum Systems. Physical Review Letters 2021, 126
(9)
https://doi.org/10.1103/PhysRevLett.126.090601
- Sebastian Heeg, Niclas S. Mueller, Sören Wasserroth, Patryk Kusch, Stephanie Reich. Experimental tests of surface‐enhanced Raman scattering: Moving beyond the electromagnetic enhancement theory. Journal of Raman Spectroscopy 2021, 52
(2)
, 310-322. https://doi.org/10.1002/jrs.6014
- Leonid Yu. Beliaev, Osamu Takayama, Pavel N. Melentiev, Andrei V. Lavrinenko, , , . Photoluminescence control by hyperbolic metamaterials and metasurfaces: a review. Opto-Electronic Advances 2021, 4
(8)
, 210031-210031. https://doi.org/10.29026/oea.2021.210031
- Yu Tian, Hailong Wang, Yijia Geng, Lili Cong, Yu Liu, Weiqing Xu, Shuping Xu. Boosting a sub-10 nm nanogap array by plasmon-triggered waveguide resonance. Photonics Research 2020, 8
(12)
, 1850. https://doi.org/10.1364/PRJ.404092
- Jacopo Fregoni, Stefano Corni, Maurizio Persico, Giovanni Granucci. Photochemistry in the strong coupling regime: A trajectory surface hopping scheme. Journal of Computational Chemistry 2020, 41
(23)
, 2033-2044. https://doi.org/10.1002/jcc.26369
- Johan F. Triana, Federico J. Hernández, Felipe Herrera. The shape of the electric dipole function determines the sub-picosecond dynamics of anharmonic vibrational polaritons. The Journal of Chemical Physics 2020, 152
(23)
https://doi.org/10.1063/5.0009869
- Jian Huang, Yu-Hong Liu, Jin-Feng Huang, Jie-Qiao Liao. Generation of macroscopic entangled cat states in a longitudinally coupled cavity-QED model. Physical Review A 2020, 101
(4)
https://doi.org/10.1103/PhysRevA.101.043841
- Felipe Herrera, Jeffrey Owrutsky. Molecular polaritons for controlling chemistry with quantum optics. The Journal of Chemical Physics 2020, 152
(10)
https://doi.org/10.1063/1.5136320
- Tomáš Neuman, Javier Aizpurua, Ruben Esteban. Quantum theory of surface-enhanced resonant Raman scattering (SERRS) of molecules in strongly coupled plasmon–exciton systems. Nanophotonics 2020, 9
(2)
, 295-308. https://doi.org/10.1515/nanoph-2019-0336
- Jorge Calvo, David Zueco, Luis Martin-Moreno. Ultrastrong coupling effects in molecular cavity QED. Nanophotonics 2020, 9
(2)
, 277-281. https://doi.org/10.1515/nanoph-2019-0403
- Javier Galego Pascual. Cavity Ground-State Chemistry. 2020, 121-156. https://doi.org/10.1007/978-3-030-48698-3_6
- Federico J. Hernández, Felipe Herrera. Multi-level quantum Rabi model for anharmonic vibrational polaritons. The Journal of Chemical Physics 2019, 151
(14)
https://doi.org/10.1063/1.5121426
- Tomáš Neuman, Ruben Esteban, Geza Giedke, Mikołaj K. Schmidt, Javier Aizpurua. Quantum description of surface-enhanced resonant Raman scattering within a hybrid-optomechanical model. Physical Review A 2019, 100
(4)
https://doi.org/10.1103/PhysRevA.100.043422
- Javier Galego, Clàudia Climent, Francisco J. Garcia-Vidal, Johannes Feist. Cavity Casimir-Polder Forces and Their Effects in Ground-State Chemical Reactivity. Physical Review X 2019, 9
(2)
https://doi.org/10.1103/PhysRevX.9.021057
- Vanessa N. Peters, Md Omar Faruk, Joshua Asane, Rohan Alexander, D’angelo A. Peters, Srujana Prayakarao, Sangeeta Rout, M. A. Noginov. Effect of strong coupling on photodegradation of the semiconducting polymer P3HT. Optica 2019, 6
(3)
, 318. https://doi.org/10.1364/OPTICA.6.000318
- Manuel Hertzog, Mao Wang, Jürgen Mony, Karl Börjesson. Strong light–matter interactions: a new direction within chemistry. Chemical Society Reviews 2019, 48
(3)
, 937-961. https://doi.org/10.1039/C8CS00193F
- Branko Kolaric, Bjorn Maes, Koen Clays, Thomas Durt, Yves Caudano. Strong Light–Matter Coupling as a New Tool for Molecular and Material Engineering: Quantum Approach. Advanced Quantum Technologies 2018, 1
(3)
https://doi.org/10.1002/qute.201800001
- Hai Wang, Hai‐Yu Wang, Hong‐Bo Sun, Andrea Cerea, Andrea Toma, Francesco De Angelis, Xin Jin, Luca Razzari, Dan Cojoc, Daniele Catone, Fangcheng Huang, Remo Proietti Zaccaria. Dynamics of Strongly Coupled Hybrid States by Transient Absorption Spectroscopy. Advanced Functional Materials 2018, 28
(48)
https://doi.org/10.1002/adfm.201801761
- Fernando J. Gómez-Ruiz, Oscar L. Acevedo, Ferney J. Rodríguez, Luis Quiroga, Neil F. Johnson. Pulsed Generation of Quantum Coherences and Non-classicality in Light-Matter Systems. Frontiers in Physics 2018, 6 https://doi.org/10.3389/fphy.2018.00092
- Jonathan Keeling, Peter G. Kirton. Orientational alignment in cavity quantum electrodynamics. Physical Review A 2018, 97
(5)
https://doi.org/10.1103/PhysRevA.97.053836
- Vivian F. Crum, Shaelyn R. Casey, Justin R. Sparks. Photon-mediated hybridization of molecular vibrational states. Physical Chemistry Chemical Physics 2018, 20
(2)
, 850-857. https://doi.org/10.1039/C7CP04418F
- Johannes Flick, Michael Ruggenthaler, Heiko Appel, Angel Rubio. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proceedings of the National Academy of Sciences 2017, 114
(12)
, 3026-3034. https://doi.org/10.1073/pnas.1615509114
- A. D. Dunkelberger, B. T. Spann, K. P. Fears, B. S. Simpkins, J. C. Owrutsky. Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons. Nature Communications 2016, 7
(1)
https://doi.org/10.1038/ncomms13504
- Javier del Pino, Francisco J. Garcia-Vidal, Johannes Feist. Exploiting Vibrational Strong Coupling to Make an Optical Parametric Oscillator Out of a Raman Laser. Physical Review Letters 2016, 117
(27)
https://doi.org/10.1103/PhysRevLett.117.277401
- Ning Wu, Johannes Feist, Francisco J. Garcia-Vidal. When polarons meet polaritons: Exciton-vibration interactions in organic molecules strongly coupled to confined light fields. Physical Review B 2016, 94
(19)
https://doi.org/10.1103/PhysRevB.94.195409
- Eran Sela, Victor Fleurov, Vladimir A. Yurovsky. Molecular spectra in collective Dicke states. Physical Review A 2016, 94
(3)
https://doi.org/10.1103/PhysRevA.94.033848
- Artem Strashko, Jonathan Keeling. Raman scattering with strongly coupled vibron-polaritons. Physical Review A 2016, 94
(2)
https://doi.org/10.1103/PhysRevA.94.023843
- Javier del Pino, Francisco J. Garcia-Vidal, Johannes Feist. Fingerprints of strong coupling between molecular vibrations and microcavities. 2016, 2612-2612. https://doi.org/10.1109/PIERS.2016.7735065
- Justyna A. Ćwik, Peter Kirton, Simone De Liberato, Jonathan Keeling. Excitonic spectral features in strongly coupled organic polaritons. Physical Review A 2016, 93
(3)
https://doi.org/10.1103/PhysRevA.93.033840
- Kochise Bennett, Markus Kowalewski, Shaul Mukamel. Novel photochemistry of molecular polaritons in optical cavities. Faraday Discussions 2016, 194 , 259-282. https://doi.org/10.1039/C6FD00095A
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.