ACS Publications. Most Trusted. Most Cited. Most Read
Characteristics of Perovskite Solar Cells under Low-Illuminance Conditions
My Activity

Figure 1Loading Img
    Article

    Characteristics of Perovskite Solar Cells under Low-Illuminance Conditions
    Click to copy article linkArticle link copied!

    View Author Information
    Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
    Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
    *E-mail: [email protected]. Phone: +81-(743)-72-6061.
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2016, 120, 34, 18986–18990
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.6b05298
    Published August 16, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Organic–inorganic perovskite solar cells have attracted much attention as high performance and low-cost photovoltaic devices. Because it consists of p-type hole transport layer, perovskite layer, and n-type electron transport layer similar to a p–i–n structure, it works effectively even under low-illuminance conditions, such as indoor lighting. In this work, we focused on the characteristics of perovskite solar cells under low-illuminance conditions, and a detailed investigation was carried out. The open-circuit voltage yielded at around 70% of AM1.5 at 0.1 mW/cm2 illuminance, which is similar to that under indoor lighting. From impedance spectroscopy, it was suggested that the planar-type structure solar cell provided better resistance characteristics than that of the mesostructured cell for indoor applications. Comparing the characteristics of these types of solar cells, planar-type solar cells show higher voltage than mesostructured cells under low-illuminance conditions. These results have shown important implications for various applications of perovskite solar cells.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.6b05298.

    • Fabrication process of c-Si and a-Si solar cells. IV characteristics and device structure of perovskite, c-Si, and a-Si solar cells. Normalized JSC of planar-type solar cells and normalized FF of each solar cell. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 45 publications.

    1. Tomoki Asada, Itaru Raifuku, Fumihiro Murata, Kazuya Hayashi, Hiroaki Sugiyama, Yasuaki Ishikawa. Influence of the Electron Transport Layer on the Performance of Perovskite Solar Cells under Low Illuminance Conditions. ACS Omega 2024, 9 (30) , 32893-32900. https://doi.org/10.1021/acsomega.4c03643
    2. Matija Pirc, Žan Ajdič, Darjo Uršič, Marko Jošt, Marko Topič. Indoor Energy Harvesting With Perovskite Solar Cells for IoT Applications─A Full Year Monitoring Study. ACS Applied Energy Materials 2024, 7 (2) , 565-575. https://doi.org/10.1021/acsaem.3c02498
    3. Meng Wang, Qian Wang, Jing Zhao, Youkui Xu, Haoxu Wang, Xufeng Zhou, Siwei Yang, Zhipeng Ci, Zhiwen Jin. Low-Trap-Density CsPbX3 Film for High-Efficiency Indoor Photovoltaics. ACS Applied Materials & Interfaces 2022, 14 (9) , 11528-11537. https://doi.org/10.1021/acsami.1c25207
    4. Shu Hu, Yongtao Huang, Yang Zhang, Pingyuan Yan, Heng Li, ChuanXiang Sheng. Slow Hot-Carrier-Cooling in a 2D Lead-Iodide Perovskite Film and Its Photovoltaic Device. The Journal of Physical Chemistry C 2022, 126 (5) , 2374-2382. https://doi.org/10.1021/acs.jpcc.1c09313
    5. Vidya Kattoor, Kamlesh Awasthi, Efat Jokar, Eric Wei-Guang Diau, Nobuhiro Ohta. Enhanced Dissociation of Hot Excitons with an Applied Electric Field under Low-Power Photoexcitation in Two-Dimensional Perovskite Quantum Wells. The Journal of Physical Chemistry Letters 2019, 10 (16) , 4752-4757. https://doi.org/10.1021/acs.jpclett.9b01759
    6. Ippei Inoue, Yuki Umemura, Itaru Raifuku, Kenichi Toyoda, Yasuaki Ishikawa, Seigo Ito, Hisashi Yasueda, Yukiharu Uraoka, and Ichiro Yamashita . Biotemplated Synthesis of TiO2-Coated Gold Nanowire for Perovskite Solar Cells. ACS Omega 2017, 2 (9) , 5478-5485. https://doi.org/10.1021/acsomega.7b00940
    7. Adam Pockett and Matthew J. Carnie . Ionic Influences on Recombination in Perovskite Solar Cells. ACS Energy Letters 2017, 2 (7) , 1683-1689. https://doi.org/10.1021/acsenergylett.7b00490
    8. Will Clarke, Giles Richardson, Petra Cameron. Understanding the Full Zoo of Perovskite Solar Cell Impedance Spectra with the Standard Drift‐Diffusion Model. Advanced Energy Materials 2024, 14 (32) https://doi.org/10.1002/aenm.202400955
    9. Shahriyar Safat Dipta, Ashraful Hossain Howlader, Walia Binte Tarique, Ashraf Uddin. Comparative Analysis of the Stability and Performance of Double-, Triple-, and Quadruple-Cation Perovskite Solar Cells for Rooftop and Indoor Applications. Molecules 2024, 29 (12) , 2758. https://doi.org/10.3390/molecules29122758
    10. Runlong Gao, Rui Chen, Pengying Wan, Xiao Ouyang, Qiantao Lei, Qi Deng, Xinyu Guan, Guangda Niu, Jiang Tang, Wei Chen, Zonghao Liu, Xiaoping Ouyang, Linyue Liu. High Efficiency Formamidinium‐Cesium Perovskite‐Based Radio‐Photovoltaic Cells. ENERGY & ENVIRONMENTAL MATERIALS 2024, 7 (1) https://doi.org/10.1002/eem2.12513
    11. Ranbir Singh, Prasun Kumar, Pankaj Kumar, Sumit Chaudhary, Zhipeng Kan, Vikrant Sharma, Satinder K. Sharma. Indoor bifacial perovskite photovoltaics: Efficient energy harvesting from artificial light sources. Solar Energy 2023, 264 , 112061. https://doi.org/10.1016/j.solener.2023.112061
    12. Syed Agha Hassnain Mohsan, Haoze Qian, Hussain Amjad. A comprehensive review of optical wireless power transfer technology. Frontiers of Information Technology & Electronic Engineering 2023, 24 (6) , 767-800. https://doi.org/10.1631/FITEE.2100443
    13. Junmin Lee, Byung Gi Kim, Dong Hwan Wang. Perylene Diimide Derivative Engineering for Covering Interfacial Defects in Indoor Perovskite Optoelectronics. Solar RRL 2023, 7 (3) https://doi.org/10.1002/solr.202200937
    14. Juyeon Han, Junyeong Lee, Eunbin Jang, Myeongjin Kim, Hyojung Cha, Sungjin Jo, Jeeyoung Yoo. Portable integrated photo-charging storage device operating at 3 V. Chemical Engineering Journal 2022, 450 , 138463. https://doi.org/10.1016/j.cej.2022.138463
    15. Snehangshu Mishra, Subrata Ghosh, Binita Boro, Dinesh Kumar, Shivam Porwal, Mrittika Paul, Himanshu Dixit, Trilok Singh. Solution-processed next generation thin film solar cells for indoor light applications. Energy Advances 2022, 1 (11) , 761-792. https://doi.org/10.1039/D2YA00075J
    16. Nilanka M. Keppetipola, Keishi Tada, Céline Olivier, Lionel Hirsch, Takeru Bessho, Satoshi Uchida, Hiroshi Segawa, Thierry Toupance, Ludmila Cojocaru. Comparative performance analysis of photo-supercapacitor based on silicon, dye-sensitized and perovskite solar cells: Towards indoor applications. Solar Energy Materials and Solar Cells 2022, 247 , 111966. https://doi.org/10.1016/j.solmat.2022.111966
    17. Paheli Ghosh, Jochen Bruckbauer, Carol Trager-Cowan, Lethy Krishnan Jagadamma. Crystalline grain engineered CsPbIBr2 films for indoor photovoltaics. Applied Surface Science 2022, 592 , 152865. https://doi.org/10.1016/j.apsusc.2022.152865
    18. Jueming Bing, Laura Granados Caro, Harsh P. Talathi, Nathan L. Chang, David R. Mckenzie, Anita W.Y. Ho-Baillie. Perovskite solar cells for building integrated photovoltaics⁠—glazing applications. Joule 2022, 6 (7) , 1446-1474. https://doi.org/10.1016/j.joule.2022.06.003
    19. Teck Ming Koh, Hao Wang, Yan Fong Ng, Annalisa Bruno, Subodh Mhaisalkar, Nripan Mathews. Halide Perovskite Solar Cells for Building Integrated Photovoltaics: Transforming Building Façades into Power Generators. Advanced Materials 2022, 34 (25) https://doi.org/10.1002/adma.202104661
    20. Anita W. Y. Ho‐Baillie, Hamish G. J. Sullivan, Thomas A. Bannerman, Harsh. P. Talathi, Jueming Bing, Shi Tang, Alan Xu, Dhriti Bhattacharyya, Iver H. Cairns, David. R. McKenzie. Deployment Opportunities for Space Photovoltaics and the Prospects for Perovskite Solar Cells. Advanced Materials Technologies 2022, 7 (3) https://doi.org/10.1002/admt.202101059
    21. Bening Tirta Muhammad, Shaoni Kar, Meera Stephen, Wei Lin Leong. Halide perovskite-based indoor photovoltaics: recent development and challenges. Materials Today Energy 2022, 23 , 100907. https://doi.org/10.1016/j.mtener.2021.100907
    22. Juyeon Han, Junyeong Lee, Myeongjin Kim, Hyojung Cha, Sungjin Jo, JEEYOUNG YOO. Portable Integrated Photo-Charging Storage Device Operating at 3 V. SSRN Electronic Journal 2022, 61 https://doi.org/10.2139/ssrn.4119157
    23. Hiroyuki Kanda, Valentin Dan Mihailetchi, Marie‐Estelle Gueunier‐Farret, Jean‐Paul Kleider, Zakaria Djebbour, Jose Alvarez, Baranek Philippe, Olindo Isabella, Malte R. Vogt, Rudi Santbergen, Philip Schulz, Fiala Peter, Mohammad K. Nazeeruddin, James P. Connolly. Three‐terminal perovskite/integrated back contact silicon tandem solar cells under low light intensity conditions. Interdisciplinary Materials 2022, 1 (1) , 148-156. https://doi.org/10.1002/idm2.12006
    24. Monika Rai, Zhengtian Yuan, Anupam Sadhu, Shin Woei Leow, Lioz Etgar, Shlomo Magdassi, Lydia Helena Wong. Multimodal Approach towards Large Area Fully Semitransparent Perovskite Solar Module. Advanced Energy Materials 2021, 11 (45) https://doi.org/10.1002/aenm.202102276
    25. A B Nikolskaia, S S Kozlov, M F Vildanova, O K Karyagina, O I Shevaleevskiy. Four-terminal perovskite-silicon tandem solar cells for low light applications. Journal of Physics: Conference Series 2021, 2103 (1) , 012191. https://doi.org/10.1088/1742-6596/2103/1/012191
    26. Ghaida Alosaimi, So Jeong Shin, Robert Lee Chin, Jong H. Kim, Jae Sung Yun, Jan Seidel. Probing Charge Carrier Properties and Ion Migration Dynamics of Indoor Halide Perovskite PV Devices Using Top‐ and Bottom‐Illumination SPM Studies. Advanced Energy Materials 2021, 11 (37) https://doi.org/10.1002/aenm.202101739
    27. E. Hourdakis, A. Kaidatzis, D. Niarchos. “Shadow effect” photodetector with linear output voltage vs light intensity. Journal of Applied Physics 2021, 129 (20) https://doi.org/10.1063/5.0048655
    28. Lethy Krishnan Jagadamma, Shaoyang Wang. Wide-Bandgap Halide Perovskites for Indoor Photovoltaics. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.632021
    29. Hongkun Cai, Jingtao Yang, Xiaofang Ye, Jian Su, Jian Ni, Juan Li, Jianjun Zhang. Controllable crystallization by way of solvent engineering for perovskite solar cells. Surface Innovations 2021, 9 (1) , 57-64. https://doi.org/10.1680/jsuin.20.00014
    30. Jincheol Kim, Ji Hun Jang, Eunyoung Choi, So Jeong Shin, Ju-Hee Kim, Gyeong G. Jeon, Minwoo Lee, Jan Seidel, Jong H. Kim, Jae Sung Yun, Nochang Park. Chlorine Incorporation in Perovskite Solar Cells for Indoor Light Applications. Cell Reports Physical Science 2020, 1 (12) , 100273. https://doi.org/10.1016/j.xcrp.2020.100273
    31. S S Kozlov, O V Alexeeva, A B Nikolskaia, M F Vildanova, O I Shevaleevskiy. Efficiency enhancement in planar perovskite solar cells under low-light illumination and ambient lighting. Journal of Physics: Conference Series 2020, 1697 (1) , 012190. https://doi.org/10.1088/1742-6596/1697/1/012190
    32. A. K. Mahmud Hasan, Itaru Raifuku, N. Amin, Yasuaki Ishikawa, D. K. Sarkar, K. Sobayel, Mohammad R. Karim, Anwar Ul-Hamid, H. Abdullah, Md. Shahiduzzaman, Yukiharu Uraoka, Kamaruzzaman Sopian, Md. Akhtaruzzaman. Air-stable perovskite photovoltaic cells with low temperature deposited NiOx as an efficient hole-transporting material. Optical Materials Express 2020, 10 (8) , 1801. https://doi.org/10.1364/OME.391321
    33. Ryousuke Ishikawa, Takuya Kato, Ryotaro Anzo, Momoko Nagatake, Tatsuya Nishimura, Nozomu Tsuboi, Shinsuke Miyajima. Widegap CH3NH3PbBr3 solar cells for optical wireless power transmission application. Applied Physics Letters 2020, 117 (1) https://doi.org/10.1063/5.0010009
    34. A. B. Nikolskaia, M. F. Vildanova, S. S. Kozlov, O. I. Shevaleevskiy. Physicochemical approaches for optimization of perovskite solar cell performance. Russian Chemical Bulletin 2020, 69 (7) , 1245-1252. https://doi.org/10.1007/s11172-020-2894-4
    35. A.K. Mahmud Hasan, K. Sobayel, Itaru Raifuku, Yasuaki Ishikawa, Md. Shahiduzzaman, Majid Nour, Hatem Sindi, Hazim Moria, Muhyaddin Rawa, K. Sopian, N. Amin, Md. Akhtaruzzaman. Optoelectronic properties of electron beam-deposited NiOx thin films for solar cell application. Results in Physics 2020, 17 , 103122. https://doi.org/10.1016/j.rinp.2020.103122
    36. Swarup Biswas, Hyeok Kim. Solar Cells for Indoor Applications: Progress and Development. Polymers 2020, 12 (6) , 1338. https://doi.org/10.3390/polym12061338
    37. Granit San, Michal Balberg, Jedrzej Jedrzejewski, Isaac Balberg. The phototransport in halide perovskites: From basic physics to applications. Journal of Applied Physics 2020, 127 (8) https://doi.org/10.1063/1.5095190
    38. Addanki Venkateswararao, Johnny K.W. Ho, Shu Kong So, Shun-Wei Liu, Ken-Tsung Wong. Device characteristics and material developments of indoor photovoltaic devices. Materials Science and Engineering: R: Reports 2020, 139 , 100517. https://doi.org/10.1016/j.mser.2019.100517
    39. Itaru Raifuku, Yasuaki Ishikawa, Yu-Hsien Chiang, Pei-Ying Lin, Ming-Hsien Li, Yukiharu Uraoka, Peter Chen. Segregation-free bromine-doped perovskite solar cells for IoT applications. RSC Advances 2019, 9 (56) , 32833-32838. https://doi.org/10.1039/C9RA05323A
    40. Sean Sung-Yen Juang, Pei-Ying Lin, Yu-Chiung Lin, Yu-Sheng Chen, Po-Shen Shen, Yu-Ling Guo, Yu-Chun Wu, Peter Chen. Energy Harvesting Under Dim-Light Condition With Dye-Sensitized and Perovskite Solar Cells. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00209
    41. A. B. Nikolskaia, S. S. Kozlov, M. F. Vildanova, O. I. Shevaleevskiy. Power Conversion Efficiencies of Perovskite and Dye-Sensitized Solar Cells under Various Solar Radiation Intensities. Semiconductors 2019, 53 (4) , 540-544. https://doi.org/10.1134/S1063782619040213
    42. Wei-Chen Tsao, Qiu-Chun Zeng, Yu-Hsiang Yeh, Chih-Hung Tsai, Hwen-Fen Hong, Chun-Yi Chen, Tse-Yang Lin, Yi-Ya Huang, Che-Wei Tsao, Jui-Wen Pan, Chih-Ming Wang. Efficiency evaluation of a hybrid miniaturized concentrated photovoltaic for harvesting direct/diffused solar light. Journal of Optics 2019, 21 (3) , 035901. https://doi.org/10.1088/2040-8986/aafd7a
    43. Hiroyuki Kanda, Naoyuki Shibayama, Abdullah Uzum, Tomokazu Umeyama, Hiroshi Imahori, Yu-Hsien Chiang, Peter Chen, Mohammad Khaja Nazeeruddin, Seigo Ito. Facile fabrication method of small-sized crystal silicon solar cells for ubiquitous applications and tandem device with perovskite solar cells. Materials Today Energy 2018, 7 , 190-198. https://doi.org/10.1016/j.mtener.2017.09.009
    44. Yegraf Reyna, Amador Pérez-Tomás, Alba Mingorance, Mónica Lira-Cantú. Stability of Molecular Devices: Halide Perovskite Solar Cells. 2018, 477-531. https://doi.org/10.1007/978-981-10-5924-7_13
    45. Itaru Raifuku, Yasuaki Ishikawa, Tiphaine Bourgeteau, Yvan Bonnassieux, Pere Roca i Cabarrocas, Yukiharu Uraoka. Fabrication of perovskite solar cells using sputter-processed CH 3 NH 3 PbI 3 films. Applied Physics Express 2017, 10 (9) , 094101. https://doi.org/10.7567/APEX.10.094101

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2016, 120, 34, 18986–18990
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.6b05298
    Published August 16, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    1832

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.