ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Coincidence Lattices of 2D Crystals: Heterostructure Predictions and Applications

View Author Information
Grupo de Materiais Semicondutores e Nanotecnologia, Instituto Tecnológico de Aeronáutica, DCTA, 12228-900 São José dos Campos, Brazil
Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, D-07743 Jena, Germany
*D.S.K.: e-mail, [email protected]
*F.B.: e-mail, [email protected]
*M.M.: e-mail, [email protected]
*L.K.T.: e-mail, [email protected]; phone, +55 12 3947-5849.
Cite this: J. Phys. Chem. C 2016, 120, 20, 10895–10908
Publication Date (Web):April 26, 2016
https://doi.org/10.1021/acs.jpcc.6b01496
Copyright © 2016 American Chemical Society

    Article Views

    2786

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    van der Waals heterostructures provide many novel applications due to a combination of properties. However, their experimental construction and theoretical simulation suffer from the incommensurability of 2D crystals with respect to their symmetry and their lattice constants. In this work, we present a simplified method to predict favorable combinations of 2D crystals based on the coincidence lattice method. We present a huge set of possible heterostructures made from transition-metal dichalcogenides, group IV dichalcogenides, graphene, and hexagonal boron nitride. The method is then validated for theoretically and experimentally studied 2D crystals and van der Waals-bonded heterostructures. The power of the approach is demonstrated by comparison of resulting supercell sizes, strain, and relative orientation with experimental and theoretical data available. To display the prospects of this approach, we simulate three heterostructures and analyze the resulting structural and electronic properties, finding favorable stackings and small changes in band alignments in the weakly interacting heterojunction.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.6b01496.

    • Full table containing predictions of coincidence lattices based on TMDCs, group IV dichalcogenides, graphene, and group III–V compounds studied in this work (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 65 publications.

    1. Davide Campi, Nicolas Mounet, Marco Gibertini, Giovanni Pizzi, Nicola Marzari. Expansion of the Materials Cloud 2D Database. ACS Nano 2023, 17 (12) , 11268-11278. https://doi.org/10.1021/acsnano.2c11510
    2. Chol-Hyok Ri, Hyon-U Han, Yun-Sim Kim, Un-Gi Jong, Yun-Hyok Kye, Chol-Jun Yu. Enhancing the Photocatalytic Hydrogen Evolution Performance of the CsPbI3/MoS2 Heterostructure with Interfacial Defect Engineering. The Journal of Physical Chemistry Letters 2022, 13 (18) , 4007-4014. https://doi.org/10.1021/acs.jpclett.2c00851
    3. Enlai Gao, Bozhao Wu, Yelingyi Wang, Xiangzheng Jia, Wengen Ouyang, Ze Liu. Computational Prediction of Superlubric Layered Heterojunctions. ACS Applied Materials & Interfaces 2021, 13 (28) , 33600-33608. https://doi.org/10.1021/acsami.1c04870
    4. Ashima Rawat, Manish Kumar Mohanta, Nityasagar Jena, Dimple, Raihan Ahammed, Abir De Sarkar. Nanoscale Interfaces of Janus Monolayers of Transition Metal Dichalcogenides for 2D Photovoltaic and Piezoelectric Applications. The Journal of Physical Chemistry C 2020, 124 (19) , 10385-10397. https://doi.org/10.1021/acs.jpcc.0c02199
    5. W. T. Geng, V. Wang, Y. C. Liu, T. Ohno, J. Nara. Moiré Potential, Lattice Corrugation, and Band Gap Spatial Variation in a Twist-Free MoTe2/MoS2 Heterobilayer. The Journal of Physical Chemistry Letters 2020, 11 (7) , 2637-2646. https://doi.org/10.1021/acs.jpclett.0c00605
    6. Lei Ge, Hao Yuan, Yuxiang Min, Li Li, Shiqian Chen, Lai Xu, William A. Goddard III. Predicted Optimal Bifunctional Electrocatalysts for the Hydrogen Evolution Reaction and the Oxygen Evolution Reaction Using Chalcogenide Heterostructures Based on Machine Learning Analysis of in Silico Quantum Mechanics Based High Throughput Screening. The Journal of Physical Chemistry Letters 2020, 11 (3) , 869-876. https://doi.org/10.1021/acs.jpclett.9b03875
    7. Dmitrii Nabok, Benjamin Höffling, Claudia Draxl. Energy-Level Alignment at Organic/Inorganic Interfaces from First Principles: Example of Poly(para-phenylene)/Rock-Salt ZnO(100). Chemistry of Materials 2019, 31 (18) , 7143-7150. https://doi.org/10.1021/acs.chemmater.9b01802
    8. Daniel S. Koda, Friedhelm Bechstedt, Marcelo Marques, and Lara K. Teles . Tuning Electronic Properties and Band Alignments of Phosphorene Combined With MoSe2 and WSe2. The Journal of Physical Chemistry C 2017, 121 (7) , 3862-3869. https://doi.org/10.1021/acs.jpcc.6b10976
    9. Simone Brozzesi, Paola Gori, Daniel S. Koda, Friedhelm Bechstedt, Olivia Pulci. Thermodynamics and electronic structure of adsorbed and intercalated plumbene in graphene/hexagonal SiC heterostructures. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-53067-3
    10. Md Tusher Ahmed, Chenhaoyue Wang, Amartya S. Banerjee, Nikhil Chandra Admal. Bicrystallography-informed Frenkel–Kontorova model for interlayer dislocations in strained 2D heterostructures. Mechanics of Materials 2024, 190 , 104903. https://doi.org/10.1016/j.mechmat.2023.104903
    11. Lahari Balisetty, Brandon Wilfong, Xiuquan Zhou, Huafei Zheng, Sz-Chian Liou, Efrain E. Rodriguez. Twisting two-dimensional iron sulfide layers into coincident site superlattices via intercalation chemistry. Chemical Science 2024, 373 https://doi.org/10.1039/D3SC02994H
    12. Klaus Zollner, Simão M. João, Branislav K. Nikolić, Jaroslav Fabian. Twist- and gate-tunable proximity spin-orbit coupling, spin relaxation anisotropy, and charge-to-spin conversion in heterostructures of graphene and transition metal dichalcogenides. Physical Review B 2023, 108 (23) https://doi.org/10.1103/PhysRevB.108.235166
    13. Banat Gul, Muhammad Salman Khan, Abdelhay Salah Mohamed, Guenez Wafa, Hijaz Ahmad. Unveiling the electronic structure and optical properties of two-dimensional TMDCs: First-principles study. Optical Materials Express 2023, https://doi.org/10.1364/OME.502050
    14. Chunyu Wang, Xujie Jin, Rongyao Wu, Yang Gao, Xiaoyuan Wang. A Linear Strain-Free Matching Algorithm for Twisted Two-Dimensional Materials. Crystals 2023, 13 (9) , 1383. https://doi.org/10.3390/cryst13091383
    15. Klaus Zollner, Eike Icking, Jaroslav Fabian. Electronic and spin-orbit properties of h -BN encapsulated bilayer graphene. Physical Review B 2023, 108 (12) https://doi.org/10.1103/PhysRevB.108.125126
    16. Alessia Muroni, Simone Brozzesi, Friedhelm Bechstedt, Paola Gori, Olivia Pulci. Tuning Gaps and Schottky Contacts of Graphene/Phosphorene Heterostructures by Vertical Electric Field and Strain. Nanomaterials 2023, 13 (16) , 2358. https://doi.org/10.3390/nano13162358
    17. Thomas Naimer, Jaroslav Fabian. Twist-angle dependent proximity induced spin-orbit coupling in graphene/topological insulator heterostructures. Physical Review B 2023, 107 (19) https://doi.org/10.1103/PhysRevB.107.195144
    18. Song-Hyok Choe, Won-Hyok Hong, Kum-Chol Kim, Chol-Jun Yu. Insight into the structural and electrochemical properties of the interface between a Na 6 SOI 2 solid electrolyte and a metallic Na anode. Physical Chemistry Chemical Physics 2023, 25 (12) , 8544-8555. https://doi.org/10.1039/D2CP05290C
    19. Klaus Zollner, Paulo E. Faria Junior, Jaroslav Fabian. Strong manipulation of the valley splitting upon twisting and gating in MoSe 2 / CrI 3 and WSe 2 / CrI 3 van der Waals heterostructures. Physical Review B 2023, 107 (3) https://doi.org/10.1103/PhysRevB.107.035112
    20. S. Samaneh Ataei, Ali Sadeghi. Robust broken-gap MoTe 2 / ZrS 2 van der Waals heterostructure. Physical Review B 2022, 106 (24) https://doi.org/10.1103/PhysRevB.106.245301
    21. Mohammad Jafar Molaei, Mohammad Younas, Mashallah Rezakazemi. Van der Waals heterostructures in ultrathin 2D solar cells: State-of-the-art review. Materials Science and Engineering: B 2022, 285 , 115936. https://doi.org/10.1016/j.mseb.2022.115936
    22. Miquel López-Suárez, Francesco Cottone, Igor Neri. Piezoresistive Memories Based on Two-Dimensional Nano-Scale Electromechanical Systems. Crystals 2022, 12 (7) , 968. https://doi.org/10.3390/cryst12070968
    23. Michael Wolloch, Gabriele Losi, Omar Chehaimi, Firat Yalcin, Mauro Ferrario, Maria Clelia Righi. High-throughput generation of potential energy surfaces for solid interfaces. Computational Materials Science 2022, 207 , 111302. https://doi.org/10.1016/j.commatsci.2022.111302
    24. Sijian Li, Luhua Shao, Zhenfei Yang, Shu Cheng, Cong Yang, Yutang Liu, Xinnian Xia. Constructing Ti3C2 MXene/ZnIn2S4 heterostructure as a Schottky catalyst for photocatalytic environmental remediation. Green Energy & Environment 2022, 7 (2) , 246-256. https://doi.org/10.1016/j.gee.2020.09.005
    25. Klaus Zollner, Jaroslav Fabian. Engineering Proximity Exchange by Twisting: Reversal of Ferromagnetic and Emergence of Antiferromagnetic Dirac Bands in Graphene/ Cr 2 Ge 2 Te 6 . Physical Review Letters 2022, 128 (10) https://doi.org/10.1103/PhysRevLett.128.106401
    26. Saismit Naik, Mit H. Naik, Indrajit Maity, Manish Jain. Twister: Construction and structural relaxation of commensurate moiré superlattices. Computer Physics Communications 2022, 271 , 108184. https://doi.org/10.1016/j.cpc.2021.108184
    27. Rui Dong, Alain Jacob, Stéphane Bourdais, Stefano Sanvito. High-throughput bandstructure simulations of van der Waals hetero-bilayers formed by 1T and 2H monolayers. npj 2D Materials and Applications 2021, 5 (1) https://doi.org/10.1038/s41699-021-00200-9
    28. Thomas Naimer, Klaus Zollner, Martin Gmitra, Jaroslav Fabian. Twist-angle dependent proximity induced spin-orbit coupling in graphene/transition metal dichalcogenide heterostructures. Physical Review B 2021, 104 (19) https://doi.org/10.1103/PhysRevB.104.195156
    29. Yu Xiang, Songchun Xie, Zonghuan Lu, Xixing Wen, Jian Shi, Morris Washington, Gwo-Ching Wang, Toh-Ming Lu. Domain boundaries in incommensurate epitaxial layers on weakly interacting substrates. Journal of Applied Physics 2021, 130 (6) https://doi.org/10.1063/5.0057417
    30. Friedhelm Bechstedt, Paola Gori, Olivia Pulci. Beyond graphene: Clean, hydrogenated and halogenated silicene, germanene, stanene, and plumbene. Progress in Surface Science 2021, 96 (3) , 100615. https://doi.org/10.1016/j.progsurf.2021.100615
    31. V. Carnevali, S. Marcantoni, M. Peressi. Moiré patterns generated by stacked 2D lattices: A general algorithm to identify primitive coincidence cells. Computational Materials Science 2021, 196 , 110516. https://doi.org/10.1016/j.commatsci.2021.110516
    32. Stephen Carr, Shiang Fang, Efthimios Kaxiras. Electronic-structure methods for twisted moiré layers. Nature Reviews Materials 2020, 5 (10) , 748-763. https://doi.org/10.1038/s41578-020-0214-0
    33. Miika Mattinen, Peter J. King, Philipp Brüner, Markku Leskelä, Mikko Ritala. Controlling Atomic Layer Deposition of 2D Semiconductor SnS 2 by the Choice of Substrate. Advanced Materials Interfaces 2020, 7 (19) , 2001046. https://doi.org/10.1002/admi.202001046
    34. Martín Leandro Paleico, Jörg Behler. Global optimization of copper clusters at the ZnO(101¯0) surface using a DFT-based neural network potential and genetic algorithms. The Journal of Chemical Physics 2020, 153 (5) https://doi.org/10.1063/5.0014876
    35. Honglin Li, Dongmei Li, Haijun Luo. Comparative Study of Blue Phosphorus–MoTe 2 /WTe 2 van der Waals Heterostructures on Electronic Structures and Band Realignment. physica status solidi (b) 2020, 257 (8) https://doi.org/10.1002/pssb.202000006
    36. Miika Mattinen, Peter J King, Georgi Popov, Jani Hämäläinen, Mikko J Heikkilä, Markku Leskelä, Mikko Ritala. Van der Waals epitaxy of continuous thin films of 2D materials using atomic layer deposition in low temperature and low vacuum conditions. 2D Materials 2020, 7 (1) , 011003. https://doi.org/10.1088/2053-1583/ab4c09
    37. Jia-Qi Hu, Lin-Han Xu, Shun-Qing Wu, Zi-Zhong Zhu. Electronic and optical properties of graphane, silicane, MoS2 homo-bilayers and hetero-bilayers. Current Applied Physics 2019, 19 (11) , 1222-1232. https://doi.org/10.1016/j.cap.2019.07.014
    38. Daniel Schwalbe-Koda, Zach Jensen, Elsa Olivetti, Rafael Gómez-Bombarelli. Graph similarity drives zeolite diffusionless transformations and intergrowth. Nature Materials 2019, 18 (11) , 1177-1181. https://doi.org/10.1038/s41563-019-0486-1
    39. Bruno Lucatto, Daniel S. Koda, Friedhelm Bechstedt, Marcelo Marques, Lara K. Teles. Charge qubit in van der Waals heterostructures. Physical Review B 2019, 100 (12) https://doi.org/10.1103/PhysRevB.100.121406
    40. Aihua Yan, Xiaowei Shi, Fei Huang, Mamoru Fujitsuka, Tetsuro Majima. Efficient photocatalytic H2 evolution using NiS/ZnIn2S4 heterostructures with enhanced charge separation and interfacial charge transfer. Applied Catalysis B: Environmental 2019, 250 , 163-170. https://doi.org/10.1016/j.apcatb.2019.02.075
    41. Xu Gao, Yanqing Shen, Yanyan Ma, Shengyao Wu, Zhongxiang Zhou. Efficient Band Gap Engineering and Enhanced Optical Absorption of Vertical Germanene/ h ‐AlN Bilayer Heterostructure: Potential New Electronics and Optoelectronics. physica status solidi (b) 2019, 256 (8) https://doi.org/10.1002/pssb.201800759
    42. Yanhui Zhang, Stefano Sanvito. Interface engineering of graphene nanosheet reinforced ZrB 2 composites by tuning surface contacts. Physical Review Materials 2019, 3 (7) https://doi.org/10.1103/PhysRevMaterials.3.073604
    43. Ka Wai Lau, Caterina Cocchi, Claudia Draxl. Electronic and optical excitations of two-dimensional ZrS 2 and HfS 2 and their heterostructure. Physical Review Materials 2019, 3 (7) https://doi.org/10.1103/PhysRevMaterials.3.074001
    44. Weiwei Xu, Wangping Xu, Fangyang Zhan, Amel Laref, Rui Wang, Xiaozhi Wu. Effects of Stone–Wales Defect on the Electronic and Optical Properties of Armchair MoS2 Nanoribbon: First-Principles Calculations. Journal of Electronic Materials 2019, 48 (6) , 3763-3776. https://doi.org/10.1007/s11664-019-07141-6
    45. Yuzhi Zhou, Huajie Chen, Aihui Zhou. Plane wave methods for quantum eigenvalue problems of incommensurate systems. Journal of Computational Physics 2019, 384 , 99-113. https://doi.org/10.1016/j.jcp.2019.02.003
    46. Xianyu Tong, Liang Fang, Rulin Liu. Strain-induced electronic properties of van der Waals heterostructures based on tin dichalcogenides. AIP Advances 2019, 9 (5) https://doi.org/10.1063/1.5091705
    47. Wang-Li Tao, Yi Mu, Cui-E Hu, Yan Cheng, Guang-Fu Ji. Electronic structure, optical properties, and phonon transport in Janus monolayer PtSSe via first-principles study. Philosophical Magazine 2019, 99 (8) , 1025-1040. https://doi.org/10.1080/14786435.2019.1572927
    48. Xinsheng Wang, Mongur Hossain, Zhongming Wei, Liming Xie. Growth of two-dimensional materials on hexagonal boron nitride ( h -BN). Nanotechnology 2019, 30 (3) , 034003. https://doi.org/10.1088/1361-6528/aaeb70
    49. Iann C. Gerber, Xavier Marie. Dependence of band structure and exciton properties of encapsulated WSe 2 monolayers on the hBN-layer thickness. Physical Review B 2018, 98 (24) https://doi.org/10.1103/PhysRevB.98.245126
    50. Carlos J Alvarez, Minh Tuan Dau, Alain Marty, Celine Vergnaud, Helene Le Poche, Pascal Pochet, Matthieu Jamet, Hanako Okuno. Impact of a van der Waals interface on intrinsic and extrinsic defects in an MoSe 2 monolayer. Nanotechnology 2018, 29 (42) , 425706. https://doi.org/10.1088/1361-6528/aad66f
    51. Benoit Van Troeye, Aurélien Lherbier, Jean-Christophe Charlier, Xavier Gonze. Large phosphorene in-plane contraction induced by interlayer interactions in graphene-phosphorene heterostructures. Physical Review Materials 2018, 2 (7) https://doi.org/10.1103/PhysRevMaterials.2.074001
    52. Daniel S. Koda, Friedhelm Bechstedt, Marcelo Marques, Lara K. Teles. Trends on band alignments: Validity of Anderson's rule in SnS 2 - and SnSe 2 -based van der Waals heterostructures. Physical Review B 2018, 97 (16) https://doi.org/10.1103/PhysRevB.97.165402
    53. Ke Liu, Binjie Zheng, Jingjun Wu, Yuanfu Chen, Xinqiang Wang, Fei Qi, Duanwei He, Wanli Zhang, Yanrong Li. Synthesis of two-dimensional semiconductor single-crystal PtSe2 under high pressure. Journal of Materials Science 2018, 53 (2) , 1256-1263. https://doi.org/10.1007/s10853-017-1572-x
    54. I. Guilhon, D. S. Koda, L. G. Ferreira, M. Marques, L. K. Teles. Approximate quasiparticle correction for calculations of the energy gap in two-dimensional materials. Physical Review B 2018, 97 (4) https://doi.org/10.1103/PhysRevB.97.045426
    55. Daniel Massatt, Stephen Carr, Mitchell Luskin, Christoph Ortner. Incommensurate Heterostructures in Momentum Space. Multiscale Modeling & Simulation 2018, 16 (1) , 429-451. https://doi.org/10.1137/17M1141035
    56. S. Günther, P. Zeller. Moiré Patterns of Graphene on Metals. 2018, 295-307. https://doi.org/10.1016/B978-0-12-409547-2.13116-6
    57. Filipe Matusalem, Daniel S. Koda, Friedhelm Bechstedt, Marcelo Marques, Lara K. Teles. Deposition of topological silicene, germanene and stanene on graphene-covered SiC substrates. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-15610-3
    58. Zeyuan Ni, Emi Minamitani, Yasunobu Ando, Satoshi Watanabe. Germanene and stanene on two-dimensional substrates: Dirac cone and Z 2 invariant. Physical Review B 2017, 96 (7) https://doi.org/10.1103/PhysRevB.96.075427
    59. Daniel S. Koda, Friedhelm Bechstedt, Marcelo Marques, Lara K. Teles. Coincidence Lattices and Interlayer Twist in van der Waals Heterostructures: Application of the Coincidence Lattice Method on $$\hbox {hBN/MoSe}_2$$ hBN/MoSe 2 Heterobilayer Systems. Journal of Electronic Materials 2017, 46 (7) , 3910-3916. https://doi.org/10.1007/s11664-016-5037-9
    60. Nilanthy Balakrishnan, Zakhar R Kudrynskyi, Emily F Smith, Michael W Fay, Oleg Makarovsky, Zakhar D Kovalyuk, Laurence Eaves, Peter H Beton, Amalia Patanè. Engineering p – n junctions and bandgap tuning of InSe nanolayers by controlled oxidation. 2D Materials 2017, 4 (2) , 025043. https://doi.org/10.1088/2053-1583/aa61e0
    61. Shanshan Su, Protik Das, Supeng Ge, Roger K. Lake. Graphene contacts to a HfSe2/SnS2 heterostructure. The Journal of Chemical Physics 2017, 146 (6) https://doi.org/10.1063/1.4975178
    62. Zhixiong Yang, Jiangling Pan, Qi Liu, Nannan Wu, Mengli Hu, Fangping Ouyang. Electronic structures and transport properties of a MoS 2 –NbS 2 nanoribbon lateral heterostructure. Physical Chemistry Chemical Physics 2017, 19 (2) , 1303-1310. https://doi.org/10.1039/C6CP07327A
    63. Wanshun Xia, Liping Dai, Peng Yu, Xin Tong, Wenping Song, Guojun Zhang, Zhiming Wang. Recent progress in van der Waals heterojunctions. Nanoscale 2017, 9 (13) , 4324-4365. https://doi.org/10.1039/C7NR00844A
    64. Daniel Massatt, Mitchell Luskin, Christoph Ortner. Electronic Density of States for Incommensurate Layers. Multiscale Modeling & Simulation 2017, 15 (1) , 476-499. https://doi.org/10.1137/16M1088363
    65. Filipe Matusalem, Friedhelm Bechstedt, Marcelo Marques, Lara K. Teles. Quantum spin Hall phase in stanene-derived overlayers on passivated SiC substrates. Physical Review B 2016, 94 (24) https://doi.org/10.1103/PhysRevB.94.241403

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect