ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Characterization Study of CO2, CH4, and CO2/CH4 Hydroquinone Clathrates Formed by Gas–Solid Reaction

View Author Information
Laboratoire des Fluides Complexes et leurs Réservoirs-IPRA, UMR5150, CNRS/Total/Université Pau and Pays Adour, Avenue de l’Université, 64000 Pau, France
Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, Hélioparc, Université Pau and Pays Adour, Avenue du Président Pierre Angot, 64000 Pau, France
§ Laboratoire des Fluides Complexes et leurs Réservoirs-IPRA, UMR5150, CNRS/Total/Université Pau and Pays Adour, Allée du Parc Montaury, 64600 Anglet, France
Développement de Méthodologies EXpérimentales - IPRA, UMS 3360, CNRS/Université Pau and Pays Adour, Avenue de l’Université, 64000 Pau, France
*Phone: +33 (0)5 40 17 51 09. E-mail: [email protected]
Cite this: J. Phys. Chem. C 2017, 121, 41, 22883–22894
Publication Date (Web):September 26, 2017
https://doi.org/10.1021/acs.jpcc.7b07378
Copyright © 2017 American Chemical Society

    Article Views

    302

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Hydroquinone (HQ) is known to form organic clathrates with some gaseous species such as CO2 and CH4. This work presents spectroscopic data, surface and internal morphologies, gas storage capacities, guest release temperatures, and structural transition temperatures for HQ clathrates obtained from pure CO2, pure CH4, and an equimolar CO2/CH4 mixture. All analyses are performed on clathrates formed by direct gas–solid reaction after 1 month’s reaction at ambient temperature conditions and under a pressure of 3.0 MPa. A collection of spectroscopic data (Raman, FT-IR, and 13C NMR) is presented, and the results confirm total conversion of the native HQ (α-HQ) into HQ clathrates (β-HQ) at the end of the reaction. Optical microscopy and SEM analyses reveal morphology changes after the enclathration reaction, such as the presence of surface asperities. Gas porosimetry measurements show that HQ clathrates and native HQ are neither micro- nor mesoporous materials. However, as highlighted by TEM analyses and X-ray tomography, α- and β-HQ contain unsuspected macroscopic voids and channels, which create a macroporosity inside the crystals that decreases due to the enclathration reaction. TGA and in situ Raman spectroscopy give the guest release temperatures as well as the structural transition temperatures from β-HQ to α-HQ. The gas storage capacity of the clathrates is also quantified by means of different types of gravimetric analyses (mass balance and TGA). After having been formed under pressure, the characterized clathrates exhibit exceptional metastability: the gases remain in the clathrate structure at ambient conditions over time scales of more than 1 month. Consequently, HQ gas clathrates display very interesting properties for gas storage and sequestration applications.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.7b07378.

    • Characterization apparatuses and methods; Raman and IR of HQ clathrates; gas storage capacities of HQ clathrates (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 15 publications.

    1. Chang Yeop Oh, Sol Geo Lim, Sun Ha Kim, Jong-Won Lee, Ji-Ho Yoon. Temperature-Dependent Structural Characteristics and Guest Occupation Behavior of CO2-Loaded Hydroquinone Clathrates. The Journal of Physical Chemistry C 2023, 127 (30) , 14924-14932. https://doi.org/10.1021/acs.jpcc.3c02375
    2. Yesol Woo, Martín Pérez-Rodríguez, Jae Hak Jeong, Manuel M. Piñeiro, Jong-Won Lee, Yongjae Lee, Sung-Hee Jung, Hyunjeong Kim, Satoshi Takeya, Yoshitaka Yamamoto, Ji-Ho Yoon. Extremely Slow Diffusion of Argon Atoms in Clathrate Cages: Implications for Gas Storage in Solid Materials. ACS Sustainable Chemistry & Engineering 2021, 9 (22) , 7479-7488. https://doi.org/10.1021/acssuschemeng.1c00827
    3. Arnaud Grosjean, Peter R. Spackman, Alison J. Edwards, Kasper Tolborg, Emilie S. Vosegaard, George A. Koutsantonis, Bo B. Iversen, Mark A. Spackman. Insights into Host–Guest Binding in Hydroquinone Clathrates: Single-Crystal X-ray and Neutron Diffraction, and Complementary Computational Studies on the Hydroquinone-CO2 Clathrate. Crystal Growth & Design 2021, 21 (6) , 3477-3486. https://doi.org/10.1021/acs.cgd.1c00271
    4. Sang Jun Yoon, Dongwon Lee, Ji-Ho Yoon, Jong-Won Lee. High Selectivity for CO2 in Hydroquinone Clathrates Formed from Binary (CO + CO2) Gas Mixtures with Various Compositions. Energy & Fuels 2021, 35 (3) , 2478-2484. https://doi.org/10.1021/acs.energyfuels.0c03852
    5. Romuald Coupan, Peter Moonen, Christophe Dicharry, Frédéric Plantier, Joseph Diaz, Eve Péré, Abdel Khoukh, Fabrice Guerton, Pascale Sénéchal, Cédric Charvillat, Marie-Line De Solan, Jean-Philippe Torré. Novel Hydroquinone-Alumina Composites Stabilizing a Guest-Free Clathrate Structure: Applications in Gas Processing. ACS Applied Materials & Interfaces 2020, 12 (30) , 34137-34147. https://doi.org/10.1021/acsami.0c06187
    6. Sang Jun Yoon, Dongwon Lee, Ji-Ho Yoon, Jong-Won Lee. Swapping and Enhancement of Guest Occupancies in Hydroquinone Clathrates Using CH4 and CO2. Energy & Fuels 2019, 33 (7) , 6634-6640. https://doi.org/10.1021/acs.energyfuels.9b01200
    7. Jean-Philippe Torré, Heinz Gornitzka, Romuald Coupan, Christophe Dicharry, Martín Pérez-Rodríguez, Antonio Comesaña, Manuel M. Piñeiro. Insights into the Crystal Structure and Clathration Selectivity of Organic Clathrates Formed with Hydroquinone and (CO2 + CH4) Gas Mixtures. The Journal of Physical Chemistry C 2019, 123 (23) , 14582-14590. https://doi.org/10.1021/acs.jpcc.9b04081
    8. Martín Pérez-Rodríguez, Javier Otero-Fernández, Antonio Comesaña, Ángel M. Fernández-Fernández, Manuel M. Piñeiro. Simulation of Capture and Release Processes of Hydrogen by β-Hydroquinone Clathrate. ACS Omega 2018, 3 (12) , 18771-18782. https://doi.org/10.1021/acsomega.8b01798
    9. Trinidad Méndez-Morales, Hadrián Montes-Campos, Martín Pérez-Rodríguez, Manuel M. Piñeiro. Evaluation of hydrogen storage ability of hydroquinone clathrates using molecular simulations. Journal of Molecular Liquids 2022, 360 , 119487. https://doi.org/10.1016/j.molliq.2022.119487
    10. Sol Geo Lim, Jiyeong Jang, Jong-Won Lee, Minjun Cha, Jeasung Park, Michihiro Muraoka, Yoshitaka Yamamoto, Dohyun Moon, Ji-Ho Yoon. Azeotropic clathrate: Compelling similarity of CO2 and N2O uptake in an organic crystalline host. Chemical Engineering Journal 2022, 427 , 131560. https://doi.org/10.1016/j.cej.2021.131560
    11. Ji-Ho Yoon, Dongwon Lee, Jong-Won Lee. Spectroscopic Identification on CO2 Separation from CH4 + CO2 Gas Mixtures Using Hydroquinone Clathrate Formation. Energies 2021, 14 (14) , 4068. https://doi.org/10.3390/en14144068
    12. Sang Jun Yoon, Dongwon Lee, Ji-Ho Yoon, Jong-Won Lee. Guest Partitioning and High CO2 Selectivity in Hydroquinone Clathrates Formed from Ternary (CO + CO2 + H2) Gas Mixtures. Energies 2020, 13 (14) , 3591. https://doi.org/10.3390/en13143591
    13. Romuald Coupan, Christophe Dicharry, Jean-Philippe Torré. Hydroquinone clathrate based gas separation (HCBGS): Application to the CO2/CH4 gas mixture. Fuel 2018, 226 , 137-147. https://doi.org/10.1016/j.fuel.2018.03.170
    14. A. Comesaña, M. Pérez-Rodríguez, A. M. Fernández-Fernández, M. M. Piñeiro. A description of hydroquinone clathrates using molecular dynamics: Molecular model and crystalline structures for CH 4 and CO 2 guests. The Journal of Chemical Physics 2018, 148 (24) , 244502. https://doi.org/10.1063/1.5027807
    15. Daniel Broseta, Christophe Dicharry, Jean‐Philippe Torré. Hydrate‐Based Removal of CO 2 from CH 4 + CO 2 Gas Streams. 2018, 285-314. https://doi.org/10.1002/9781119451174.ch14

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect