ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Electrocatalysis with Atomically Defined Model Systems: Metal–Support Interactions between Pt Nanoparticles and Co3O4(111) under Ultrahigh Vacuum and in Liquid Electrolytes

  • Firas Faisal
    Firas Faisal
    Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
    More by Firas Faisal
  • Manon Bertram
    Manon Bertram
    Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
  • Corinna Stumm
    Corinna Stumm
    Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
  • Tobias Wähler
    Tobias Wähler
    Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
  • Ralf Schuster
    Ralf Schuster
    Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
  • Yaroslava Lykhach
    Yaroslava Lykhach
    Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
  • Armin Neitzel
    Armin Neitzel
    Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
  • Tomáš Skála
    Tomáš Skála
    Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
  • Nataliya Tsud
    Nataliya Tsud
    Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
  • Klára Beranová
    Klára Beranová
    Elettra-Sincrotrone Trieste SCpA and IOM, Strada Statale 14, km 163.5, 34149 Basovizza-Trieste, Italy
  • Kevin C. Prince
    Kevin C. Prince
    Elettra-Sincrotrone Trieste SCpA and IOM, Strada Statale 14, km 163.5, 34149 Basovizza-Trieste, Italy
  • Vladimír Matolín
    Vladimír Matolín
    Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
  • Olaf Brummel*
    Olaf Brummel
    Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
    *(O.B.) E-mail [email protected]
    More by Olaf Brummel
  • , and 
  • Jörg Libuda
    Jörg Libuda
    Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
    Erlangen Catalysis Resource Center and Interdisciplinary Center Interface Controlled Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
    More by Jörg Libuda
Cite this: J. Phys. Chem. C 2018, 122, 36, 20787–20799
Publication Date (Web):August 20, 2018
https://doi.org/10.1021/acs.jpcc.8b05594
Copyright © 2018 American Chemical Society

    Article Views

    896

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Electronic metal–support interactions play a key role in the design of heterogeneous catalysts, as they provide a tool for tuning catalytic properties and enhancing catalyst stability. In this work, we explore the role of metal–support interactions in electrocatalysis using a model approach. We investigate the adsorption and reaction behavior of atomically defined Pt/Co3O4 model catalysts under ultrahigh vacuum (UHV) and under electrochemical conditions. The model systems were prepared by physical vapor deposition (PVD) of Pt onto well-ordered Co3O4(111) films on Ir(100), varying the average Pt nanoparticle (NP) size between 10 and 500 atoms per NP. In UHV, the model catalysts were characterized by synchrotron radiation photoelectron spectroscopy (SRPES), temperature-programmed desorption (TPD), and infrared reflection–absorption spectroscopy (IRAS). By SRPES, we show that partially oxidized Ptδ+ species are formed at the interface with the Co3O4 support. CO adsorbs weakly on these Ptδ+ sites and can be identified by IRAS at 115 K. Upon heating, CO adsorbed on metallic Pt0 reacts with oxygen released from Co3O4 and gives rise to CO2 between 450 and 500 K. As a result of oxygen depletion, the Ptδ+ at the NP interface is reduced to Pt0. Subsequently, we investigated the adsorption and oxidation of CO under electrochemical conditions on the same Pt/Co3O4 model catalysts. After preparation and characterization in UHV, the model systems were transferred into the electrochemical environment without exposure to ambient conditions. CO adsorption and electrooxidation were performed under conditions where the model system is stable (pH 10, 0.33–1.03 VRHE, phosphate buffer). By electrochemical infrared reflection–absorption spectroscopy (EC-IRRAS), we show that CO does not adsorb at the partially oxidized Ptδ+ sites in the electrolyte at 300 K. Nevertheless, the Ptδ+ species at the NP/oxide interface is reduced to Pt0 upon repeated experimental cycles. This effect increases with decreasing NP size, in line with the behavior observed under UHV conditions. Our findings suggest that electronic metal–support interactions in metal/oxide catalysts play a very similar role in reactions with gaseous reactants and at the electrified interface.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.8b05594.

    • TPD data of CO2 after saturation of the Pt/Co3O4(111) model catalyst with CO for Pt NPs of different size; EC-IRRAS data of the carbonate and phosphate region between 1500 and 1120 cm–1 for CO electro-oxidation on Pt/Co3O4(111) model catalysts with different Pt NP sizes (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 15 publications.

    1. Maximilian Kastenmeier, Lukáš Fusek, Fatema Mohamed, Christian Schuschke, Michal Ronovský, Tomáš Skála, Matteo Farnesi Camellone, Nataliya Tsud, Viktor Johánek, Stefano Fabris, Jörg Libuda, Simone Piccinin, Yaroslava Lykhach, Josef Mysliveček, Olaf Brummel. Pd/Co3O4(111) Interface Formation. The Journal of Physical Chemistry C 2023, 127 (12) , 6034-6044. https://doi.org/10.1021/acs.jpcc.3c00261
    2. Yanwei Di, Chun Ma, Yinghuan Fu, Xiaoli Dong, Xinghui Liu, Hongchao Ma. Engineering Cationic Sulfur-Doped Co3O4 Architectures with Exposing High-Reactive (112) Facets for Photoelectrocatalytic Water Purification. ACS Applied Materials & Interfaces 2021, 13 (7) , 8405-8416. https://doi.org/10.1021/acsami.0c20353
    3. Olaf Brummel, Yaroslava Lykhach, Mykhailo Vorokhta, Břetislav Šmíd, Corinna Stumm, Firas Faisal, Tomáš Skála, Nataliya Tsud, Armin Neitzel, Klára Beranová, Kevin C. Prince, Vladimír Matolín, Jörg Libuda. Redox Behavior of Pt/Co3O4(111) Model Electrocatalyst Studied by X-ray Photoelectron Spectroscopy Coupled with an Electrochemical Cell. The Journal of Physical Chemistry C 2019, 123 (14) , 8746-8758. https://doi.org/10.1021/acs.jpcc.8b08890
    4. Siyuan Hu, Mingzhen Huang, Jingru Li, Jinxin He, Kaiji Xu, Xiaoping Rao, Dongren Cai, Guowu Zhan. Tailoring the electronic states of Pt by atomic layer deposition of Al2O3 for enhanced CO oxidation performance: Experimental and theoretical investigations. Applied Catalysis B: Environmental 2023, 333 , 122804. https://doi.org/10.1016/j.apcatb.2023.122804
    5. Mengmeng Sun, Shu Huang, Gehong Su, Xianxiang Wang, Zhiwei Lu, Yanying Wang, Tao Liu, Yuanyuan Jiang, Chang Song, Hanbing Rao. Synthesis of pH-switchable Pt/Co3O4 nanoflowers: Catalytic mechanism, four-enzyme activity and smartphone biosensing applications. Chemical Engineering Journal 2022, 437 , 134414. https://doi.org/10.1016/j.cej.2021.134414
    6. Fanyue Zhao, Wenfeng Li, Yu Song, Yinghuan Fu, Xinghui Liu, Chun Ma, Guowen Wang, Xiaoli Dong, Hongchao Ma. Constructing S-scheme Co3O4-C3N4 catalyst with superior photoelectrocatalytic efficiency for water purification. Applied Materials Today 2022, 26 , 101390. https://doi.org/10.1016/j.apmt.2022.101390
    7. Zhibin Liu, Manuel Corva, Hatem M. A. Amin, Niclas Blanc, Julia Linnemann, Kristina Tschulik. Single Co3O4 Nanocubes Electrocatalyzing the Oxygen Evolution Reaction: Nano-Impact Insights into Intrinsic Activity and Support Effects. International Journal of Molecular Sciences 2021, 22 (23) , 13137. https://doi.org/10.3390/ijms222313137
    8. Chantal Hohner, Michal Ronovský, Olaf Brummel, Tomáš Skála, Břetislav Šmíd, Nataliya Tsud, Mykhailo Vorokhta, Kevin C. Prince, Josef Mysliveček, Viktor Johánek, Yaroslava Lykhach, Jörg Libuda. Reactive interaction of isopropanol with Co3O4(1 1 1) and Pt/Co3O4(1 1 1) model catalysts. Journal of Catalysis 2021, 398 , 171-184. https://doi.org/10.1016/j.jcat.2021.04.005
    9. Tian Yang, Maximilian Kastenmeier, Michal Ronovský, Lukáš Fusek, Tomáš Skála, Fabian Waidhas, Manon Bertram, Nataliya Tsud, Peter Matvija, Kevin C Prince, Vladimír Matolín, Zhi Liu, Viktor Johánek, Josef Mysliveček, Yaroslava Lykhach, Olaf Brummel, Jörg Libuda. Selective electrooxidation of 2-propanol on Pt nanoparticles supported on Co 3 O 4 : an in-situ study on atomically defined model systems. Journal of Physics D: Applied Physics 2021, 54 (16) , 164002. https://doi.org/10.1088/1361-6463/abd9ea
    10. Olaf Brummel, Jörg Libuda. Electrifying Oxide Model Catalysis: Complex Electrodes Based on Atomically-Defined Oxide Films. Catalysis Letters 2020, 150 (6) , 1546-1560. https://doi.org/10.1007/s10562-019-03078-x
    11. Yaroslava Lykhach, Jan Kubát, Armin Neitzel, Nataliya Tsud, Mykhailo Vorokhta, Tomáš Skála, Filip Dvořák, Yuliia Kosto, Kevin C. Prince, Vladimír Matolín, Viktor Johánek, Josef Mysliveček, Jörg Libuda. Charge transfer and spillover phenomena in ceria-supported iridium catalysts: A model study. The Journal of Chemical Physics 2019, 151 (20) https://doi.org/10.1063/1.5126031
    12. Hao Li, Chen Chen, Dafeng Yan, Yanyong Wang, Ru Chen, Yuqin Zou, Shuangyin Wang. Interfacial effects in supported catalysts for electrocatalysis. Journal of Materials Chemistry A 2019, 7 (41) , 23432-23450. https://doi.org/10.1039/C9TA04888J
    13. Yaroslava Lykhach, Firas Faisal, Tomáš Skála, Armin Neitzel, Nataliya Tsud, Mykhailo Vorokhta, Filip Dvořák, Klára Beranová, Yuliia Kosto, Kevin C. Prince, Vladimír Matolín, Jörg Libuda. Interplay between the metal-support interaction and stability in Pt/Co 3 O 4 (111) model catalysts. Journal of Materials Chemistry A 2018, 6 (45) , 23078-23086. https://doi.org/10.1039/C8TA08142E
    14. Firas Faisal, Manon Bertram, Corinna Stumm, Fabian Waidhas, Olaf Brummel, Jörg Libuda. Preparation of complex model electrocatalysts in ultra-high vacuum and transfer into the electrolyte for electrochemical IR spectroscopy and other techniques. Review of Scientific Instruments 2018, 89 (11) https://doi.org/10.1063/1.5047056
    15. Firas Faisal, Corinna Stumm, Manon Bertram, Tobias Wähler, Ralf Schuster, Feifei Xiang, Ole Lytken, Ioannis Katsounaros, Karl J. J. Mayrhofer, M. Alexander Schneider, Olaf Brummel, Jörg Libuda. Atomically-defined model catalysts in ultrahigh vacuum and in liquid electrolytes: particle size-dependent CO adsorption on Pt nanoparticles on ordered Co 3 O 4 (111) films. Physical Chemistry Chemical Physics 2018, 20 (36) , 23702-23716. https://doi.org/10.1039/C8CP03770A

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect