ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Upconverting Nanoparticles Working As Primary Thermometers In Different Media

View Author Information
Departamento de Física and CICECO-Aveiro Institute of Materials, Universidade de Aveiro, 3810−193 Aveiro (Portugal)
Departamento de Química and CICECO-Aveiro Institute of Materials, Universidade de Aveiro, 3810−193 Aveiro (Portugal)
*(L.D.C.) E-mail: [email protected]
Cite this: J. Phys. Chem. C 2017, 121, 25, 13962–13968
Publication Date (Web):June 9, 2017
https://doi.org/10.1021/acs.jpcc.7b04827
Copyright © 2017 American Chemical Society

    Article Views

    2206

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    In the past decade, noninvasive luminescent thermometry has become popular due to the limitations of traditional contact thermometers to operate at scales below 100 μm, as required by current demands in disparate areas. Generally, the calibration procedure requires an independent measurement of the temperature to convert the thermometric parameter (usually an intensity ratio) to temperature. A new calibration procedure is necessary whenever the thermometer operates in a different medium. However, recording multiple calibrations is a time-consuming task, and not always possible to perform, e.g., in living cells and in electronic devices. Typically, a unique calibration relation is assumed to be valid, independent of the medium, which is a bottleneck of the secondary luminescent thermometers developed up to now. Here we report a straightforward method to predict the temperature calibration curve of any upconverting thermometer based on two thermally coupled electronic levels independently of the medium, demonstrating that these systems are intrinsically primary thermometers. SrF2:Yb/Er powder and water suspended nanoparticles were used as an illustrative example.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.7b04827.

    • Additional experimental procedures concerning (i) the synthesis and the structural characterization of the nanoparticles and (ii) the upconversion measurements, including luminous flux and quantum yield; emission spectra and calibration curves of SrF2-2 and SrF2-3 in powders; method of energy gap determination; parameters characterizing the thermometer’s performance; thermometric parameter in the limit of low laser power density; calculated temperature for SrF2-2 and SrF2-3 in powders; and upconversion emission spectra of SrF2-4 in water suspension (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 167 publications.

    1. Fernando E. Maturi, Anuraag Gaddam, Carlos D. S. Brites, Joacilia M. M. Souza, Hellmut Eckert, Sidney J. L. Ribeiro, Luís D. Carlos, Danilo Manzani. Extending the Palette of Luminescent Primary Thermometers: Yb3+/Pr3+ Co-Doped Fluoride Phosphate Glasses. Chemistry of Materials 2023, 35 (17) , 7229-7238. https://doi.org/10.1021/acs.chemmater.3c01508
    2. Allison R. Pessoa, Jefferson A. O. Galindo, Luiz F. dos Santos, Rogéria R. Gonçalves, Stefan A. Maier, Leonardo de S. Menezes, Anderson M. Amaral. Correction Due to Nonthermally Coupled Emission Bands and Its Implications on the Performance of Y2O3:Yb3+ /Er3+ Single-Particle Thermometers. The Journal of Physical Chemistry C 2023, 127 (20) , 9673-9680. https://doi.org/10.1021/acs.jpcc.3c00522
    3. Dongdong Lin, Zhenyu Qian, Massimo Bagnani, Miguel A. Hernández-Rodríguez, Julio Corredoira-Vázquez, Guanghong Wei, Luís D. Carlos, Raffaele Mezzenga. Probing the Protein Folding Energy Landscape: Dissociation of Amyloid-β Fibrils by Laser-Induced Plasmonic Heating. ACS Nano 2023, 17 (10) , 9429-9441. https://doi.org/10.1021/acsnano.3c01489
    4. Wen-Kai Fang, Da-Di Xu, Da Liu, Yu-Yao Li, Meng-Han Liu, Dai-Wen Pang, Hong-Wu Tang. Combining Upconversion Luminescence, Photothermy, and Electrochemistry for Highly Accurate Triple-Signal Detection of Hydrogen Sulfide by Optically Trapping Single Microbeads. Analytical Chemistry 2023, 95 (12) , 5443-5453. https://doi.org/10.1021/acs.analchem.3c00449
    5. Marcin Runowski, Dawid Marcinkowski, Kevin Soler-Carracedo, Adam Gorczyński, Ernest Ewert, Przemysław Woźny, Inocencio R. Martín. Noncentrosymmetric Lanthanide-Based MOF Materials Exhibiting Strong SHG Activity and NIR Luminescence of Er3+: Application in Nonlinear Optical Thermometry. ACS Applied Materials & Interfaces 2023, 15 (2) , 3244-3252. https://doi.org/10.1021/acsami.2c22571
    6. Bingzhu Zheng, Jingyue Fan, Bing Chen, Xian Qin, Juan Wang, Feng Wang, Renren Deng, Xiaogang Liu. Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews 2022, 122 (6) , 5519-5603. https://doi.org/10.1021/acs.chemrev.1c00644
    7. Carlos Renero-Lecuna, Ada Herrero, Dorleta Jimenez de Aberasturi, Miriam Martínez-Flórez, Rafael Valiente, Mikhail Mychinko, Sara Bals, Luis M. Liz-Marzán. Nd3+-Doped Lanthanum Oxychloride Nanocrystals as Nanothermometers. The Journal of Physical Chemistry C 2021, 125 (36) , 19887-19896. https://doi.org/10.1021/acs.jpcc.1c05828
    8. Pratik S. Solanki, Sangeetha Balabhadra, Michael F. Reid, Vladimir B. Golovko, Jon-Paul R. Wells. Upconversion Thermometry Using Yb3+/Er3+ Co-Doped KY3F10 Nanoparticles. ACS Applied Nano Materials 2021, 4 (6) , 5696-5706. https://doi.org/10.1021/acsanm.1c00353
    9. Xiaofeng Wu, Shiping Zhan, Junbo Han, Yunxin Liu. Nanoscale Ultrasensitive Temperature Sensing Based on Upconversion Nanoparticles with Lattice Self-Adaptation. Nano Letters 2021, 21 (1) , 272-278. https://doi.org/10.1021/acs.nanolett.0c03637
    10. Michele Back, Elisa Casagrande, Enrico Trave, Davide Cristofori, Emmanuele Ambrosi, Federico Dallo, Marco Roman, Jumpei Ueda, Jian Xu, Setsuhisa Tanabe, Alvise Benedetti, Pietro Riello. Confined-Melting-Assisted Synthesis of Bismuth Silicate Glass-Ceramic Nanoparticles: Formation and Optical Thermometry Investigation. ACS Applied Materials & Interfaces 2020, 12 (49) , 55195-55204. https://doi.org/10.1021/acsami.0c17897
    11. Marcin Runowski, Przemysław Woźny, Natalia Stopikowska, Inocencio R. Martín, Víctor Lavín, Stefan Lis. Luminescent Nanothermometer Operating at Very High Temperature—Sensing up to 1000 K with Upconverting Nanoparticles (Yb3+/Tm3+). ACS Applied Materials & Interfaces 2020, 12 (39) , 43933-43941. https://doi.org/10.1021/acsami.0c13011
    12. Fábio J. Caixeta, Ana R. N. Bastos, Alexandre M. P. Botas, Leonardo S. Rosa, Vítor S. Souza, Fernanda H. Borges, Albano N. C. Neto, Alban Ferrier, Philippe Goldner, Luís D. Carlos, Rogéria R. Gonçalves, Rute A. S. Ferreira. High-Quantum-Yield Upconverting Er3+/Yb3+-Organic–Inorganic Hybrid Dual Coatings for Real-Time Temperature Sensing and Photothermal Conversion. The Journal of Physical Chemistry C 2020, 124 (37) , 19892-19903. https://doi.org/10.1021/acs.jpcc.0c03874
    13. Szymon Goderski, Marcin Runowski, Przemysław Woźny, Víctor Lavín, Stefan Lis. Lanthanide Upconverted Luminescence for Simultaneous Contactless Optical Thermometry and Manometry–Sensing under Extreme Conditions of Pressure and Temperature. ACS Applied Materials & Interfaces 2020, 12 (36) , 40475-40485. https://doi.org/10.1021/acsami.0c09882
    14. Marcin Runowski, Szymon Goderski, Dominika Przybylska, Tomasz Grzyb, Stefan Lis, Inocencio R. Martín. Sr2LuF7:Yb3+–Ho3+–Er3+ Upconverting Nanoparticles as Luminescent Thermometers in the First, Second, and Third Biological Windows. ACS Applied Nano Materials 2020, 3 (7) , 6406-6415. https://doi.org/10.1021/acsanm.0c00839
    15. Vasyl Kilin, Gabriel Campargue, Ina Fureraj, Sim Sakong, Tarek Sabri, Florian Riporto, Alice Vieren, Yannick Mugnier, Christophe Mas, Davide Staedler, John Michael Collins, Luigi Bonacina, Alfred Vogel, John A. Capobianco, Jean-Pierre Wolf. Wavelength-Selective Nonlinear Imaging and Photo-Induced Cell Damage by Dielectric Harmonic Nanoparticles. ACS Nano 2020, 14 (4) , 4087-4095. https://doi.org/10.1021/acsnano.9b08813
    16. Joanna Drabik, Lukasz Marciniak. KLaP4O12:Tb3+ Nanocrystals for Luminescent Thermometry in a Single-Band-Ratiometric Approach. ACS Applied Nano Materials 2020, 3 (4) , 3798-3806. https://doi.org/10.1021/acsanm.0c00485
    17. Michele Back, Elisa Casagrande, Carlo A. Brondin, Emmanuele Ambrosi, Davide Cristofori, Jumpei Ueda, Setsuhisa Tanabe, Enrico Trave, Pietro Riello. Lanthanide-Doped Bi2SiO5@SiO2 Core–Shell Upconverting Nanoparticles for Stable Ratiometric Optical Thermometry. ACS Applied Nano Materials 2020, 3 (3) , 2594-2604. https://doi.org/10.1021/acsanm.0c00003
    18. Chao Mi, Jiajia Zhou, Fan Wang, Gungun Lin, Dayong Jin. Ultrasensitive Ratiometric Nanothermometer with Large Dynamic Range and Photostability. Chemistry of Materials 2019, 31 (22) , 9480-9487. https://doi.org/10.1021/acs.chemmater.9b03466
    19. Eduardo D. Martínez, Ricardo R. Urbano, Carlos Rettori. Thermoplasmonic Maskless Lithography on Upconverting Nanocomposites Assisted by Gold Nanostars. ACS Applied Nano Materials 2019, 2 (11) , 6889-6897. https://doi.org/10.1021/acsanm.9b01355
    20. Marcin Runowski, Natalia Stopikowska, Daria Szeremeta, Szymon Goderski, Małgorzata Skwierczyńska, Stefan Lis. Upconverting Lanthanide Fluoride Core@Shell Nanorods for Luminescent Thermometry in the First and Second Biological Windows: β-NaYF4:Yb3+– Er3+@SiO2 Temperature Sensor. ACS Applied Materials & Interfaces 2019, 11 (14) , 13389-13396. https://doi.org/10.1021/acsami.9b00445
    21. Ali Rafiei Miandashti, Larousse Khosravi Khorashad, Alexander O. Govorov, Martin E. Kordesch, Hugh H. Richardson. Time-Resolved Temperature-Jump Measurements and Theoretical Simulations of Nanoscale Heat Transfer Using NaYF4:Yb3+:Er3+ Upconverting Nanoparticles. The Journal of Physical Chemistry C 2019, 123 (6) , 3770-3780. https://doi.org/10.1021/acs.jpcc.8b11215
    22. Paulo C. de Sousa Filho, Juliette Alain, Godefroy Leménager, Eric Larquet, Jochen Fick, Osvaldo A. Serra, Thierry Gacoin. Colloidal Rare Earth Vanadate Single Crystalline Particles as Ratiometric Luminescent Thermometers. The Journal of Physical Chemistry C 2019, 123 (4) , 2441-2450. https://doi.org/10.1021/acs.jpcc.8b12251
    23. Marcin Runowski, Andrii Shyichuk, Artur Tymiński, Tomasz Grzyb, Víctor Lavín, Stefan Lis. Multifunctional Optical Sensors for Nanomanometry and Nanothermometry: High-Pressure and High-Temperature Upconversion Luminescence of Lanthanide-Doped Phosphates—LaPO4/YPO4:Yb3+–Tm3+. ACS Applied Materials & Interfaces 2018, 10 (20) , 17269-17279. https://doi.org/10.1021/acsami.8b02853
    24. Marta Quintanilla, Yang Zhang, Luis M. Liz-Marzán. Subtissue Plasmonic Heating Monitored with CaF2:Nd3+,Y3+ Nanothermometers in the Second Biological Window. Chemistry of Materials 2018, 30 (8) , 2819-2828. https://doi.org/10.1021/acs.chemmater.8b00806
    25. Fadwa Ayachi, Kamel Saidi, K. Soler-Carracedo, Mohamed Dammak, Inocencio R. Martín. Coupled and non-coupled high sensitivity multi-mode ratiometric thermometry of Ho3+/Er3+/Yb3+ tri-doped YP0.5V0.5O4 phosphors. Journal of Alloys and Compounds 2023, 961 , 171146. https://doi.org/10.1016/j.jallcom.2023.171146
    26. Carlos D. S. Brites, Riccardo Marin, Markus Suta, Albano N. Carneiro Neto, Erving Ximendes, Daniel Jaque, Luís D. Carlos. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting‐Edge Applications. Advanced Materials 2023, 35 (36) https://doi.org/10.1002/adma.202302749
    27. Baobao Zhang, Xiaojun Guo, Xudong Yu, Yanzhen Xiao, Zhengkun Fu, Zhenglong Zhang, Hairong Zheng. Determining the internal temperature of an optically levitated nanoparticle in vacuum by doped- Er 3 + -ion luminescence. Physical Review A 2023, 108 (3) https://doi.org/10.1103/PhysRevA.108.033503
    28. Natalia Stopikowska, Przemysław Woźny, Markus Suta, Teng Zheng, Stefan Lis, Marcin Runowski. Influence of excitation and detection geometry on optical temperature readouts – reabsorption effects in luminescence thermometry. Journal of Materials Chemistry C 2023, 11 (28) , 9620-9627. https://doi.org/10.1039/D3TC01684F
    29. Juling Long, Yamin Xu, Kang Cheng, Xinyue Liu, Weichao Huang, Chaoyong Deng. A novel multifunctional double perovskite structure phosphor La2MgTiO6:Mn4+, Eu3+. Optical Materials 2023, 141 , 113967. https://doi.org/10.1016/j.optmat.2023.113967
    30. Sergio Fernando Nunes Coelho, Airton Germano Bispo-Jr, Nagyla Alves Oliveira, Italo Odone Mazali, Fernando Aparecido Sigoli. Functionalized β-NaGdF4:YbIII luminescent nanothermometer based on the direct population of triplet states and NIR emission. Optical Materials: X 2023, 19 , 100243. https://doi.org/10.1016/j.omx.2023.100243
    31. Talita J. S. Ramos, Ricardo L. Longo, Carlos D. S. Brites, Rute A. S. Ferreira, Oscar L. Malta, Luís D. Carlos. Exploring the intra-4f and the bright white light upconversion emissions of Gd 2 O 3 :Yb 3+ ,Er 3+ -based materials for thermometry. Nanoscale 2023, 15 (23) , 9993-10003. https://doi.org/10.1039/D3NR01764H
    32. Luan N. Passini, Fernando E. Maturi, Roberta S. Pugina, Eloísa G. Hilário, Marina Fontes, Hernane S. Barud, Luís D. Carlos, José Maurício A. Caiut, Danilo Manzani. Luminescent Pb-free perovskites: low-cytotoxicity materials for primary thermal sensing. Journal of Materials Chemistry C 2023, 11 (23) , 7672-7681. https://doi.org/10.1039/D3TC00768E
    33. Ilya E. Kolesnikov, Daria V. Mamonova, Mikhail A. Kurochkin, Vassily A. Medvedev, Evgenii Yu Kolesnikov. Effect of doping concentration on dual-mode LaVO4:Eu3+ luminescence thermometers. Ceramics International 2023, 49 (12) , 20699-20705. https://doi.org/10.1016/j.ceramint.2023.03.201
    34. Sushri Sangita Nanda, Priyanka Nayak, Sasank Pattnaik, Vineet Kumar Rai, S. Dash. Simultaneous influence of Mg2+ and Sc3+ co-doping on upconversion luminescence and optical thermometry in β-NaYF4: Yb3+/Ho3+ microphosphor. Journal of Alloys and Compounds 2023, 934 , 167732. https://doi.org/10.1016/j.jallcom.2022.167732
    35. Pratik S. Solanki, Sangeetha Balabhadra, Michael F. Reid, Jon-Paul R. Wells. A spectroscopic and thermometric comparison of α- and β-phase KYF4:Yb3+/Er3+ nanoparticles. Journal of Applied Physics 2023, 133 (3) https://doi.org/10.1063/5.0131207
    36. Wenjing Wang, Tao Tan, Shangwei Wang, Taixing Tan, Su Zhang, Chengyu Li, Hongjie Zhang. Multiple site occupancy induced yellow-orange emission in an Eu 2+ -doped KSr 6 Sc(SiO 4 ) 4 phosphor towards optical temperature sensors. Dalton Transactions 2023, 356 https://doi.org/10.1039/D3DT00163F
    37. Christian Hernández-Álvarez, Gabriela Brito-Santos, Inocencio R. Martín, Joaquín Sanchiz, Kamel Saidi, Kevin Soler-Carracedo, Łukasz Marciniak, Marcin Runowski. Multifunctional optical sensing platform of temperature, pressure (vacuum) and laser power density: NaYF 4 : Gd 3+ , Yb 3+ , Er 3+ nanomaterial as luminescent thermometer, manometer and power meter. Journal of Materials Chemistry C 2023, 41 https://doi.org/10.1039/D3TC01712E
    38. Joana C. Martins, Carlos D. S. Brites, Albano N. Carneiro Neto, Rute A. S. Ferreira, Luís D. Carlos. An Overview of Luminescent Primary Thermometers. 2023, 105-152. https://doi.org/10.1007/978-3-031-28516-5_3
    39. Albenc Nexha, Maria Cinta Pujol, Francesc Díaz, Magdalena Aguiló, Joan J. Carvajal. Luminescence nanothermometry using self-assembled Er3+, Yb3+ doped Y2O3 nanodiscs: Might the upconversion mechanism condition their use as primary thermometers?. Optical Materials 2022, 134 , 113216. https://doi.org/10.1016/j.optmat.2022.113216
    40. Xiuling Liu, Xiaoyun Mi, Yanyan Guo, Liping Lu, Quansheng Liu, Zhaohui Bai, Xiyan Zhang, Hancheng Zhu. Highly sensitive and near-infrared excitable optical thermometer based on CaGdAl3O7: Tm3+, Yb3+, Zn2+. Journal of Alloys and Compounds 2022, 929 , 167240. https://doi.org/10.1016/j.jallcom.2022.167240
    41. Nisrin Mohamed Bhiri, Mohamed Dammak, Joan Josep Carvajal, Magdalena Aguiló, Francesc Díaz, Maria Cinta Pujol. Excitation power density dependence of a primary luminescent thermometer based on Er3+, Yb3+: GdVO4 microcrystals operating in the visible. Journal of Alloys and Compounds 2022, 921 , 166020. https://doi.org/10.1016/j.jallcom.2022.166020
    42. Joana Costa Martins, Artiom Skripka, Carlos D. S. Brites, Antonio Benayas, Rute A. S. Ferreira, Fiorenzo Vetrone, Luís D. Carlos. Upconverting nanoparticles as primary thermometers and power sensors. Frontiers in Photonics 2022, 3 https://doi.org/10.3389/fphot.2022.1037473
    43. Airton Germano Bispo-Jr, Italo Odone Mazali, Fernando Aparecido Sigoli. Single-center Ln III ratiometric luminescent temperature probes based on singlet → singlet and singlet → triplet sensitizations. Journal of Materials Chemistry C 2022, 10 (38) , 14151-14158. https://doi.org/10.1039/D2TC02760G
    44. Maohui Yuan, Kai Han, Linxuan Wang, Xu Yang, Zining Yang, Hongyan Wang, Xiaojun Xu. Highly thermally stable upconversion in copper(II)-doped LiYF4:Yb,Er microcrystals toward ultrahigh temperature (micro)thermometers. Journal of Alloys and Compounds 2022, 919 , 165844. https://doi.org/10.1016/j.jallcom.2022.165844
    45. Keyla M. N. de Souza, Rodolfo N. Silva, Juliana A. B. Silva, Carlos D. S. Brites, Biju Francis, Rute A. S. Ferreira, Luís D. Carlos, Ricardo L. Longo. Novel and High‐Sensitive Primary and Self‐Referencing Thermometers Based on the Excitation Spectra of Lanthanide Ions. Advanced Optical Materials 2022, 10 (19) https://doi.org/10.1002/adom.202200770
    46. Sofia Zanella, Enrico Trave, Elisa Moretti, Aldo Talon, Michele Back, Luís D. Carlos, Rute A. S. Ferreira, Carlos D. S. Brites. Designing Ln3+-doped BiF3 particles for luminescent primary thermometry and molecular logic. Frontiers in Photonics 2022, 3 https://doi.org/10.3389/fphot.2022.1010958
    47. Wei Xu, Le Zhao, Fengkai Shang, Longjiang Zheng, Zhiguo Zhang. Modulating the thermally coupled status of energy levels in rare earth ions for sensitive optical temperature sensing. Journal of Luminescence 2022, 249 , 119042. https://doi.org/10.1016/j.jlumin.2022.119042
    48. Leipeng Li, Zhuqin Wu, Pinshu Lv, Chunzheng Wang, Xiumei Han, Yanmin Yang. Persistent visible luminescence of SrF 2 :Pr 3+ for ratiometric thermometry. Optics Express 2022, 30 (18) , 31889. https://doi.org/10.1364/OE.459686
    49. Melissa-Jane Monks, Christian Würth, Erhard Kemnitz, Ute Resch-Genger. Dopant ion concentration-dependent upconversion luminescence of cubic SrF 2 :Yb 3+ ,Er 3+ nanocrystals prepared by a fluorolytic sol–gel method. Nanoscale 2022, 14 (32) , 11590-11599. https://doi.org/10.1039/D2NR02337G
    50. Praveen K. Shahi, Shyam B. Rai. Upconversion Nanoparticles in Temperature Sensing and Optical Heating Applications. 2022, 417-447. https://doi.org/10.1002/9783527834884.ch15
    51. Fernanda Hediger Borges, Joana Costa Martins, Fábio José Caixeta, Luis D. Carlos, Rute A.S. Ferreira, Rogéria Rocha Gonçalves. Luminescent thermometry based on Er3+/Yb3+ co-doped yttrium niobate with high NIR emission and NIR-to-visible upconversion quantum yields. Journal of Luminescence 2022, 248 , 118986. https://doi.org/10.1016/j.jlumin.2022.118986
    52. Marta Quintanilla, Malou Henriksen-Lacey, Carlos Renero-Lecuna, Luis M. Liz-Marzán. Challenges for optical nanothermometry in biological environments. Chemical Society Reviews 2022, 51 (11) , 4223-4242. https://doi.org/10.1039/D2CS00069E
    53. Małgorzata Skwierczyńska, Natalia Stopikowska, Piotr Kulpiński, Magdalena Kłonowska, Stefan Lis, Marcin Runowski. Ratiometric Upconversion Temperature Sensor Based on Cellulose Fibers Modified with Yttrium Fluoride Nanoparticles. Nanomaterials 2022, 12 (11) , 1926. https://doi.org/10.3390/nano12111926
    54. M.T. Abbas, N.Z. Khan, J. Mao, L. Qiu, X. Wei, Y. Chen, S.A. Khan. Lanthanide and transition metals doped materials for non-contact optical thermometry with promising approaches. Materials Today Chemistry 2022, 24 , 100903. https://doi.org/10.1016/j.mtchem.2022.100903
    55. Jingxin Ding, Huazhen Liao, Libin Pang, Deping Wang, Song Ye. Improved up-conversion behaviors and temperature sensitivity based on Stark sublevels of Er3+ in β-NaYF4:Yb3+, Er3+ and β-NaYF4:Yb3+, Er3+@NaGdF4. Optical Materials 2022, 128 , 112304. https://doi.org/10.1016/j.optmat.2022.112304
    56. João F. C. B. Ramalho, Lília M. S. Dias, Lianshe Fu, Alexandre M. P. Botas, Luís D. Carlos, Albano N. Carneiro Neto, Paulo S. André, Rute A. S. Ferreira. Customized Luminescent Multiplexed Quick‐Response Codes as Reliable Temperature Mobile Optical Sensors for eHealth and Internet of Things. Advanced Photonics Research 2022, 3 (6) https://doi.org/10.1002/adpr.202100206
    57. Philip Netzsch, Matthias Hämmer, Erich Turgunbajew, Thomas P. van Swieten, Andries Meijerink, Henning A. Höppe, Markus Suta. Beyond the Energy Gap Law: The Influence of Selection Rules and Host Compound Effects on Nonradiative Transition Rates in Boltzmann Thermometers. Advanced Optical Materials 2022, 10 (11) https://doi.org/10.1002/adom.202200059
    58. Fernanda Hediger Borges, Joana Costa Martins, Fábio José Caixeta, Rafael Ramiro Pereira, Luis Dias Carlos, Rute A. S. Ferreira, Rogéria Rocha Gonçalves. Primary thermometers based on sol–gel upconverting Er3+/Yb3+ co-doped yttrium tantalates with high upconversion quantum yield and emission color tunability. Journal of Sol-Gel Science and Technology 2022, 102 (1) , 249-263. https://doi.org/10.1007/s10971-021-05673-0
    59. Guoran Huang, Xiaofeng Wu, Shiping Zhan, Yunxin Liu. Simultaneous enhancement of fluorescence intensity, thermometric sensitivity and SNR of upconversion thermometers via optical field localization. Journal of Materials Chemistry C 2022, 10 (13) , 5190-5199. https://doi.org/10.1039/D1TC05838J
    60. Hairegu Tuxun, Zefeng Cai, Min Ji, Baobao Zhang, Chengyun Zhang, Jinping Li, Xudong Yu, Zhengkun Fu, Zhenglong Zhang, Hairong Zheng. Controlling and probing heat generation in an optical heater system. Nanophotonics 2022, 11 (5) , 979-986. https://doi.org/10.1515/nanoph-2021-0604
    61. Albano N. Carneiro Neto, Ekaterina Mamontova, Alexandre M. P. Botas, Carlos D. S. Brites, Rute A. S. Ferreira, Jérôme Rouquette, Yannick Guari, Joulia Larionova, Jérôme Long, Luís D. Carlos. Rationalizing the Thermal Response of Dual‐Center Molecular Thermometers: The Example of an Eu/Tb Coordination Complex. Advanced Optical Materials 2022, 10 (5) https://doi.org/10.1002/adom.202101870
    62. Roberta S. Pugina, Douglas L. da Silva, André Riul, Manoel L. da Silva-Neto, Anderson S.L. Gomes, José Maurício A. Caiut. Silk fibroin-Yb3+/Er3+:YAG composite films and their thermometric applications based on up-conversion luminescence. Polymer 2022, 241 , 124541. https://doi.org/10.1016/j.polymer.2022.124541
    63. Rodolfo N. Silva, Alexandre M.P. Botas, David Brandão, Verónica Bastos, Helena Oliveira, Mengistie L. Debasu, Rute A.S. Ferreira, Carlos D.S. Brites, Luís D. Carlos. 3D sub-cellular localization of upconverting nanoparticles through hyperspectral microscopy. Physica B: Condensed Matter 2022, 626 , 413470. https://doi.org/10.1016/j.physb.2021.413470
    64. Guixian Li, Yu Xue, Qinan Mao, Lang Pei, Hong He, Meijiao Liu, Liang Chu, Jiasong Zhong. Synergistic luminescent thermometer using co-doped Ca 2 GdSbO 6 :Mn 4+ /(Eu 3+ or Sm 3+ ) phosphors. Dalton Transactions 2022, 4 https://doi.org/10.1039/D2DT00005A
    65. João F.C.B. Ramalho, Albano N. Carneiro Neto, Luís D. Carlos, Paulo S. André, Rute A.S. Ferreira. Lanthanides for the new generation of optical sensing and Internet of Things. 2022, 31-128. https://doi.org/10.1016/bs.hpcre.2021.12.001
    66. L.F. Dos Santos, J.C. Martins, K.O. Lima, L.F.T. Gomes, M.T. De Melo, A.C. Tedesco, L.D. Carlos, R.A.S. Ferreira, R.R. Gonçalves. In vitro assays and nanothermometry studies of infrared-to-visible upconversion of nanocrystalline Er3+,Yb3+ co-doped Y2O3 nanoparticles for theranostic applications. Physica B: Condensed Matter 2022, 624 , 413447. https://doi.org/10.1016/j.physb.2021.413447
    67. Forough Jahanbazi, Yuanbing Mao. Recent advances on metal oxide-based luminescence thermometry. Journal of Materials Chemistry C 2021, 9 (46) , 16410-16439. https://doi.org/10.1039/D1TC03455C
    68. Dechao Yu, Huaiyong Li, Dawei Zhang, Qinyuan Zhang, Andries Meijerink, Markus Suta. One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+. Light: Science & Applications 2021, 10 (1) https://doi.org/10.1038/s41377-021-00677-5
    69. Rute A. S. Ferreira, Ekaterina Mamontova, Alexandre M. P. Botas, Mikhail Shestakov, Johan Vanacken, Victor Moshchalkov, Yannick Guari, Liviu F. Chibotaru, Dominique Luneau, Paulo S. André, Joulia Larionova, Jérôme Long, Luís D. Carlos. Synchronous Temperature and Magnetic Field Dual‐Sensing by Luminescence in a Dysprosium Single‐Molecule Magnet. Advanced Optical Materials 2021, 9 (24) https://doi.org/10.1002/adom.202101495
    70. Marcin Szalkowski, Magdalena Dudek, Zuzanna Korczak, Changhwan Lee, Łukasz Marciniak, Emory M. Chan, P. James Schuck, Artur Bednarkiewicz. Predicting the impact of temperature dependent multi-phonon relaxation processes on the photon avalanche behavior in Tm3+: NaYF4 nanoparticles. Optical Materials: X 2021, 12 , 100102. https://doi.org/10.1016/j.omx.2021.100102
    71. Hang Liu, Xiukai Jian, Mingtai Liu, Kailin Wang, Guangyao Bai, Yuhong Zhang. Investigation on the upconversion luminescence and ratiometric thermal sensing of SrWO 4 :Yb 3+ /RE 3+ (RE = Ho/Er) phosphors. RSC Advances 2021, 11 (58) , 36689-36697. https://doi.org/10.1039/D1RA06745A
    72. Wei Tang, Chuandong Zuo, Yingkui Li, Chaoyang Ma, Xuanyi Yuan, Zicheng Wen, Yongge Cao. A wide temperature range dual-mode luminescence thermometer based on Pr 3+ -doped Ba(Zr 0.16 Mg 0.28 Ta 0.56 )O 3 transparent ceramic. Journal of Materials Chemistry C 2021, 9 (42) , 15112-15120. https://doi.org/10.1039/D1TC03330A
    73. Teng Zheng, Małgorzata Sójka, Marcin Runowski, Przemysław Woźny, Stefan Lis, Eugeniusz Zych. Tm 2+ Activated SrB 4 O 7 Bifunctional Sensor of Temperature and Pressure—Highly Sensitive, Multi‐Parameter Luminescence Thermometry and Manometry. Advanced Optical Materials 2021, 9 (22) https://doi.org/10.1002/adom.202101507
    74. Eduardo D. Martínez, Alí F. García-Flores, Albano N. Carneiro Neto, Carlos D. S. Brites, Luís D. Carlos, Ricardo R. Urbano, Carlos Rettori. Controlling the thermal switching in upconverting nanoparticles through surface chemistry. Nanoscale 2021, 13 (38) , 16267-16276. https://doi.org/10.1039/D1NR03223B
    75. Anees A. Ansari, Abdul K. Parchur, M.K. Nazeeruddin, Mohammad M. Tavakoli. Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices. Coordination Chemistry Reviews 2021, 444 , 214040. https://doi.org/10.1016/j.ccr.2021.214040
    76. Yubin Wang, Lei Lei, Enyang Liu, Yao Cheng, Shiqing Xu. Constructing highly sensitive ratiometric nanothermometers based on indirectly thermally coupled levels. Chemical Communications 2021, 57 (72) , 9092-9095. https://doi.org/10.1039/D1CC03407C
    77. Hao Lei, Jianfeng Tang, Zhuohao Xiao, Fulin Lin, Yuhong Man, Chunmei Li, Guannan Li. Er3+:NaYb2F7 imbedded fluorotellurite transparent glass ceramic for enhanced upconversion luminescence and related thermometric behavior. Journal of Luminescence 2021, 237 , 118181. https://doi.org/10.1016/j.jlumin.2021.118181
    78. Xiangyan Yun, Jun Zhou, Yaohui Zhu, Xiong Li, Yetong Jia, Denghui Xu. Novel high-efficiency up-conversion luminescence of Er3+ doped LiYbW2O8 phosphors for optical temperature sensing investigation. Optik 2021, 242 , 167105. https://doi.org/10.1016/j.ijleo.2021.167105
    79. Mirosław Mączka, Anna Gągor, Jan. K. Zaręba, Monika Trzebiatowska, Dagmara Stefańska, Edyta Kucharska, Jerzy Hanuza, Norbert Pałka, Elżbieta Czerwińska, Adam Sieradzki. Benzyltrimethylammonium cadmium dicyanamide with polar order in multiple phases and prospects for linear and nonlinear optical temperature sensing. Dalton Transactions 2021, 50 (30) , 10580-10592. https://doi.org/10.1039/D1DT01675J
    80. Karmel de Oliveira Lima, Luiz Fernando dos Santos, Rodrigo Galvão, Antonio Claudio Tedesco, Leonardo de Souza Menezes, Rogéria Rocha Gonçalves. Single Er3+, Yb3+: KGd3F10 Nanoparticles for Nanothermometry. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.712659
    81. M. Fernanda Torresan, Josefina Morrone, Cecilia Sorbello, Roberto Etchenique, Paula C. Angelomé, Alejandro Wolosiuk. Emissive Platforms Employing NaYF 4 ‐based Upconverting Nanoparticles and Mesoporous Metal Oxide Thin Films. European Journal of Inorganic Chemistry 2021, 2021 (24) , 2343-2352. https://doi.org/10.1002/ejic.202100177
    82. Zhihua Liu, Siwei Long, Yunzhong Zhu, Wenjia Wang, Biao Wang. Optical thermometry based on thermolabile intrinsic polarons in Tm3+ and Yb3+ co-doped congruent lithium niobate single crystal. Journal of Alloys and Compounds 2021, 867 , 158986. https://doi.org/10.1016/j.jallcom.2021.158986
    83. João F. C. B. Ramalho, Luís D. Carlos, Paulo S. André, Rute A. S. Ferreira. mOptical Sensing for the Internet of Things: A Smartphone‐Controlled Platform for Temperature Monitoring. Advanced Photonics Research 2021, 2 (6) https://doi.org/10.1002/adpr.202000211
    84. Albenc Nexha, Joan Josep Carvajal, Maria Cinta Pujol, Francesc Díaz, Magdalena Aguiló. Lanthanide doped luminescence nanothermometers in the biological windows: strategies and applications. Nanoscale 2021, 13 (17) , 7913-7987. https://doi.org/10.1039/D0NR09150B
    85. Joana Costa Martins, Ana R. N. Bastos, Rute A. S. Ferreira, Xin Wang, Guanying Chen, Luís D. Carlos. Primary Luminescent Nanothermometers for Temperature Measurements Reliability Assessment. Advanced Photonics Research 2021, 2 (5) https://doi.org/10.1002/adpr.202000169
    86. Marcin Runowski, Przemysław Woźny, Inocencio R. Martín. Optical pressure sensing in vacuum and high-pressure ranges using lanthanide-based luminescent thermometer–manometer. Journal of Materials Chemistry C 2021, 9 (13) , 4643-4651. https://doi.org/10.1039/D1TC00709B
    87. A. Bednarkiewicz, J. Drabik, K. Trejgis, D. Jaque, E. Ximendes, L. Marciniak. Luminescence based temperature bio-imaging: Status, challenges, and perspectives. Applied Physics Reviews 2021, 8 (1) https://doi.org/10.1063/5.0030295
    88. Lili Tang, Qingyu Meng, Wenjun Sun, Shuchen Lü. Preparation and temperature sensing behavior of NaY(MoO4)2: Pr3+, Tb3+ phosphors. Journal of Luminescence 2021, 230 , 117728. https://doi.org/10.1016/j.jlumin.2020.117728
    89. Géraldine Dantelle, Valérie Reita, Cécile Delacour. Luminescent Yb3+,Er3+-Doped α-La(IO3)3 Nanocrystals for Neuronal Network Bio-Imaging and Nanothermometry. Nanomaterials 2021, 11 (2) , 479. https://doi.org/10.3390/nano11020479
    90. Nagyla A. Oliveira, Airton G. Bispo-Jr, Gabriel M.M. Shinohara, Sergio A.M. Lima, Ana M. Pires. The influence of the complexing agent on the luminescence of multicolor-emitting Y2O3:Eu3+,Er3+,Yb3+ phosphors obtained by the Pechini's method. Materials Chemistry and Physics 2021, 257 , 123840. https://doi.org/10.1016/j.matchemphys.2020.123840
    91. Hao Suo, Xiaoqi Zhao, Zhiyu Zhang, Yu Wang, Jiashu Sun, Minkun Jin, Chongfeng Guo. Rational Design of Ratiometric Luminescence Thermometry Based on Thermally Coupled Levels for Bioapplications. Laser & Photonics Reviews 2021, 15 (1) https://doi.org/10.1002/lpor.202000319
    92. Natalia Stopikowska, Marcin Runowski, Przemysław Woźny, Szymon Goderski, Stefan Lis. Improving temperature resolution of luminescent nanothermometers working in the near-infrared range using non-thermally coupled levels of Yb3+ & Tm3+. Journal of Luminescence 2020, 228 , 117643. https://doi.org/10.1016/j.jlumin.2020.117643
    93. Rustem R. Zairov, Alexey P. Dovzhenko, Anastasiia S. Sapunova, Alexandra D. Voloshina, Kirill A. Sarkanich, Amina G. Daminova, Irek R. Nizameev, Dmitry V. Lapaev, Svetlana N. Sudakova, Sergey N. Podyachev, Konstantin A. Petrov, Alberto Vomiero, Asiya R. Mustafina. Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303–313 K range. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-77512-1
    94. Markus Suta, Andries Meijerink. A Theoretical Framework for Ratiometric Single Ion Luminescent Thermometers—Thermodynamic and Kinetic Guidelines for Optimized Performance. Advanced Theory and Simulations 2020, 3 (12) https://doi.org/10.1002/adts.202000176
    95. Chanchal Hazra, Artiom Skripka, Sidney J. L. Ribeiro, Fiorenzo Vetrone. Erbium Single‐Band Nanothermometry in the Third Biological Imaging Window: Potential and Limitations. Advanced Optical Materials 2020, 8 (23) https://doi.org/10.1002/adom.202001178
    96. Olga E. Sarmanova, Sergey A. Burikov, Kirill A. Laptinskiy, Olga D. Kotova, Ekaterina A. Filippova, Tatiana A. Dolenko. In vitro temperature sensing with up-conversion NaYF4:Yb3+/Tm3+-based nanocomposites: Peculiarities and pitfalls. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 241 , 118627. https://doi.org/10.1016/j.saa.2020.118627
    97. Xiangyan Yun, Jun Zhou, Yaohui Zhu, Maxim S. Molokeev, Yetong Jia, Chao Wei, Denghui Xu, Jiayue Sun. Thermometry and up-conversion luminescence of Ln3+ (Ln = Er, Ho, Tm)-doped double molybdate LiYbMo2O8. Journal of Materials Science: Materials in Electronics 2020, 31 (21) , 18370-18380. https://doi.org/10.1007/s10854-020-04382-8
    98. Simone De Camillis, Peng Ren, Yueying Cao, Martin Plöschner, Denitza Denkova, Xianlin Zheng, Yiqing Lu, James A. Piper. Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance. Nanoscale 2020, 12 (39) , 20347-20355. https://doi.org/10.1039/D0NR04809G
    99. Sumeet Kumar, Amrendra Kumar, M. Gunaseelan, Rahul Vaippully, Dipanjan Chakraborty, Jayaraman Senthilselvan, Basudev Roy. Trapped in Out-of-Equilibrium Stationary State: Hot Brownian Motion in Optically Trapped Upconverting Nanoparticles. Frontiers in Physics 2020, 8 https://doi.org/10.3389/fphy.2020.570842
    100. Markus Suta, Janine George. Temperatur mit Licht messen. Nachrichten aus der Chemie 2020, 68 (10) , 68-73. https://doi.org/10.1002/nadc.20204096060
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect