Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Role of Oligomeric Gold–Thiolate Units in Single-Molecule Junctions of Thiol-Anchored Molecules

View Author Information
Instituto Madrileño de Estudios Advanzados (IMDEA), Calle Faraday 9, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
⊥ ‡ Departamento de Física de la Materia Condensada, Instituto “Nicolás Cabrera” and Condensed Matter Physics Center (IFIMAC), Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada Módulo C-III, and §Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
Departamento de Química Orgánica, Universidad de Granada, C. U. Fuentanueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
Cite this: J. Phys. Chem. C 2018, 122, 6, 3211–3218
Publication Date (Web):January 24, 2018
https://doi.org/10.1021/acs.jpcc.7b11104
Copyright © 2018 American Chemical Society

    Article Views

    1366

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Using the break-junction technique, we show that “Au(RS)2” units play a significant role in thiol-terminated molecular junctions formed on gold. We have studied a range of thiol-terminated compounds, with the sulfur atoms either in direct conjugation with a phenyl core or bonded to saturated methylene groups. For all molecules we observe at least two distinct groups of conductance plateaus. By a careful analysis of the length behavior of these plateaus, comparing the behavior across the different cores and with methyl sulfide anchor groups, we demonstrate that the lower conductance groups correspond to the incorporation of Au(RS)2 oligomeric units at the contacts. These structural motifs are found on the surface of gold nanoparticles, but they have not before been shown to exist in molecular-break junctions. The results, while exemplifying the complex nature of thiol chemistry on gold, moreover clarify the conductance of 1,4-benzenedithiol on gold. We show that true Au–S–Ph–S–Au junctions have a relatively narrow conductance distribution, centered at a conductance of log(G/G0) = −1.7 (±0.4).

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.7b11104.

    • Materials and methods, details of distance calibration, control experiments, computational details, and additional information on theoretical calculations (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 42 publications.

    1. William Bro-Jørgensen, Joseph M. Hamill, Gréta Mezei, Brent Lawson, Umar Rashid, András Halbritter, Maria Kamenetska, Veerabhadrarao Kaliginedi, Gemma C. Solomon. Making the Most of Nothing: One-Class Classification for Single-Molecule Transport Studies. ACS Nanoscience Au 2024, Article ASAP.
    2. Yilin Guo, Mingyao Li, Cong Zhao, Yanfeng Zhang, Chuancheng Jia, Xuefeng Guo. Understanding Emergent Complexity from a Single-Molecule Perspective. JACS Au 2024, 4 (4) , 1278-1294. https://doi.org/10.1021/jacsau.3c00845
    3. Umar Rashid, William Bro-Jørgensen, KB Harilal, PA Sreelakshmi, Reetu Rani Mondal, Varun Chittari Pisharam, Keshaba N. Parida, K. Geetharani, Joseph M. Hamill, Veerabhadrarao Kaliginedi. Chemistry of the Au–Thiol Interface through the Lens of Single-Molecule Flicker Noise Measurements. Journal of the American Chemical Society 2024, 146 (13) , 9063-9073. https://doi.org/10.1021/jacs.3c14079
    4. Joseph Frimpong, Zhen-Fei Liu. Generalized Substrate Screening GW for Covalently Bonded Interfaces. The Journal of Physical Chemistry Letters 2024, 15 (8) , 2133-2141. https://doi.org/10.1021/acs.jpclett.3c03470
    5. Luca Ornago, Patrick Zwick, Sebastiaan van der Poel, Thomas Brandl, Maria El Abbassi, Mickael L. Perrin, Diana Dulić, Herre S. J. van der Zant, Marcel Mayor. Influence of Peripheral Alkyl Groups on Junction Configurations in Single-Molecule Electronics. The Journal of Physical Chemistry C 2024, 128 (3) , 1413-1422. https://doi.org/10.1021/acs.jpcc.3c06970
    6. Luca Ornago, Jerry Kamer, Maria El Abbassi, Ferdinand C. Grozema, Herre S.J. van der Zant. Switching in Nanoscale Molecular Junctions due to Contact Reconfiguration. The Journal of Physical Chemistry C 2022, 126 (46) , 19843-19848. https://doi.org/10.1021/acs.jpcc.2c04370
    7. Frederik H. van Veen, Luca Ornago, Herre S. J. van der Zant, Maria El Abbassi. Benchmark Study of Alkane Molecular Chains. The Journal of Physical Chemistry C 2022, 126 (20) , 8801-8806. https://doi.org/10.1021/acs.jpcc.1c09684
    8. Brent Lawson, Percy Zahl, Mark S. Hybertsen, Maria Kamenetska. Formation and Evolution of Metallocene Single-Molecule Circuits with Direct Gold-π Links. Journal of the American Chemical Society 2022, 144 (14) , 6504-6515. https://doi.org/10.1021/jacs.2c01322
    9. Hannah E. Skipper, Claire V. May, Arnold L. Rheingold, Linda H. Doerrer, Maria Kamenetska. Hard–Soft Chemistry Design Principles for Predictive Assembly of Single Molecule-Metal Junctions. Journal of the American Chemical Society 2021, 143 (40) , 16439-16447. https://doi.org/10.1021/jacs.1c05142
    10. M. Teresa González, Ali K. Ismael, Miguel García-Iglesias, Edmund Leary, Gabino Rubio-Bollinger, Iain Grace, David González-Rodríguez, Tomás Torres, Colin J. Lambert, Nicolás Agraït. Interference Controls Conductance in Phthalocyanine Molecular Junctions. The Journal of Physical Chemistry C 2021, 125 (27) , 15035-15043. https://doi.org/10.1021/acs.jpcc.1c03290
    11. Nathan D. Bamberger, Jeffrey A. Ivie, Keshaba N. Parida, Dominic V. McGrath, Oliver L. A. Monti. Correction to “Unsupervised Segmentation-Based Machine Learning as an Advanced Analysis Tool for Single Molecule Break Junction Data”. The Journal of Physical Chemistry C 2020, 124 (43) , 24029-24031. https://doi.org/10.1021/acs.jpcc.0c08721
    12. Nathan D. Bamberger, Jeffrey A. Ivie, Keshaba N. Parida, Dominic V. McGrath, Oliver L. A. Monti. Unsupervised Segmentation-Based Machine Learning as an Advanced Analysis Tool for Single Molecule Break Junction Data. The Journal of Physical Chemistry C 2020, 124 (33) , 18302-18315. https://doi.org/10.1021/acs.jpcc.0c03612
    13. Yudai Kobayashi, Shino Sato, Kohei Uosaki, Kenta Motobayashi, Katsuyoshi Ikeda. Atomistic Control of Metal–Molecule Junctions for Efficient Photo-Induced Uphill Charge Transfer. The Journal of Physical Chemistry C 2020, 124 (33) , 18173-18180. https://doi.org/10.1021/acs.jpcc.0c06529
    14. Haijian Chen, Yunchuan Li, Shuai Chang. Hybrid Molecular-Junction Mapping Technique for Simultaneous Measurements of Single-Molecule Electronic Conductance and Its Corresponding Binding Geometry in a Tunneling Junction. Analytical Chemistry 2020, 92 (9) , 6423-6429. https://doi.org/10.1021/acs.analchem.9b05549
    15. Geng-Min Lin, Chih-Hsun Lin, Hao Howard Peng, Han Hsiao, Tsai-Hui Wang, Ching-Hwa Ho, Hsiu-Fu Hsu, Chun-hsien Chen. Effect of the Chemical Potentials of Electrodes on Charge Transport across Molecular Junctions. The Journal of Physical Chemistry C 2019, 123 (36) , 22009-22017. https://doi.org/10.1021/acs.jpcc.9b05927
    16. Linda A. Zotti and Juan Carlos Cuevas . Electron Transport Through Homopeptides: Are They Really Good Conductors?. ACS Omega 2018, 3 (4) , 3778-3785. https://doi.org/10.1021/acsomega.7b01917
    17. Ravinder Singh Sawhney, Gaurav Sikri. First-Principles Approach to Elucidating Significant Rectification Ratios in Oppositely Charged Dipeptides. Journal of Electronic Materials 2024, 53 (2) , 1116-1131. https://doi.org/10.1007/s11664-023-10817-9
    18. Brent Lawson, Hannah E. Skipper, Maria Kamenetska. Phenol is a pH-activated linker to gold: a single molecule conductance study. Nanoscale 2024, 278 https://doi.org/10.1039/D3NR05257E
    19. Pilarisetty Tarakeshwar, Moreno Meneghetti, Jun Wu, Robert Lloyd Whetten, Miguel José Yacaman, Peter R. Buseck. Stabilization of reactive sp carbon chains. Carbon 2023, 215 , 118493. https://doi.org/10.1016/j.carbon.2023.118493
    20. André Mang, Nils Rotthowe, Katawoura Beltako, Michael Linseis, Fabian Pauly, Rainer F. Winter. Single-molecule conductance studies on quasi- and metallaaromatic dibenzoylmethane coordination compounds and their aromatic analogs. Nanoscale 2023, 278 https://doi.org/10.1039/D2NR05670D
    21. David Vogel, Luca Ornago, Christina Wegeberg, Alessandro Prescimone, Herreder Zant van, Marcel Mayor. 2,5-Diaryl 6-hydroxyphenalenones for Single-Molecule Junctions. Organic Materials 2022, 4 (03) , 102-126. https://doi.org/10.1055/a-1926-6340
    22. Raquel Casares, Álvaro Martínez-Pinel, Sandra Rodríguez-González, Irene R. Márquez, Luis Lezama, M. Teresa González, Edmund Leary, Víctor Blanco, Joel G. Fallaque, Cristina Díaz, Fernando Martín, Juan M. Cuerva, Alba Millán. Engineering the HOMO–LUMO gap of indeno[1,2- b ]fluorene. Journal of Materials Chemistry C 2022, 10 (32) , 11775-11782. https://doi.org/10.1039/D2TC02475F
    23. Hao Howard Peng, Chun‐hsien Chen. Charge transport in molecular junctions: General physical pictures, electrical measurement techniques, and their challenges. Journal of the Chinese Chemical Society 2022, 69 (8) , 1174-1189. https://doi.org/10.1002/jccs.202200206
    24. Lucía Palomino-Ruiz, Pablo Reiné, Irene R. Márquez, Luis Álvarez de Cienfuegos, Nicolás Agraït, Juan M. Cuerva, Araceli G. Campaña, Edmund Leary, Delia Miguel, Alba Millán, Linda A. Zotti, M. Teresa González. Three-state molecular potentiometer based on a non-symmetrically positioned in-backbone linker. Journal of Materials Chemistry C 2021, 9 (45) , 16282-16289. https://doi.org/10.1039/D1TC02223G
    25. Albert C. Aragonès, Katrin F. Domke. Nearfield trapping increases lifetime of single-molecule junction by one order of magnitude. Cell Reports Physical Science 2021, 2 (4) , 100389. https://doi.org/10.1016/j.xcrp.2021.100389
    26. Lucía Palomino‐Ruiz, Sandra Rodríguez‐González, Joel G. Fallaque, Irene R. Márquez, Nicolás Agraït, Cristina Díaz, Edmund Leary, Juan M. Cuerva, Araceli G. Campaña, Fernando Martín, Alba Millán, M. Teresa González. Single‐Molecule Conductance of 1,4‐Azaborine Derivatives as Models of BN‐doped PAHs. Angewandte Chemie 2021, 133 (12) , 6683-6690. https://doi.org/10.1002/ange.202014194
    27. Lucía Palomino‐Ruiz, Sandra Rodríguez‐González, Joel G. Fallaque, Irene R. Márquez, Nicolás Agraït, Cristina Díaz, Edmund Leary, Juan M. Cuerva, Araceli G. Campaña, Fernando Martín, Alba Millán, M. Teresa González. Single‐Molecule Conductance of 1,4‐Azaborine Derivatives as Models of BN‐doped PAHs. Angewandte Chemie International Edition 2021, 60 (12) , 6609-6616. https://doi.org/10.1002/anie.202014194
    28. Maximilian Schmidt, Daniel Wassy, Mathias Hermann, M. Teresa González, Nicolás Agräit, Linda A. Zotti, Birgit Esser, Edmund Leary. Single-molecule conductance of dibenzopentalenes: antiaromaticity and quantum interference. Chemical Communications 2021, 57 (6) , 745-748. https://doi.org/10.1039/D0CC06810A
    29. Enrique Montes, Héctor Vázquez. Role of the Binding Motifs in the Energy Level Alignment and Conductance of Amine-Gold Linked Molecular Junctions within DFT and DFT + Σ. Applied Sciences 2021, 11 (2) , 802. https://doi.org/10.3390/app11020802
    30. Hervé Dekkiche, Andrea Gemma, Fatemeh Tabatabaei, Andrei S. Batsanov, Thomas Niehaus, Bernd Gotsmann, Martin R. Bryce. Electronic conductance and thermopower of single-molecule junctions of oligo(phenyleneethynylene) derivatives. Nanoscale 2020, 12 (36) , 18908-18917. https://doi.org/10.1039/D0NR04413J
    31. Bo Liu, Kazumichi Yokota, Yuki Komoto, Makusu Tsutsui, Masateru Taniguchi. Thermally activated charge transport in carbon atom chains. Nanoscale 2020, 12 (20) , 11001-11007. https://doi.org/10.1039/D0NR01827A
    32. Enrique Escorihuela, Pilar Cea, Sören Bock, David C. Milan, Saman Naghibi, Henrry M. Osorio, Richard J. Nichols, Paul J. Low, Santiago Martin. Towards the design of effective multipodal contacts for use in the construction of Langmuir–Blodgett films and molecular junctions. Journal of Materials Chemistry C 2020, 8 (2) , 672-682. https://doi.org/10.1039/C9TC04710G
    33. Dongzhe Li, Yannick J Dappe, Alexander Smogunov. Tuning spin filtering by anchoring groups in benzene derivative molecular junctions. Journal of Physics: Condensed Matter 2019, 31 (40) , 405301. https://doi.org/10.1088/1361-648X/ab2846
    34. Linda A. Zotti, Beatrice Bednarz, Juan Hurtado-Gallego, Damien Cabosart, Gabino Rubio-Bollinger, Nicolas Agrait, Herre S.J. van der Zant. Can One Define the Conductance of Amino Acids?. Biomolecules 2019, 9 (10) , 580. https://doi.org/10.3390/biom9100580
    35. Geng‐Min Lin, Ming‐Chuan Cheng, Shun‐Jie Liou, Ho‐Sung Tsao, Chih‐Hsun Lin, Yi R. Lin, Gene‐Hsiang Lee, Chun‐hsien Chen, Shie‐Ming Peng. Revisit of trinickel metal string complexes [Ni 3 L 4 X 2 ] (L = dipyridylamido, diazaphenoxazine; X = NCS, CN) for quantum transport. Journal of the Chinese Chemical Society 2019, 66 (9) , 1157-1164. https://doi.org/10.1002/jccs.201900229
    36. Carlos Romero-Muñiz, María Ortega, J. G. Vilhena, Ismael Diéz-Pérez, Juan Carlos Cuevas, Rubén Pérez, Linda A. Zotti. Mechanical Deformation and Electronic Structure of a Blue Copper Azurin in a Solid-State Junction. Biomolecules 2019, 9 (9) , 506. https://doi.org/10.3390/biom9090506
    37. Asma Alanazy, Edmund Leary, Takayuki Kobatake, Sara Sangtarash, M. Teresa González, Hua-Wei Jiang, Gabino Rubio Bollinger, Nicolás Agräit, Hatef Sadeghi, Iain Grace, Simon J. Higgins, Harry L. Anderson, Richard J. Nichols, Colin J. Lambert. Cross-conjugation increases the conductance of meta -connected fluorenones. Nanoscale 2019, 11 (29) , 13720-13724. https://doi.org/10.1039/C9NR01235D
    38. Satoshi Kaneko, Enrique Montes, Sho Suzuki, Shintaro Fujii, Tomoaki Nishino, Kazuhito Tsukagoshi, Katsuyoshi Ikeda, Hideaki Kano, Hisao Nakamura, Héctor Vázquez, Manabu Kiguchi. Identifying the molecular adsorption site of a single molecule junction through combined Raman and conductance studies. Chemical Science 2019, 10 (25) , 6261-6269. https://doi.org/10.1039/C9SC00701F
    39. Werner M. Schosser, Linda A. Zotti, Juan Carlos Cuevas, Fabian Pauly. Doping hepta-alanine with tryptophan: A theoretical study of its effect on the electrical conductance of peptide-based single-molecule junctions. The Journal of Chemical Physics 2019, 150 (17) https://doi.org/10.1063/1.5090457
    40. Pinar Ilgin, Ozgur Ozay, Hava Ozay. A novel hydrogel containing thioether group as selective support material for preparation of gold nanoparticles: Synthesis and catalytic applications. Applied Catalysis B: Environmental 2019, 241 , 415-423. https://doi.org/10.1016/j.apcatb.2018.09.066
    41. Xin Zhao, Robert Stadler. DFT-based study of electron transport through ferrocene compounds with different anchor groups in different adsorption configurations of an STM setup. Physical Review B 2019, 99 (4) https://doi.org/10.1103/PhysRevB.99.045431
    42. Bo Liu, Makusu Tsutsui, Masateru Taniguchi. Measuring Single-Molecule Conductance at An Ultra-Low Molecular Concentration in Vacuum. Micromachines 2018, 9 (6) , 282. https://doi.org/10.3390/mi9060282