ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Homeopathic Perovskite Solar Cells: Effect of Humidity during Fabrication on the Performance and Stability of the Device

Cite this: J. Phys. Chem. C 2018, 122, 10, 5341–5348
Publication Date (Web):February 14, 2018
https://doi.org/10.1021/acs.jpcc.8b01558
Copyright © 2018 American Chemical Society

    Article Views

    1548

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Rapid degradation in humid environments is a major drawback of methylammonium lead iodide (CH3NH3PbI3), which is the archetypical component of perovskite solar cells. In this work, we have investigated the aging and degradation kinetics of CH3NH3PbI3 films and devices fabricated under controlled conditions as a function of relative humidity (RH) and compared their performance with those that were prepared under dry conditions. The aging and degradation kinetics is monitored by optical absorption and impedance spectroscopy measurements under monochromatic illumination at two different wavelengths. Aged devices show a substantial difference between the recombination rate under red and blue light illumination, which is attributed to the enhancement of local recombination routes upon aging. Interestingly, we observe that this feature is less pronounced in devices prepared under conditions of the highest RH of 50%. In general, we found that these devices keep their original electric properties and withstand a humid environment better. Chemical analysis by X-ray photoelectron spectroscopy reveals the presence of coordinating water in the CH3NH3PbI3 crystalline structure. This indicates that the presence of a small amount of water has a beneficial effect against degradation in a humid environment.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.8b01558.

    • Current–voltage curves, optical absorption data of films under different environmental moisture conditions, XPS spectra of films, circuit diagram, and capacitance data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 41 publications.

    1. Jie Huang, Bowen Wang, Hejin Yan, Yongqing Cai. Mechanism of Interaction of Water above the Methylammonium Lead Iodide Perovskite Nanocluster: Size Effect and Water-Induced Defective States. The Journal of Physical Chemistry Letters 2024, 15 (2) , 575-582. https://doi.org/10.1021/acs.jpclett.3c02807
    2. K. M. Muhammed Salim, Sofia Masi, Andrés Fabián Gualdrón-Reyes, Rafael S. Sánchez, Eva M. Barea, Marie Kreĉmarová, Juan F. Sánchez-Royo, Iván Mora-Seró. Boosting Long-Term Stability of Pure Formamidinium Perovskite Solar Cells by Ambient Air Additive Assisted Fabrication. ACS Energy Letters 2021, 6 (10) , 3511-3521. https://doi.org/10.1021/acsenergylett.1c01311
    3. Katarzyna Pydzińska-Białek, Viktoriia Drushliak, Emerson Coy, Karol Załȩski, Jessica Flach, Jesus Idígoras, Lidia Contreras-Bernal, Anders Hagfeldt, Juan Antonio Anta, Marcin Ziółek. Understanding the Interfaces between Triple-Cation Perovskite and Electron or Hole Transporting Material. ACS Applied Materials & Interfaces 2020, 12 (27) , 30399-30410. https://doi.org/10.1021/acsami.0c07095
    4. Susana Ramos-Terrón, Alexander D. Jodlowski, Cristóbal Verdugo-Escamilla, Luis Camacho, Gustavo de Miguel. Relaxing the Goldschmidt Tolerance Factor: Sizable Incorporation of the Guanidinium Cation into a Two-Dimensional Ruddlesden–Popper Perovskite. Chemistry of Materials 2020, 32 (9) , 4024-4037. https://doi.org/10.1021/acs.chemmater.0c00613
    5. Lidia Contreras-Bernal, Antonio Riquelme, Juan Jesús Gallardo, Javier Navas, Jesús Idígoras, Juan A. Anta. Dealing with Climate Parameters in the Fabrication of Perovskite Solar Cells under Ambient Conditions. ACS Sustainable Chemistry & Engineering 2020, 8 (18) , 7132-7138. https://doi.org/10.1021/acssuschemeng.0c01481
    6. Arup Ghorai, Anupam Midya, Samit K. Ray. Surfactant-Induced Anion Exchange and Morphological Evolution for Composition-Controlled Caesium Lead Halide Perovskites with Tunable Optical Properties. ACS Omega 2019, 4 (7) , 12948-12954. https://doi.org/10.1021/acsomega.9b00829
    7. Francesco Cordero, Floriana Craciun, Francesco Trequattrini, Amanda Generosi, Barbara Paci, Anna Maria Paoletti, Giovanna Pennesi. Stability of Cubic FAPbI3 from X-ray Diffraction, Anelastic, and Dielectric Measurements. The Journal of Physical Chemistry Letters 2019, 10 (10) , 2463-2469. https://doi.org/10.1021/acs.jpclett.9b00896
    8. Siddhi Vinayak Pandey, Daniel Prochowicz, Apurba Mahapatra, Saravanan Pandiaraj, Abdullah Alodhayb, Seckin Akin, Pankaj Yadav. The circuitry landscape of perovskite solar cells: An in-depth analysis. Journal of Energy Chemistry 2024, 94 , 393-413. https://doi.org/10.1016/j.jechem.2024.02.041
    9. Jaume Noguera-Gómez, Pablo P. Boix, Rafael Abargues. Protocol for the synthesis of perovskite nanocrystal thin films via in situ crystallization method. STAR Protocols 2023, 4 (4) , 102507. https://doi.org/10.1016/j.xpro.2023.102507
    10. M. Baeva, A. S. Miroshnichenko, R. Kenesbay, D. M. Mitin, V. V. Fedorov, D. S. Gets, D. V. Krasnikov, A. G. Nasibulin, S. Makarov, I. S. Mukhin, R. M. Islamova. Enhancing the CsPbBr 3 PeLEC properties via PDMS/PMHS double-layer polymer encapsulation and high relative humidity stress-aging. Journal of Materials Chemistry C 2023, 11 (43) , 15261-15275. https://doi.org/10.1039/D3TC01370G
    11. R. E. Brophy, M. Kateb, I. Ghitiu, N. Filipoiu, K. Torfason, H. G. Svavarsson, G. A. Nemnes, I. Pintilie, A. Manolescu. OH − ions can reduce the iodide migration in MAPI. 2023, 139-142. https://doi.org/10.1109/CAS59036.2023.10303698
    12. Juhua He, Chencheng Dong, Xiaojuan Chen, Heshan Cai, Xin Chen, Xueding Jiang, Yan Zhang, Anan Peng, Mohammad A.H. Badsha. Review of Piezocatalysis and Piezo-Assisted Photocatalysis in Environmental Engineering. Crystals 2023, 13 (9) , 1382. https://doi.org/10.3390/cryst13091382
    13. Laxmikant D. Jathar, S. Ganesan, Umesh Awasarmol, Keval Nikam, Kiran Shahapurkar, Manzoore Elahi M. Soudagar, H. Fayaz, A.S. El-Shafay, M.A. Kalam, Salwa Boudila, Sara Baddadi, Vineet Tirth, Abdul Sattar Nizami, Su Shiung Lam, Mohammad Rehan. Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. Environmental Pollution 2023, 1 , 121474. https://doi.org/10.1016/j.envpol.2023.121474
    14. Meng Wang, Fengren Cao, Linxing Meng, Min Wang, Liang Li. Phase‐Transition‐Cycle‐Induced Recrystallization of FAPbI3 Film in An Open Environment Toward Excellent Photodetectors with High Reproducibility. Advanced Science 2022, 9 (34) https://doi.org/10.1002/advs.202204386
    15. Jaume Noguera-Gómez, Ismael Fernández-Guillen, Pablo F. Betancur, Vladimir S. Chirvony, Pablo P. Boix, Rafael Abargues. Low-demanding in situ crystallization method for tunable and stable perovskite nanoparticle thin films. Matter 2022, 5 (10) , 3541-3552. https://doi.org/10.1016/j.matt.2022.07.017
    16. Jose M. Obrero‐Perez, Lidia Contreras‐Bernal, Fernando Nuñez‐Galvez, Javier Castillo‐Seoane, Karen Valadez‐Villalobos, Francisco J. Aparicio, Juan A. Anta, Ana Borras, Juan R. Sanchez‐Valencia, Angel Barranco. Ultrathin Plasma Polymer Passivation of Perovskite Solar Cells for Improved Stability and Reproducibility. Advanced Energy Materials 2022, 12 (32) https://doi.org/10.1002/aenm.202200812
    17. Gennaro V. Sannino, Antonella De Maria, Vera La Ferrara, Gabriella Rametta, Lucia V. Mercaldo, Maria Luisa Addonizio, Laura Lancellotti, Adriana Pecoraro, Ana B. Muñoz-García, Michele Pavone, Paola Delli Veneri. Development of SnO2 Composites as Electron Transport Layer in Unencapsulated CH3NH3PbI3 Solar Cells. Solids 2021, 2 (4) , 407-419. https://doi.org/10.3390/solids2040026
    18. Susana Ramos-Terrón, José Francisco Illanes, Diego Bohoyo-Gil, Luis Camacho, Gustavo de Miguel. Insight into the Role of Guanidinium and Cesium in Triple Cation Lead Halide Perovskites. Solar RRL 2021, 5 (12) https://doi.org/10.1002/solr.202100586
    19. JinKiong Ling, Pradeep Kumar Koyadan Kizhakkedath, Trystan M. Watson, Iván Mora-Seró, Lukas Schmidt-Mende, Thomas M. Brown, Rajan Jose. A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar RRL 2021, 5 (11) https://doi.org/10.1002/solr.202100401
    20. Susana Ramos‐Terrón, Cristóbal Verdugo‐Escamilla, Luis Camacho, Gustavo de Miguel. A‐Site Cation Engineering in 2D Ruddlesden–Popper (BA) 2 (MA 1‐ x A x ) 2 Pb 3 I 10 Perovskite Films. Advanced Optical Materials 2021, 9 (18) https://doi.org/10.1002/adom.202100114
    21. Wissal Belayachi, Salma Boujmiraz, Salma Zouhair, Kübra Yaşaroğlu, Guy Schmerber, Jean-Luc Rehspringer, Thomas Fix, Abdelilah Slaoui, Mohammed Abd-Lefdil, Aziz Dinia. Study of hybrid organic–inorganic halide perovskite solar cells based on MAI[(PbI2)1−x(CuI)x] absorber layers and their long-term stability. Journal of Materials Science: Materials in Electronics 2021, 32 (15) , 20684-20697. https://doi.org/10.1007/s10854-021-06582-2
    22. Jeevan Torres, Jesus Sanchez-Diaz, Jesús Manuel Rivas, Jorge de la Torre, Isaac Zarazua, Diego Esparza. Electrical properties and J-V modeling of perovskite (CH3NH3PbI3) solar cells after external thermal exposure. Solar Energy 2021, 222 , 95-102. https://doi.org/10.1016/j.solener.2021.05.014
    23. Clara A. Aranda, Laura Caliò, Manuel Salado. Toward Commercialization of Stable Devices: An Overview on Encapsulation of Hybrid Organic-Inorganic Perovskite Solar Cells. Crystals 2021, 11 (5) , 519. https://doi.org/10.3390/cryst11050519
    24. Patrick Wai-Keung Fong, Gang Li. The Challenge of Ambient Air–Processed Organometallic Halide Perovskite: Technology Transfer From Spin Coating to Meniscus Blade Coating of Perovskite Thin Films. Frontiers in Materials 2021, 8 https://doi.org/10.3389/fmats.2021.635224
    25. Craig H. Swartz, Nischal Khakurel, Selena R. Najar, Mohammed I. Hossain, Alex Zakhidov. Temperature‐ and Bias‐Dependent Degradation and Regeneration of Perovskite Solar Cells with Organic and Inorganic Hole Transport Layers. physica status solidi (a) 2021, 218 (7) https://doi.org/10.1002/pssa.202000721
    26. Yuan Zhang, Ashleigh Kirs, Filip Ambroz, Chieh‐Ting Lin, Abdulaziz S. R. Bati, Ivan P. Parkin, Joseph G. Shapter, Munkhbayar Batmunkh, Thomas J. Macdonald. Ambient Fabrication of Organic–Inorganic Hybrid Perovskite Solar Cells. Small Methods 2021, 5 (1) https://doi.org/10.1002/smtd.202000744
    27. Xi Zhang, Wenyao Yang, Jingjing Qi, Yinggang Hu. Preparing Ambient-Processed Perovskite Solar Cells with Better Electronic Properties via Preheating Assisted One-Step Deposition Method. Nanoscale Research Letters 2020, 15 (1) https://doi.org/10.1186/s11671-020-03407-9
    28. Antoine Dumont, Kevin Ho, Hao‐Ting Kung, Chenyue Qiu, Peicheng Li, Deying Luo, Yongbiao Zhao, Gilbert Walker, Zheng‐Hong Lu. Extraordinary Mass Transport and Self‐Assembly: A Pathway to Fabricate Luminescent CsPbBr 3 and Light‐Emitting Diodes by Vapor‐Phase Deposition. Advanced Materials Interfaces 2020, 7 (13) https://doi.org/10.1002/admi.202000506
    29. Eddie Nahúm Armendáriz-Mireles, Wilian Jesús Pech-Rodríguez, Carlos Adrián Calles-Arriaga, Enrique Rocha-Rangel. Chemical stability for humidity control during the processing of solar cells with halide perovskites. Materials Science in Semiconductor Processing 2020, 112 , 105022. https://doi.org/10.1016/j.mssp.2020.105022
    30. Isabel Mesquita, Luísa Andrade, Adélio Mendes. Effect of relative humidity during the preparation of perovskite solar cells: Performance and stability. Solar Energy 2020, 199 , 474-483. https://doi.org/10.1016/j.solener.2020.02.052
    31. Dechan Angmo, Xiaojin Peng, Aaron Seeber, Chuantian Zuo, Mei Gao, Qicheng Hou, Jian Yuan, Qi Zhang, Yi‐Bing Cheng, Doojin Vak. Controlling Homogenous Spherulitic Crystallization for High‐Efficiency Planar Perovskite Solar Cells Fabricated under Ambient High‐Humidity Conditions. Small 2019, 15 (49) https://doi.org/10.1002/smll.201904422
    32. Juan Jesús Gallardo, Marta Barea-Sepúlveda, Teresa Aguilar, Rodrigo Alcántara, Concha Fernández-Lorenzo, Javier Navas. Intrinsic stability analysis of perovskite nanopowder with double and triple cation in a site, FAxMA(1-x)PbI3 and FAxCsyMA(1-x-y)PbI3. Materials Research Bulletin 2019, 119 , 110528. https://doi.org/10.1016/j.materresbull.2019.110528
    33. Clara Aranda, Antonio Guerrero, Juan Bisquert. Crystalline Clear or Not: Beneficial and Harmful Effects of Water in Perovskite Solar Cells. ChemPhysChem 2019, 20 (20) , 2587-2599. https://doi.org/10.1002/cphc.201900393
    34. Rodrigo García-Rodríguez, Dominic Ferdani, Samuel Pering, Peter J. Baker, Petra J. Cameron. Influence of bromide content on iodide migration in inverted MAPb(I 1−x Br x ) 3 perovskite solar cells. Journal of Materials Chemistry A 2019, 7 (39) , 22604-22614. https://doi.org/10.1039/C9TA08848B
    35. Mohammad Mahdi Tavakoli, Hadi Tavakoli Dastjerdi, Daniel Prochowicz, Pankaj Yadav, Rouhollah Tavakoli, Michael Saliba, Zhiyong Fan. Highly efficient and stable inverted perovskite solar cells using down-shifting quantum dots as a light management layer and moisture-assisted film growth. Journal of Materials Chemistry A 2019, 7 (24) , 14753-14760. https://doi.org/10.1039/C9TA03131F
    36. Feng Wang, Ting Zhang, Yafei Wang, Detao Liu, Peng Zhang, Hao Chen, Long Ji, Li Chen, Zhi David Chen, Jiang Wu, Xin Liu, Yanbo Li, Yafei Wang, Shibin Li. Steering the crystallization of perovskites for high-performance solar cells in ambient air. Journal of Materials Chemistry A 2019, 7 (19) , 12166-12175. https://doi.org/10.1039/C9TA02566A
    37. Lidia Contreras-Bernal, Susana Ramos-Terrón, Antonio Riquelme, Pablo P Boix, Jesús Idígoras, Iván Mora-Seró, Juan A. Anta. Impedance analysis of perovskite solar cells: a case study. Journal of Materials Chemistry A 2019, 7 (19) , 12191-12200. https://doi.org/10.1039/C9TA02808K
    38. Arvin Kakekhani, Radhika N. Katti, Andrew M. Rappe. Water in hybrid perovskites: Bulk MAPbI3 degradation via super-hydrous state. APL Materials 2019, 7 (4) https://doi.org/10.1063/1.5087290
    39. Marco Polo Montoya, Siraj Sidhik, Diego Esparza, Tzarara López-Luke, Isaac Zarazua, Jesús Manuel Rivas, Elder De la Rosa. Study of inverted planar CH3NH3PbI3 perovskite solar cells fabricated under environmental conditions. Solar Energy 2019, 180 , 594-600. https://doi.org/10.1016/j.solener.2019.01.061
    40. Jesús Rodríguez-Romero, Bruno Clasen Hames, Pavel Galar, Azhar Fakharuddin, Isaac Suarez, Lukas Schmidt-Mende, Juan P. Martínez-Pastor, Abderrazzak Douhal, Iván Mora-Seró, Eva M. Barea. Tuning optical/electrical properties of 2D/3D perovskite by the inclusion of aromatic cation. Physical Chemistry Chemical Physics 2018, 20 (48) , 30189-30199. https://doi.org/10.1039/C8CP06418K
    41. Zhuoneng Bi, Xabier Rodríguez-Martínez, Clara Aranda, Enrique Pascual-San-José, Alejandro R. Goñi, Mariano Campoy-Quiles, Xueqing Xu, Antonio Guerrero. Defect tolerant perovskite solar cells from blade coated non-toxic solvents. Journal of Materials Chemistry A 2018, 6 (39) , 19085-19093. https://doi.org/10.1039/C8TA06771F

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect