ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Manganese(II) Molecular Sources for Plasma-Assisted CVD of Mn Oxides and Fluorides: From Precursors to Growth Process

View Author Information
CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy
§ Department of Science and High Technology, University of Insubria and INSTM, 22100 Como, Italy
Inorganic Materials Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
*E-mail [email protected] (G.T.).
*E-mail [email protected] (C.M.).
Cite this: J. Phys. Chem. C 2018, 122, 2, 1367–1375
Publication Date (Web):December 21, 2017
https://doi.org/10.1021/acs.jpcc.7b10277
Copyright © 2017 American Chemical Society

    Article Views

    880

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A viable route to manganese-based materials of high technological interest is plasma-assisted chemical vapor deposition (PA-CVD), offering various degrees of freedom for the growth of high-purity nanostructures from suitable precursors. In this regard, fluorinated β-diketonate diamine Mn(II) complexes of general formula Mn(dik)2·TMEDA [TMEDA = N,N,N′,N′-tetramethylethylenediamine; Hdik = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (Hhfa), or 1,1,1-trifluoro-2,4-pentanedione (Htfa)] represent a valuable option in the quest of candidate molecular sources for PA-CVD environments. In this work, we investigate and highlight the chemico-physical properties of these compounds of importance for their use in PA-CVD processes, through the use of a comprehensive experimental–theoretical investigation. Preliminary PA-CVD validation shows the possibility of varying the Mn oxidation state, as well as the system chemical composition from MnF2 to MnO2, by simple modulations of the reaction atmosphere, paving the way to a successful utilization of the target compounds in the growth of manganese-containing nanomaterials for different technological applications.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.7b10277.

    • NMR characterization and computational results on Mn(dik)2·TMEDA (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 32 publications.

    1. Mattia Benedet, Chiara Maccato, Gioele Pagot, Cristiano Invernizzi, Cinzia Sada, Vito Di Noto, Gian Andrea Rizzi, Ettore Fois, Gloria Tabacchi, Davide Barreca. Growth of NiO Thin Films in the Presence of Water Vapor: Insights from Experiments and Theory. The Journal of Physical Chemistry C 2023, 127 (45) , 22304-22314. https://doi.org/10.1021/acs.jpcc.3c05067
    2. Lorenzo Bigiani, Chiara Maccato, Teresa Andreu, Alberto Gasparotto, Cinzia Sada, Evgeny Modin, Oleg I. Lebedev, Joan Ramon Morante, Davide Barreca. Quasi-1D Mn2O3 Nanostructures Functionalized with First-Row Transition-Metal Oxides as Oxygen Evolution Catalysts. ACS Applied Nano Materials 2020, 3 (10) , 9889-9898. https://doi.org/10.1021/acsanm.0c01951
    3. Alberto Gasparotto, Chiara Maccato, Athanasia Petala, Symeon Bebelis, Cinzia Sada, Dimitris I. Kondarides, Davide Barreca. Nanoscale Mn3O4 Thin Film Photoelectrodes Fabricated by a Vapor-Phase Route. ACS Applied Energy Materials 2019, 2 (11) , 8294-8302. https://doi.org/10.1021/acsaem.9b01773
    4. Davide Barreca, Filippo Gri, Alberto Gasparotto, Thomas Altantzis, Valentina Gombac, Paolo Fornasiero, Chiara Maccato. Insights into the Plasma-Assisted Fabrication and Nanoscopic Investigation of Tailored MnO2 Nanomaterials. Inorganic Chemistry 2018, 57 (23) , 14564-14573. https://doi.org/10.1021/acs.inorgchem.8b02108
    5. Lorenzo Bigiani, Chiara Maccato, Giorgio Carraro, Alberto Gasparotto, Cinzia Sada, Elisabetta Comini, Davide Barreca. Tailoring Vapor-Phase Fabrication of Mn3O4 Nanosystems: From Synthesis to Gas-Sensing Applications. ACS Applied Nano Materials 2018, 1 (6) , 2962-2970. https://doi.org/10.1021/acsanm.8b00584
    6. Gioele Pagot, Mattia Benedet, Chiara Maccato, Davide Barreca, Vito Di Noto. XPS study of NiO thin films obtained by chemical vapor deposition. Surface Science Spectra 2023, 30 (2) https://doi.org/10.1116/6.0003008
    7. Mattia Benedet, Davide Barreca, Ettore Fois, Roberta Seraglia, Gloria Tabacchi, Marco Roverso, Gioele Pagot, Cristiano Invernizzi, Alberto Gasparotto, Alexandra A. Heidecker, Alexander Pöthig, Emanuela Callone, Sandra Dirè, Sara Bogialli, Vito Di Noto, Chiara Maccato. Interplay between coordination sphere engineering and properties of nickel diketonate–diamine complexes as vapor phase precursors for the growth of NiO thin films. Dalton Transactions 2023, 52 (31) , 10677-10688. https://doi.org/10.1039/D3DT01282D
    8. Camilla Tossi, Ornella Laouadi, Ramesh Raju, Ilkka Tittonen, Aadesh P. Singh. Advanced deposition tools for the development of oxide thin films. 2023, 135-164. https://doi.org/10.1016/B978-0-323-90907-5.00023-3
    9. Zhen Zhang, Peizhi Liu, Yanhui Song, Ying Hou, Bingshe Xu, Ting Liao, Haixia Zhang, Junjie Guo, Ziqi Sun. Heterostructure Engineering of 2D Superlattice Materials for Electrocatalysis. Advanced Science 2022, 9 (35) https://doi.org/10.1002/advs.202204297
    10. Christian Stienen, Julian Grahl, Christoph Wölper, Stephan Schulz, Georg Bendt. Fluorinated β-diketonate complexes M(tfac) 2 (TMEDA) (M = Fe, Ni, Cu, Zn) as precursors for the MOCVD growth of metal and metal oxide thin films. RSC Advances 2022, 12 (35) , 22974-22983. https://doi.org/10.1039/D2RA01338J
    11. Davide Barreca, Lorenzo Bigiani, Max Klotzsche, Alberto Gasparotto, Roberta Seraglia, Christian Jandl, Alexander Pöthig, Ettore Fois, Laura Vanin, Gloria Tabacchi, Marco Roverso, Sara Bogialli, Emanuela Callone, Sandra Dirè, Chiara Maccato. A versatile Fe(II) diketonate diamine adduct: Preparation, characterization and validation in the chemical vapor deposition of iron oxide nanomaterials. Materials Chemistry and Physics 2022, 277 , 125534. https://doi.org/10.1016/j.matchemphys.2021.125534
    12. Lorenzo Bigiani, Alberto Gasparotto, Teresa Andreu, Johan Verbeeck, Cinzia Sada, Evgeny Modin, Oleg I. Lebedev, Juan Ramón Morante, Davide Barreca, Chiara Maccato. Au–Manganese Oxide Nanostructures by a Plasma‐Assisted Process as Electrocatalysts for Oxygen Evolution: A Chemico‐Physical Investigation. Advanced Sustainable Systems 2021, 5 (11) https://doi.org/10.1002/adsu.202000177
    13. Max Klotzsche, Davide Barreca, Lorenzo Bigiani, Roberta Seraglia, Alberto Gasparotto, Laura Vanin, Christian Jandl, Alexander Pöthig, Marco Roverso, Sara Bogialli, Gloria Tabacchi, Ettore Fois, Emanuela Callone, Sandra Dirè, Chiara Maccato. Facile preparation of a cobalt diamine diketonate adduct as a potential vapor phase precursor for Co 3 O 4 films. Dalton Transactions 2021, 50 (30) , 10374-10385. https://doi.org/10.1039/D1DT01650D
    14. Lorenzo Bigiani, Davide Barreca, Alberto Gasparotto, Teresa Andreu, Johan Verbeeck, Cinzia Sada, Evgeny Modin, Oleg I. Lebedev, Juan Ramón Morante, Chiara Maccato. Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process. Applied Catalysis B: Environmental 2021, 284 , 119684. https://doi.org/10.1016/j.apcatb.2020.119684
    15. Aaron S. Crossman, Michael P. Marshak. β-Diketones: Coordination and Application. 2021, 331-365. https://doi.org/10.1016/B978-0-08-102688-5.00069-6
    16. Charles H. Winter, Apoorva Upadhyay, Michael Overbeek, Jonathan Hollin, Stefan Cwik. Group 7 and 8 Compounds for Chemical Vapor Deposition. 2021, 824-841. https://doi.org/10.1016/B978-0-12-409547-2.14951-0
    17. Lorenzo Bigiani, Alberto Gasparotto, Chiara Maccato, Cinzia Sada, Johan Verbeeck, Teresa Andreu, Juan Ramón Morante, Davide Barreca. Dual Improvement of β ‐MnO 2 Oxygen Evolution Electrocatalysts via Combined Substrate Control and Surface Engineering. ChemCatChem 2020, 12 (23) , 5984-5992. https://doi.org/10.1002/cctc.202000999
    18. Tobias Wagner, Daniele Valbusa, Lorenzo Bigiani, Davide Barreca, Alberto Gasparotto, Chiara Maccato. XPS characterization of Mn2O3 nanomaterials functionalized with Ag and SnO2. Surface Science Spectra 2020, 27 (2) https://doi.org/10.1116/6.0000331
    19. Lorenzo Bigiani, Chiara Maccato, Davide Barreca, Alberto Gasparotto. MnO2 nanomaterials functionalized with Ag and SnO2: An XPS study. Surface Science Spectra 2020, 27 (2) https://doi.org/10.1116/6.0000332
    20. Ankita Mathur, Ravinder Kaushik, Aditi Halder. Visible-light-driven photo-enhanced zinc–air batteries using synergistic effect of different types of MnO 2 nanostructures. Catalysis Science & Technology 2020, 10 (21) , 7352-7364. https://doi.org/10.1039/D0CY01581D
    21. Lorenzo Bigiani, Chiara Maccato, Alberto Gasparotto, Cinzia Sada, Elza Bontempi, Davide Barreca. Plasma-Assisted Chemical Vapor Deposition of F-Doped MnO2 Nanostructures on Single Crystal Substrates. Nanomaterials 2020, 10 (7) , 1335. https://doi.org/10.3390/nano10071335
    22. Lorenzo Bigiani, Dario Zappa, Chiara Maccato, Elisabetta Comini, Davide Barreca, Alberto Gasparotto. Quasi-1D MnO2 nanocomposites as gas sensors for hazardous chemicals. Applied Surface Science 2020, 512 , 145667. https://doi.org/10.1016/j.apsusc.2020.145667
    23. Lorenzo Bigiani, Dario Zappa, Chiara Maccato, Alberto Gasparotto, Cinzia Sada, Elisabetta Comini, Davide Barreca. Hydrogen Gas Sensing Performances of p-Type Mn3O4 Nanosystems: The Role of Built-in Mn3O4/Ag and Mn3O4/SnO2 Junctions. Nanomaterials 2020, 10 (3) , 511. https://doi.org/10.3390/nano10030511
    24. Baiyu Ren, Yichao Wang, Jian Zhen Ou. Engineering two-dimensional metal oxides via surface functionalization for biological applications. Journal of Materials Chemistry B 2020, 8 (6) , 1108-1127. https://doi.org/10.1039/C9TB02423A
    25. Federica Trudu, Gloria Tabacchi, Ettore Fois. Computer modeling of apparently straight bond angles: The intriguing case of all-silica ferrierite. American Mineralogist 2019, 104 (11) , 1546-1555. https://doi.org/10.2138/am-2019-6951
    26. Jacek Tyczkowski, Hanna Kierzkowska-Pawlak, Ryszard Kapica, Jacek Balcerzak, Jan Sielski. Cold plasma − A promising tool for the production of thin-film nanocatalysts. Catalysis Today 2019, 337 , 44-54. https://doi.org/10.1016/j.cattod.2019.03.037
    27. N.S. Nikolaeva, N.V. Kuratieva, E.S. Vikulova, P.A. Stabnikov, N.B. Morozova. Volatile asymmetric fluorinated (O^N)-chelated palladium complexes: From ligand sources to MOCVD application. Polyhedron 2019, 171 , 455-463. https://doi.org/10.1016/j.poly.2019.07.039
    28. Davide Barreca, Filippo Gri, Alberto Gasparotto, Giorgio Carraro, Lorenzo Bigiani, Thomas Altantzis, Boštjan Žener, Urška Lavrenčič Štangar, Bruno Alessi, Dilli Babu Padmanaban, Davide Mariotti, Chiara Maccato. Multi-functional MnO 2 nanomaterials for photo-activated applications by a plasma-assisted fabrication route. Nanoscale 2019, 11 (1) , 98-108. https://doi.org/10.1039/C8NR06468G
    29. Davide Barreca, Alberto Gasparotto, Filippo Gri, Elisabetta Comini, Chiara Maccato. Plasma‐Assisted Growth of β‐MnO 2 Nanosystems as Gas Sensors for Safety and Food Industry Applications. Advanced Materials Interfaces 2018, 5 (23) https://doi.org/10.1002/admi.201800792
    30. Filippo Gri, Lorenzo Bigiani, Alberto Gasparotto, Chiara Maccato, Davide Barreca. XPS investigation of F-doped MnO2 nanosystems fabricated by plasma assisted-CVD. Surface Science Spectra 2018, 25 (2) https://doi.org/10.1116/1.5048908
    31. Lorenzo Bigiani, Davide Barreca, Alberto Gasparotto, Chiara Maccato. Mn3O4 thin films functionalized with Ag, Au, and TiO2 analyzed using x-ray photoelectron spectroscopy. Surface Science Spectra 2018, 25 (1) https://doi.org/10.1116/1.5029889
    32. Lorenzo Bigiani, Davide Barreca, Alberto Gasparotto, Cinzia Sada, Sara Martí-Sanchez, Jordi Arbiol, Chiara Maccato. Controllable vapor phase fabrication of F:Mn 3 O 4 thin films functionalized with Ag and TiO 2. CrystEngComm 2018, 20 (22) , 3016-3024. https://doi.org/10.1039/C8CE00387D

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect