ACS Publications. Most Trusted. Most Cited. Most Read
Monolithic Wide Band Gap Perovskite/Perovskite Tandem Solar Cells with Organic Recombination Layers
My Activity

Figure 1Loading Img
    Article

    Monolithic Wide Band Gap Perovskite/Perovskite Tandem Solar Cells with Organic Recombination Layers
    Click to copy article linkArticle link copied!

    View Author Information
    Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
    Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, U.K.
    § Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, U.K.
    Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
    *(H.J.S.) E-mail: [email protected]
    *(A.H.-B.) E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2017, 121, 49, 27256–27262
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.7b05517
    Published September 19, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We demonstrate a monolithic tandem solar cell by sequentially depositing a higher-bandgap (2.3 eV) CH3NH3PbBr3 subcell and a lower-bandgap (1.55 eV) CH3NH3PbI3 subcell bandgap perovskite cells, in conjugation with a solution-processed organic charge carrier recombination layer, which serves to protect the underlying subcell and allows for voltage addition of the two subcells. Owing to the low-loss series connection, we achieve a large open-circuit voltage of 1.96 V. Through optical and electronic modeling, we estimate the feasible efficiency of this device architecture to be 25.9%, achievable with integrating a best-in-class CH3NH3PbI3 sub cell and a 2.05 eV wide bandgap perovskite cell with an optimized optical structure. Compared to previous reported all-perovskite tandem cells, we solely employ Pb-based perovskites, which although have wider band gap than Sn based perovskites, are not at risk of instability due to the unstable charge state of the Sn2+ ion. Additionally, the bandgap combination we use in this study could be an advantage for triple junction cells on top of silicon. Our findings indicate that wide band gap all-perovskite tandems could be a feasible device structure for higher efficiency perovskite thin-film solar cells.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.7b05517.

    • Hysteresis of fabricated monolithic tandem solar cell, the measured and modeled transmittance of the top bromide cell and recombination layer, as well as the calculated JV for the 2.25 eV top cell, and parameters used for simulation (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 47 publications.

    1. Yufei Shao, Dexu Zheng, Lu Liu, Jishuang Liu, Minyong Du, Lei Peng, Kai Wang, Shengzhong Liu. Innovations in Interconnecting Layers for Perovskite-Based Tandem Solar Cells. ACS Energy Letters 2024, 9 (10) , 4892-4921. https://doi.org/10.1021/acsenergylett.4c01703
    2. Y. Puttisong, F. Moro, S. L. Chen, P. Höjer, W. Ning, F. Gao, I. A. Buyanova, W. M. Chen. Effect of Crystal Symmetry on the Spin States of Fe3+ and Vibration Modes in Lead-free Double-Perovskite Cs2AgBi(Fe)Br6. The Journal of Physical Chemistry Letters 2020, 11 (12) , 4873-4878. https://doi.org/10.1021/acs.jpclett.0c01543
    3. Jérémie Werner, Florent Sahli, Fan Fu, Juan J. Diaz Leon, Arnaud Walter, Brett A. Kamino, Bjoern Niesen, Sylvain Nicolay, Quentin Jeangros, Christophe Ballif. Perovskite/Perovskite/Silicon Monolithic Triple-Junction Solar Cells with a Fully Textured Design. ACS Energy Letters 2018, 3 (9) , 2052-2058. https://doi.org/10.1021/acsenergylett.8b01165
    4. Harigovind Menon, Feng Yan. Device simulation and experimental validation of perovskite-cadmium telluride 4T tandem solar cell. Frontiers in Energy Research 2024, 12 https://doi.org/10.3389/fenrg.2024.1457556
    5. Yuexin Lin, Wenhan Yang, Hao Gu, Fenqi Du, Jinfeng Liao, Dejian Yu, Junmin Xia, Haibin Wang, Shengchun Yang, Guojia Fang, Chao Liang. Transparent Recombination Layers Design and Rational Characterizations for Efficient Two‐Terminal Perovskite‐Based Tandem Solar Cells. Advanced Materials 2024, 36 (31) https://doi.org/10.1002/adma.202405684
    6. Jaekeun Lim, Nam-Gyu Park, Sang Il Seok, Michael Saliba. All-perovskite tandem solar cells: from fundamentals to technological progress. Energy & Environmental Science 2024, 17 (13) , 4390-4425. https://doi.org/10.1039/D3EE03638C
    7. Nikhil Shrivastav, Jaya Madan, Rahul Pandey. Advancing Accuracy in Perovskite Tandem Solar Cell Efficiency via Transfer Matrix-Based Realistic Device Simulations. Journal of Electronic Materials 2024, 53 (7) , 4214-4223. https://doi.org/10.1007/s11664-024-11141-6
    8. Ying Li, Di-Sheng Yao, Fei Long, Guo-Zhen Zhang, Feng Yu. Interfacial engineering for efficient and stable two-terminal perovskite-based tandem solar cells. Rare Metals 2024, 17 https://doi.org/10.1007/s12598-024-02736-3
    9. Geon Woo Yoon, Bonghyun Jo, Passarut Boonmongkolras, Gill Sang Han, Hyun Suk Jung. Perovskite Tandem Solar Cells for Low Earth Orbit Satellite Power Applications. Advanced Energy Materials 2024, 8 https://doi.org/10.1002/aenm.202400204
    10. Zeesham Abbas, Nazia Iram, Muhammad Aslam, Amna Parveen, Samah Al-Qaisi, Shabbir Muhammad, Aijaz Rasool Chaudhry. DFT insights for structural, opto-electronic, thermodynamic and transport characteristics of Tl2TeX6 (X = At, Br, Cl, I) double perovskites for low-cost solar cell applications. Inorganic Chemistry Communications 2024, 163 , 112293. https://doi.org/10.1016/j.inoche.2024.112293
    11. Alireza Gholami-Milani, Sohrab Ahmadi-Kandjani, Babak Olyaeefar, Mir Hojjat Kermani. Performance analyses of highly efficient inverted all-perovskite bilayer solar cell. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-35504-x
    12. Dinesh Kumar, Nitin Kumar Bansal, Himanshu Dixit, Ashish Kulkarni, Trilok Singh. Numerical Study on the Effect of Dual Electron Transport Layer in Improving the Performance of Perovskite–Perovskite Tandem Solar Cells. Advanced Theory and Simulations 2023, 6 (3) https://doi.org/10.1002/adts.202200800
    13. Jarla Thiesbrummel, Francisco Peña‐Camargo, Kai Oliver Brinkmann, Emilio Gutierrez‐Partida, Fengjiu Yang, Jonathan Warby, Steve Albrecht, Dieter Neher, Thomas Riedl, Henry J. Snaith, Martin Stolterfoht, Felix Lang. Understanding and Minimizing V OC Losses in All‐Perovskite Tandem Photovoltaics. Advanced Energy Materials 2023, 13 (3) https://doi.org/10.1002/aenm.202202674
    14. Yiman DONG, Zhan’ao TAN. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite. Journal of Inorganic Materials 2023, 38 (9) , 1031. https://doi.org/10.15541/jim20230116
    15. Meng Zhang, Zhiqun Lin. Efficient interconnecting layers in monolithic all-perovskite tandem solar cells. Energy & Environmental Science 2022, 15 (8) , 3152-3170. https://doi.org/10.1039/D2EE00731B
    16. Yue-Min Xie, Tianqi Niu, Qin Yao, Qifan Xue, Zixin Zeng, Yuanhang Cheng, Hin-Lap Yip, Yong Cao. Understanding the role of interconnecting layer on determining monolithic perovskite/organic tandem device carrier recombination properties. Journal of Energy Chemistry 2022, 71 , 12-19. https://doi.org/10.1016/j.jechem.2022.03.019
    17. Chao Gao, Daxue Du, Dong Ding, Feiyang Qiao, Wenzhong Shen. A review on monolithic perovskite/c-Si tandem solar cells: progress, challenges, and opportunities. Journal of Materials Chemistry A 2022, 10 (20) , 10811-10828. https://doi.org/10.1039/D2TA01470J
    18. Yao Tong, Adel Najar, Le Wang, Lu Liu, Minyong Du, Jing Yang, Jianxun Li, Kai Wang, Shengzhong (Frank) Liu. Wide‐Bandgap Organic–Inorganic Lead Halide Perovskite Solar Cells. Advanced Science 2022, 9 (14) https://doi.org/10.1002/advs.202105085
    19. Anita W. Y. Ho-Baillie, Jianghui Zheng, Md Arafat Mahmud, Fa-Jun Ma, David R. McKenzie, Martin A. Green. Recent progress and future prospects of perovskite tandem solar cells. Applied Physics Reviews 2021, 8 (4) https://doi.org/10.1063/5.0061483
    20. Mohammed Islam Elsmani, Noshin Fatima, Michael Paul A. Jallorina, Suhaila Sepeai, Mohd Sukor Su’ait, Norasikin Ahmad Ludin, Mohd Asri Mat Teridi, Kamaruzzaman Sopian, Mohd Adib Ibrahim. Recent Issues and Configuration Factors in Perovskite-Silicon Tandem Solar Cells towards Large Scaling Production. Nanomaterials 2021, 11 (12) , 3186. https://doi.org/10.3390/nano11123186
    21. Rui He, Shengqiang Ren, Cong Chen, Zongjin Yi, Yi Luo, Huagui Lai, Wenwu Wang, Guanggen Zeng, Xia Hao, Ye Wang, Jingquan Zhang, Changlei Wang, Lili Wu, Fan Fu, Dewei Zhao. Wide-bandgap organic–inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy & Environmental Science 2021, 14 (11) , 5723-5759. https://doi.org/10.1039/D1EE01562A
    22. Yulan Huang, Tanghao Liu, Dongyang Li, Dandan Zhao, Abbas Amini, Chun Cheng, Guichuan Xing. Limitations and solutions for achieving high-performance perovskite tandem photovoltaics. Nano Energy 2021, 88 , 106219. https://doi.org/10.1016/j.nanoen.2021.106219
    23. Ajay Singh, Fabio Matteocci, Hongwei Zhu, Daniele Rossi, Salim Mejaouri, Stefania Cacovich, Matthias Auf Der Maur, Frédéric Sauvage, Alessio Gagliardi, Michael Grätzel, Aldo Di Carlo. Methylamine Gas Treatment Affords Improving Semitransparency, Efficiency, and Stability of CH 3 NH 3 PbBr 3 ‐Based Perovskite Solar Cells. Solar RRL 2021, 5 (9) https://doi.org/10.1002/solr.202100277
    24. Tian‐Tian Li, Yuan‐Bo Yang, Guo‐Ran Li, Peng Chen, Xue‐Ping Gao. Two‐Terminal Perovskite‐Based Tandem Solar Cells for Energy Conversion and Storage. Small 2021, 17 (23) https://doi.org/10.1002/smll.202006145
    25. Xue Du, Dafang He, Huayue Mei, Yuqing Liu, Nanpu Cheng. Mechanical, electronic and optical properties of K2TeX6 (X=Cl, Br, I) perovskite derivatives using density functional theory. Materials Science in Semiconductor Processing 2021, 123 , 105579. https://doi.org/10.1016/j.mssp.2020.105579
    26. Xinhui Luo, Tianhao Wu, Yanbo Wang, Xuesong Lin, Hongzhen Su, Qifeng Han, Liyuan Han. Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers. Science China Chemistry 2021, 64 (2) , 218-227. https://doi.org/10.1007/s11426-020-9870-4
    27. Atefeh Fathzadeh, Bahram Abdollahi Nejand, Mohammad Kazem Moravvej-Farshi. Cation engineering for wide bandgap CH 3 NH 3 Pb (I 1 −x Br x ) 3 perovskite solar cells. OSA Continuum 2021, 4 (1) , 1. https://doi.org/10.1364/OSAC.409349
    28. Taylor Moot, Jérémie Werner, Giles E. Eperon, Kai Zhu, Joseph J. Berry, Michael D. McGehee, Joseph M. Luther. Choose Your Own Adventure: Fabrication of Monolithic All‐Perovskite Tandem Photovoltaics. Advanced Materials 2020, 32 (50) https://doi.org/10.1002/adma.202003312
    29. Michele De Bastiani, Anand S. Subbiah, Erkan Aydin, Furkan H. Isikgor, Thomas G. Allen, Stefaan De Wolf. Recombination junctions for efficient monolithic perovskite-based tandem solar cells: physical principles, properties, processing and prospects. Materials Horizons 2020, 7 (11) , 2791-2809. https://doi.org/10.1039/D0MH00990C
    30. Savita Kashyap, Rahul Pandey, Jaya Madan, Rajnish Sharma. Design and Simulation of a‐Si:H/PbS Colloidal Quantum Dots Monolithic Tandem Solar Cell for 12% Efficiency. physica status solidi (a) 2020, 217 (20) https://doi.org/10.1002/pssa.202000252
    31. T. Jesper Jacobsson, Adam Hultqvist, Sebastian Svanström, Lars Riekehr, Ute B. Cappel, Eva Unger, Håkan Rensmo, Erik M.J. Johansson, Marika Edoff, Gerrit Boschloo. 2-Terminal CIGS-perovskite tandem cells: A layer by layer exploration. Solar Energy 2020, 207 , 270-288. https://doi.org/10.1016/j.solener.2020.06.034
    32. Ryousuke Ishikawa, Takuya Kato, Ryotaro Anzo, Momoko Nagatake, Tatsuya Nishimura, Nozomu Tsuboi, Shinsuke Miyajima. Widegap CH3NH3PbBr3 solar cells for optical wireless power transmission application. Applied Physics Letters 2020, 117 (1) https://doi.org/10.1063/5.0010009
    33. Can Li, Yong Wang, Wallace C. H. Choy. Efficient Interconnection in Perovskite Tandem Solar Cells. Small Methods 2020, 4 (7) https://doi.org/10.1002/smtd.202000093
    34. Yurui Wang, Mei Zhang, Ke Xiao, Renxing Lin, Xin Luo, Qiaolei Han, Hairen Tan. Recent progress in developing efficient monolithic all-perovskite tandem solar cells. Journal of Semiconductors 2020, 41 (5) , 051201. https://doi.org/10.1088/1674-4926/41/5/051201
    35. Yanqing Yao, Feng Lv, Lie Luo, Liping Liao, Gang Wang, Debei Liu, Cunyun Xu, Guangdong Zhou, Xusheng Zhao, Qunliang Song. Highly Efficient Sn–Pb Perovskite Solar Cell and High‐Performance All‐Perovskite Four‐Terminal Tandem Solar Cell. Solar RRL 2020, 4 (3) https://doi.org/10.1002/solr.201900396
    36. Swati Chaudhary, Varsha Yadav, Chandra Mohan Singh Negi, Saral K. Gupta. Charge transport and impedance analysis of solution‐processed perovskite‐based device. Micro & Nano Letters 2020, 15 (3) , 136-139. https://doi.org/10.1049/mnl.2019.0597
    37. Saida Laalioui, Kawtar Belrhiti Alaoui, Houda Ait Dads, Kassem El Assali, Badr Ikken, Abdelkader Outzourhit. Progress in perovskite based solar cells: scientific and engineering state of the art. REVIEWS ON ADVANCED MATERIALS SCIENCE 2020, 59 (1) , 10-25. https://doi.org/10.1515/rams-2020-0017
    38. Zhaoning Song, Cong Chen, Chongwen Li, Rasha A Awni, Dewei Zhao, Yanfa Yan. Wide-bandgap, low-bandgap, and tandem perovskite solar cells. Semiconductor Science and Technology 2019, 34 (9) , 093001. https://doi.org/10.1088/1361-6641/ab27f7
    39. Naeimeh Torabi, Abbas Behjat, Yinhua Zhou, Pablo Docampo, Ryan J. Stoddard, Hugh W. Hillhouse, Tayebeh Ameri. Progress and challenges in perovskite photovoltaics from single- to multi-junction cells. Materials Today Energy 2019, 12 , 70-94. https://doi.org/10.1016/j.mtener.2018.12.009
    40. Timothy D. Siegler, Tushar M. Shimpi, Walajabad S. Sampath, Brian A. Korgel. Development of wide bandgap perovskites for next-generation low-cost CdTe tandem solar cells. Chemical Engineering Science 2019, 199 , 388-397. https://doi.org/10.1016/j.ces.2019.01.003
    41. David P. McMeekin, Suhas Mahesh, Nakita K. Noel, Matthew T. Klug, JongChul Lim, Jonathan H. Warby, James M. Ball, Laura M. Herz, Michael B. Johnston, Henry J. Snaith. Solution-Processed All-Perovskite Multi-junction Solar Cells. Joule 2019, 3 (2) , 387-401. https://doi.org/10.1016/j.joule.2019.01.007
    42. Chih-Yu Chang, Bo-Chou Tsai, Yu-Cheng Hsiao, Min-Zhen Lin, Hsin-Fei Meng. Solution-processed conductive interconnecting layer for highly-efficient and long-term stable monolithic perovskite tandem solar cells. Nano Energy 2019, 55 , 354-367. https://doi.org/10.1016/j.nanoen.2018.10.014
    43. Jorge Ávila, Cristina Momblona, Pablo Boix, Michele Sessolo, Miguel Anaya, Gabriel Lozano, Koen Vandewal, Hernán Míguez, Henk J. Bolink. High voltage vacuum-deposited CH 3 NH 3 PbI 3 –CH 3 NH 3 PbI 3 tandem solar cells. Energy & Environmental Science 2018, 11 (11) , 3292-3297. https://doi.org/10.1039/C8EE01936C
    44. Yajie Wang, Robert Wenisch, Rutger Schlatmann, Iver Lauermann. Inorganic Materials as Hole Selective Contacts and Intermediate Tunnel Junction Layer for Monolithic Perovskite‐CIGSe Tandem Solar Cells. Advanced Energy Materials 2018, 8 (30) https://doi.org/10.1002/aenm.201801692
    45. Zongqi Li, Yingzhi Zhao, Xi Wang, Yuchao Sun, Zhiguo Zhao, Yujing Li, Huanping Zhou, Qi Chen. Cost Analysis of Perovskite Tandem Photovoltaics. Joule 2018, 2 (8) , 1559-1572. https://doi.org/10.1016/j.joule.2018.05.001
    46. Terry Chien-Jen Yang, Peter Fiala, Quentin Jeangros, Christophe Ballif. High-Bandgap Perovskite Materials for Multijunction Solar Cells. Joule 2018, 2 (8) , 1421-1436. https://doi.org/10.1016/j.joule.2018.05.008
    47. Rajan Kumar Singh, Ranveer Kumar, Amit Kumar, Neha Jain, Rajiv Kr. Singh, Jai Singh. Novel synthesis process of methyl ammonium bromide and effect of particle size on structural, optical and thermodynamic behavior of CH3NH3PbBr3 organometallic perovskite light harvester. Journal of Alloys and Compounds 2018, 743 , 728-736. https://doi.org/10.1016/j.jallcom.2018.01.355

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2017, 121, 49, 27256–27262
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.7b05517
    Published September 19, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    3144

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.