Electron-Enhanced Atomic Layer Deposition of Boron Nitride Thin Films at Room Temperature and 100 °CClick to copy article linkArticle link copied!
- Jaclyn K. SprengerJaclyn K. SprengerDepartment of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United StatesMore by Jaclyn K. Sprenger
- Huaxing SunHuaxing SunDepartment of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United StatesMore by Huaxing Sun
- Andrew S. CavanaghAndrew S. CavanaghDepartment of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United StatesMore by Andrew S. Cavanagh
- Alexana RoshkoAlexana RoshkoNational Institute of Standards and Technology, Boulder, Colorado 80305, United StatesMore by Alexana Roshko
- Paul T. BlanchardPaul T. BlanchardNational Institute of Standards and Technology, Boulder, Colorado 80305, United StatesMore by Paul T. Blanchard
- Steven M. GeorgeSteven M. GeorgeDepartment of Chemistry and Biochemistry and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United StatesMore by Steven M. George
Abstract
Electron-enhanced atomic layer deposition (EE-ALD) was used to deposit boron nitride (BN) thin films at room temperature and 100 °C using sequential exposures of borazine (B3N3H6) and electrons. Electron-stimulated desorption (ESD) of hydrogen surface species and the corresponding creation of reactive dangling bonds are believed to facilitate borazine adsorption and reduce the temperature required for BN film deposition. In situ ellipsometry measurements showed that the BN film thickness increased linearly versus the number of EE-ALD cycles at room temperature. Maximum growth rates of ∼3.2 Å/cycle were measured at electron energies of 80–160 eV. BN film growth was self-limiting versus borazine and electron exposures, as expected for an ALD process. The calculated average hydrogen ESD cross section was σ = 4.2 × 10–17 cm2. Ex situ spectroscopic ellipsometry measurements across the ∼1 cm2 area of the BN film defined by the electron beam displayed good uniformity in thickness. Ex situ X-ray photoelectron spectroscopy and in situ Auger spectroscopy revealed high purity, slightly boron-rich BN films with C and O impurity levels <3 at. %. High-resolution transmission electron microscopy (HR-TEM) imaging revealed polycrystalline hexagonal and turbostratic BN with the basal planes approximately parallel to the substrate surface. Ex situ grazing incidence X-ray diffraction measurements observed peaks consistent with hexagonal BN with domain sizes of 1–2 nm. The BN EE-ALD growth rate of ∼3.2 Å/cycle is close to the distance of 3.3 Å between BN planes in hexagonal BN. The growth rate and HR-TEM images suggest that approximately one monolayer of BN is deposited for every BN EE-ALD cycle. TEM and scanning TEM/electron energy loss spectroscopy measurements of BN EE-ALD on trenched wafers also showed preferential BN EE-ALD on the horizontal surfaces. This selective deposition on the horizontal surfaces suggests that EE-ALD may enable bottom-up filling of vias and trenches.
Cited By
This article is cited by 32 publications.
- Zachary C. Sobell, Steven M. George. Electron-Enhanced Atomic Layer Deposition of Titanium Nitride Films Using an Ammonia Reactive Background Gas. Chemistry of Materials 2022, 34
(21)
, 9624-9633. https://doi.org/10.1021/acs.chemmater.2c02341
- Laabdia Midani, Waël Ben-Yahia, Vincent Salles, Catherine Marichy. Nanofabrication via Maskless Localized Atomic Layer Deposition of Patterned Nanoscale Metal Oxide Films. ACS Applied Nano Materials 2021, 4
(11)
, 11980-11988. https://doi.org/10.1021/acsanm.1c02550
- Xiaolong Yao, Yeonghun Lee, Davide Ceresoli, Kyeongjae Cho. First-Principles Study on Electron-Induced Excitations of Atomic Layer Deposition Precursors: Inelastic Electron Wave Packet Scattering with Cobalt Tricarbonyl Nitrosyl Co(CO)3NO Using Time-Dependent Density Functional Theory. The Journal of Physical Chemistry A 2021, 125
(21)
, 4524-4533. https://doi.org/10.1021/acs.jpca.0c11309
- Felix Mattelaer, Michiel Van Daele, Matthias M. Minjauw, Mikko Nisula, Simon D. Elliott, Timo Sajavaara, Jolien Dendooven, Christophe Detavernier. Atomic Layer Deposition of Localized Boron- and Hydrogen-Doped Aluminum Oxide Using Trimethyl Borate as a Dopant Precursor. Chemistry of Materials 2020, 32
(10)
, 4152-4165. https://doi.org/10.1021/acs.chemmater.9b04967
- Kun Cao, Jiaming Cai, Rong Chen. Inherently Selective Atomic Layer Deposition and Applications. Chemistry of Materials 2020, 32
(6)
, 2195-2207. https://doi.org/10.1021/acs.chemmater.9b04647
- Hanwen Liu, Ming Yan, Wang Jing, Guangming Zeng, Gengxin XIE, Xiaojuan Pu, Yukui Fu, Xiangyu Peng, Hou Wang, Cui Lai, Danlian Huang, Lin Tang. Hexagonal boron nitride for extreme environment application. Diamond and Related Materials 2024, 148 , 111410. https://doi.org/10.1016/j.diamond.2024.111410
- Nickolas M. Ashburn, Xiuyao Lang, Youhwan Jo, Yeonghun Lee, Xiaolong Yao, Kyeongjae Cho. First principles reaction processes of Co(CO)3NO as an atomic layer deposition precursor on SiO2 and Co surfaces. Journal of Vacuum Science & Technology A 2024, 42
(5)
https://doi.org/10.1116/6.0003769
- Victor Zhirnov, Michelle E. Chen, Mohamadali Malakoutian, Hannah R. M. Margavio, Emma Pawliczak, Kate Reidy, Wilson Yanez, Todd Younkin. SRC-led materials research: 40 years ago, and now. MRS Advances 2023, 8
(14)
, 751-762. https://doi.org/10.1557/s43580-023-00665-4
- Jonas C. Gertsch, Zachary C. Sobell, Andrew S. Cavanagh, Harsono Simka, Steven M. George. Electron-enhanced SiO2 atomic layer deposition at 35 °C using disilane and ozone or water as reactants. Journal of Vacuum Science & Technology A 2023, 41
(4)
https://doi.org/10.1116/6.0002726
- Abhijit Biswas, Rishi Maiti, Frank Lee, Cecilia Y. Chen, Tao Li, Anand B. Puthirath, Sathvik Ajay Iyengar, Chenxi Li, Xiang Zhang, Harikishan Kannan, Tia Gray, Md Abid Shahriar Rahman Saadi, Jacob Elkins, A. Glen Birdwell, Mahesh R. Neupane, Pankaj B. Shah, Dmitry A. Ruzmetov, Tony G. Ivanov, Robert Vajtai, Yuji Zhao, Alexander L. Gaeta, Manoj Tripathi, Alan Dalton, Pulickel M. Ajayan. Unravelling the room temperature growth of two-dimensional h-BN nanosheets for multifunctional applications. Nanoscale Horizons 2023, 8
(5)
, 641-651. https://doi.org/10.1039/D2NH00557C
- Xiang Zhang, Jiawei Lai, Tia Gray. Recent progress in low-temperature CVD growth of 2D materials. Oxford Open Materials Science 2023, 3
(1)
https://doi.org/10.1093/oxfmat/itad010
- Jing Cao, Tzee Luai Meng, Xikui Zhang, Chee Kiang Ivan Tan, Ady Suwardi, Hongfei Liu. On functional boron nitride: Electronic structures and thermal properties. Materials Today Electronics 2022, 2 , 100005. https://doi.org/10.1016/j.mtelec.2022.100005
- Cheng‐Ming Lin, Chuang‐Han Hsu, Wei‐Yu Huang, Vincent Astié, Po‐Hsien Cheng, Yue‐Min Lin, Wei‐Shan Hu, Szu‐Hua Chen, Han‐Yu Lin, Ming‐Yang Li, Blanka Magyari‐Kope, Chi‐Ming Yang, Jean‐Manuel Decams, Tzu‐Lih Lee, Dong Gui, Han Wang, Wei‐Yen Woon, Pinyen Lin, Jeff Wu, Jang‐Jung Lee, Szuya Sandy Liao, Min Cao. Ultralow‐
k
Amorphous Boron Nitride Based on Hexagonal Ring Stacking Framework for 300 mm Silicon Technology Platform. Advanced Materials Technologies 2022, 7
(10)
https://doi.org/10.1002/admt.202200022
- I. Utke, P. Swiderek, K. Höflich, K. Madajska, J. Jurczyk, P. Martinović, I.B. Szymańska. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coordination Chemistry Reviews 2022, 458 , 213851. https://doi.org/10.1016/j.ccr.2021.213851
- Marceline Bonvalot, Christophe Vallée, Cédric Mannequin, Moustapha Jaffal, Rémy Gassilloud, Nicolas Possémé, Thierry Chevolleau. Area selective deposition using alternate deposition and etch super-cycle strategies. Dalton Transactions 2022, 51
(2)
, 442-450. https://doi.org/10.1039/D1DT03456A
- Yeonghun Lee, Grigory Kolesov, Xiaolong Yao, Efthimios Kaxiras, Kyeongjae Cho. Nonadiabatic dynamics of cobalt tricarbonyl nitrosyl for ligand dissociation induced by electronic excitation. Scientific Reports 2021, 11
(1)
https://doi.org/10.1038/s41598-021-88243-2
- Soumyabrata Roy, Xiang Zhang, Anand B. Puthirath, Ashokkumar Meiyazhagan, Sohini Bhattacharyya, Muhammad M. Rahman, Ganguli Babu, Sandhya Susarla, Sreehari K. Saju, Mai Kim Tran, Lucas M. Sassi, M. A. S. R. Saadi, Jiawei Lai, Onur Sahin, Seyed Mohammad Sajadi, Bhuvaneswari Dharmarajan, Devashish Salpekar, Nithya Chakingal, Abhijit Baburaj, Xinting Shuai, Aparna Adumbumkulath, Kristen A. Miller, Jessica M. Gayle, Alec Ajnsztajn, Thibeorchews Prasankumar, Vijay Vedhan Jayanthi Harikrishnan, Ved Ojha, Harikishan Kannan, Ali Zein Khater, Zhenwei Zhu, Sathvik Ajay Iyengar, Pedro Alves da Silva Autreto, Eliezer Fernando Oliveira, Guanhui Gao, A. Glen Birdwell, Mahesh R. Neupane, Tony G. Ivanov, Jaime Taha‐Tijerina, Ram Manohar Yadav, Sivaram Arepalli, Robert Vajtai, Pulickel M. Ajayan. Structure, Properties and Applications of Two‐Dimensional Hexagonal Boron Nitride. Advanced Materials 2021, 33
(44)
https://doi.org/10.1002/adma.202101589
- Victoria Chen, Yong Cheol Shin, Evgeny Mikheev, Qing Lin, Joel Martis, Ze Zhang, Sukti Chatterjee, Arun Majumdar, H-S Philip Wong, David Goldhaber-Gordon, Eric Pop. Application-driven synthesis and characterization of hexagonal boron nitride deposited on metals and carbon nanotubes. 2D Materials 2021, 8
(4)
, 045024. https://doi.org/10.1088/2053-1583/ac10f1
- E. A. Sosnov, A. A. Malkov, A. A. Malygin. Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes: II. Molecular Layering Technology and Prospects for Its Commercialization and Development in the XXI Century. Russian Journal of Applied Chemistry 2021, 94
(9)
, 1189-1215. https://doi.org/10.1134/S1070427221090020
- Virgínia Boix, Claudia Struzzi, Tamires Gallo, Niclas Johansson, Giulio D'Acunto, Zhihua Yong, Alexei Zakharov, Zheshen Li, Joachim Schnadt, Anders Mikkelsen, Jan Knudsen. Area-selective Electron-beam induced deposition of Amorphous-BNx on graphene. Applied Surface Science 2021, 557 , 149806. https://doi.org/10.1016/j.apsusc.2021.149806
- Zachary C. Sobell, Andrew S. Cavanagh, David R. Boris, Scott G. Walton, Steven M. George. Hollow cathode plasma electron source for low temperature deposition of cobalt films by electron-enhanced atomic layer deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2021, 39
(4)
https://doi.org/10.1116/6.0001033
- Norberto Salazar, Carlos Marquez, Francisco Gamiz. Synthesis of graphene and other two-dimensional materials. 2021, 1-79. https://doi.org/10.1016/B978-0-12-818658-9.00006-5
- Boitumelo Matsoso, Wenjun Hao, Yangdi Li, Victor Vuillet-a-Ciles, Vincent Garnier, Philippe Steyer, Bérangère Toury, Catherine Marichy, Catherine Journet. Synthesis of hexagonal boron nitride 2D layers using polymer derived ceramics route and derivatives. Journal of Physics: Materials 2020, 3
(3)
, 034002. https://doi.org/10.1088/2515-7639/ab854a
- Christophe Vallée, Marceline Bonvalot, Samia Belahcen, Taguhi Yeghoyan, Moustapha Jaffal, Rémi Vallat, Ahmad Chaker, Gautier Lefèvre, Sylvain David, Ahmad Bsiesy, Nicolas Possémé, Rémy Gassilloud, Agnès Granier. Plasma deposition—Impact of ions in plasma enhanced chemical vapor deposition, plasma enhanced atomic layer deposition, and applications to area selective deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2020, 38
(3)
https://doi.org/10.1116/1.5140841
- Hama Nadhom, Daniel Lundin, Polla Rouf, Henrik Pedersen. Chemical vapor deposition of metallic films using plasma electrons as reducing agents. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2020, 38
(3)
https://doi.org/10.1116/1.5142850
- Jiyu Cai, Xiaoxiao Han, Xin Wang, Xiangbo Meng. Atomic Layer Deposition of Two-Dimensional Layered Materials: Processes, Growth Mechanisms, and Characteristics. Matter 2020, 2
(3)
, 587-630. https://doi.org/10.1016/j.matt.2019.12.026
- Boitumelo Matsoso, Victor Vuillet-a-Ciles, Laurence Bois, Bérangère Toury, Catherine Journet. Improving Formation Conditions and Properties of hBN Nanosheets Through BaF2-assisted Polymer Derived Ceramics (PDCs) Technique. Nanomaterials 2020, 10
(3)
, 443. https://doi.org/10.3390/nano10030443
- Zachary C. Sobell, Andrew S. Cavanagh, Steven M. George. Growth of cobalt films at room temperature using sequential exposures of cobalt tricarbonyl nitrosyl and low energy electrons. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2019, 37
(6)
https://doi.org/10.1116/1.5113711
- Job Soethoudt, Steven Crahaij, Thierry Conard, Annelies Delabie. Impact of SiO
2
surface composition on trimethylsilane passivation for area-selective deposition. Journal of Materials Chemistry C 2019, 7
(38)
, 11911-11918. https://doi.org/10.1039/C9TC04091A
- Matthieu Weber, Jin-Young Kim, Jae-Hyoung Lee, Jae-Hun Kim, Igor Iatsunskyi, Emerson Coy, Philippe Miele, Mikhael Bechelany, Sang Sub Kim. Highly efficient hydrogen sensors based on Pd nanoparticles supported on boron nitride coated ZnO nanowires. Journal of Materials Chemistry A 2019, 7
(14)
, 8107-8116. https://doi.org/10.1039/C9TA00788A
- W Hao, C Marichy, C Journet. Atomic layer deposition of stable 2D materials. 2D Materials 2019, 6
(1)
, 012001. https://doi.org/10.1088/2053-1583/aad94f
- Matthieu Weber, Cassandre Lamboux, Bruno Navarra, Philippe Miele, Sandrine Zanna, Maxime E. Dufond, Lionel Santinacci, Mikhael Bechelany. Boron Nitride as a Novel Support for Highly Stable Palladium Nanocatalysts by Atomic Layer Deposition. Nanomaterials 2018, 8
(10)
, 849. https://doi.org/10.3390/nano8100849
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.