ACS Publications. Most Trusted. Most Cited. Most Read
Redox Behavior of Pt/Co3O4(111) Model Electrocatalyst Studied by X-ray Photoelectron Spectroscopy Coupled with an Electrochemical Cell
My Activity

Figure 1Loading Img
    Article

    Redox Behavior of Pt/Co3O4(111) Model Electrocatalyst Studied by X-ray Photoelectron Spectroscopy Coupled with an Electrochemical Cell
    Click to copy article linkArticle link copied!

    • Olaf Brummel
      Olaf Brummel
      Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
      More by Olaf Brummel
    • Yaroslava Lykhach*
      Yaroslava Lykhach
      Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
      *E-mail: [email protected]
    • Mykhailo Vorokhta
      Mykhailo Vorokhta
      Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
    • Břetislav Šmíd
      Břetislav Šmíd
      Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
    • Corinna Stumm
      Corinna Stumm
      Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
    • Firas Faisal
      Firas Faisal
      Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
      More by Firas Faisal
    • Tomáš Skála
      Tomáš Skála
      Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
    • Nataliya Tsud
      Nataliya Tsud
      Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
    • Armin Neitzel
      Armin Neitzel
      Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
    • Klára Beranová
      Klára Beranová
      Elettra-Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5, 34149 Basovizza, Trieste, Italy
    • Kevin C. Prince
      Kevin C. Prince
      Elettra-Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5, 34149 Basovizza, Trieste, Italy
    • Vladimír Matolín
      Vladimír Matolín
      Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
    • Jörg Libuda
      Jörg Libuda
      Lehrstuhl für Physikalische Chemie II  and  Erlangen Catalysis Resource Center and Interdisciplinary Center Interface-Controlled Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
      More by Jörg Libuda
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2019, 123, 14, 8746–8758
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.8b08890
    Published March 11, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Achieving high stability of supported noble metal nanoparticles with respect to sintering is one of the major challenges in electrocatalysis. In this study, we explored the role of metal–support interaction in stabilizing the morphology of a well-defined model electrode consisting of Pt nanoparticles supported on well-ordered Co3O4(111) films on Ir(100). We employed X-ray photoelectron spectroscopy coupled with an electrochemical cell to analyze changes in the oxidation states of both the supported Pt nanoparticles and Co3O4(111) support as a function of electrode potential. We found that immersion into the aqueous electrolyte at pH 10 (phosphate buffer) has no effect on the integrity and chemical composition of the Co3O4(111) film in a potential window between 0.5 and 1.4 VRHE. At lower potentials, reduction of the Co3O4(111) to Co(OH)2 and metallic Co is accompanied by rapid dissolution of the film. In the presence of supported Pt particles, metal–support interaction gives rise to the formation of partially oxidized Ptδ+ species at the metal/oxide interface. Under electrochemical conditions, these species are readily oxidized yielding platinum oxide at the Pt/Co3O4(111) interface at potentials as low as 0.5 VRHE. The appearance of interfacial platinum oxide is accompanied by the formation of surface and bulk platinum oxides at potentials above 1.0 and 1.1 VRHE, respectively. While the formation and decomposition of surface and bulk platinum oxides depend on the electrode potential, the interface platinum oxide is stable between 0.5 and 1.4 VRHE. We propose that the high stability of supported Pt nanoparticles with respect to sintering is associated with the presence of platinum interface oxide stabilized by the metal–support interaction.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.8b08890.

    • Complete sets of fitted Co 2p spectra and the evolution of Co3+/Co2+ ratio obtained from Co3O4(111)/Ir(100) and Pt/Co3O4(111)/Ir(100). Pt 4f spectra obtained from Pt/Co3O4(111)/Ir(100) before and after electrochemical treatment at 0.5 and 0.8 VRHE. Detailed fitting procedure of Pt 4f spectra before and after electrochemical treatment at 0.5 VRHE. Cyclic voltammograms of Pt(111) and Pt/Co3O4(111)/Ir(100) in 0.1 M phosphate electrolyte at pH = 10 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 18 publications.

    1. Jingting Song, Zheng-Xin Qian, Ji Yang, Xiu-Mei Lin, Qingchi Xu, Jian-Feng Li. In situ/Operando Investigation for Heterogeneous Electro-Catalysts: From Model Catalysts to State-of-the-Art Catalysts. ACS Energy Letters 2024, 9 (9) , 4414-4440. https://doi.org/10.1021/acsenergylett.4c01488
    2. Maximilian Kastenmeier, Lukáš Fusek, Xin Deng, Tomáš Skála, Sascha Mehl, Nataliya Tsud, Sebastian Grau, Corinna Stumm, Vitalii Uvarov, Viktor Johánek, Jörg Libuda, Yaroslava Lykhach, Josef Mysliveček, Olaf Brummel. Particle Size and Shape Effects in Electrochemical Environments: Pd Particles Supported on Ordered Co3O4(111) and Highly Oriented Pyrolytic Graphite. The Journal of Physical Chemistry C 2022, 126 (30) , 12870-12881. https://doi.org/10.1021/acs.jpcc.2c03109
    3. Akhilesh Babu Ganganboina, Indra Memdi Khoris, Ankan Dutta Chowdhury, Tian-Cheng Li, Enoch Y. Park. Ultrasensitive Detection of the Hepatitis E Virus by Electrocatalytic Water Oxidation Using Pt-Co3O4 Hollow Cages. ACS Applied Materials & Interfaces 2020, 12 (45) , 50212-50221. https://doi.org/10.1021/acsami.0c13247
    4. Manon Bertram, Carolin Prössl, Michal Ronovský, Julius Knöppel, Peter Matvija, Lukáš Fusek, Tomáš Skála, Nataliya Tsud, Maximilian Kastenmeier, Vladimír Matolín, Karl J. J. Mayrhofer, Viktor Johánek, Josef Mysliveček, Serhiy Cherevko, Yaroslava Lykhach, Olaf Brummel, Jörg Libuda. Cobalt Oxide-Supported Pt Electrocatalysts: Intimate Correlation between Particle Size, Electronic Metal–Support Interaction and Stability. The Journal of Physical Chemistry Letters 2020, 11 (19) , 8365-8371. https://doi.org/10.1021/acs.jpclett.0c02233
    5. Alexander Simanenko, Jan Škvára, Pankaj Kumar Samal, Evanie Franz, Robert Hübsch, Tomáš Skála, Nataliya Tsud, Sascha Mehl, Daniel Schauermann, Viktor Johánek, Josef Mysliveček, Olaf Brummel, Yaroslava Lykhach, Jörg Libuda. Stability of multifunctional Pd–Rh electrocatalysts supported on Co 3 O 4 (111) in alkaline environment: impact of the electronic metal–support interaction. Nanoscale 2025, 17 (18) , 11679-11690. https://doi.org/10.1039/D5NR00413F
    6. Sheena Louisia, Marc T.M. Koper, Rik V. Mom. Prospects for electrochemical X-ray photoelectron spectroscopy as a powerful electrochemical interface characterization technique. Current Opinion in Electrochemistry 2024, 45 , 101462. https://doi.org/10.1016/j.coelec.2024.101462
    7. Sakthivel Kogularasu, Yen‐Yi Lee, Balasubramanian Sriram, Sea‐Fue Wang, Mary George, Guo‐Ping Chang‐Chien, Jinn‐Kong Sheu. Unlocking Catalytic Potential: Exploring the Impact of Thermal Treatment on Enhanced Electrocatalysis of Nanomaterials. Angewandte Chemie 2024, 136 (1) https://doi.org/10.1002/ange.202311806
    8. Sakthivel Kogularasu, Yen‐Yi Lee, Balasubramanian Sriram, Sea‐Fue Wang, Mary George, Guo‐Ping Chang‐Chien, Jinn‐Kong Sheu. Unlocking Catalytic Potential: Exploring the Impact of Thermal Treatment on Enhanced Electrocatalysis of Nanomaterials. Angewandte Chemie International Edition 2024, 63 (1) https://doi.org/10.1002/anie.202311806
    9. Naoto Todoroki, Hiroto Tsurumaki, Arata Shinomiya, Toshimasa Wadayama. Surface microstructures and oxygen evolution properties of cobalt oxide deposited on Ir(111) and Pt(111) single crystal substrates. Electrochemical Science Advances 2023, 3 (6) https://doi.org/10.1002/elsa.202200007
    10. Meng Zhang, Hui Gao, Jing Chen, Ehiaghe Agbovhimen Elimian, Hongpeng Jia. Calcination engineering of urchin-like CoO -CN catalysts to enhance photothermocatalytic oxidation of toluene via photo-/thermo- coupling effect. Applied Catalysis B: Environmental 2022, 307 , 121208. https://doi.org/10.1016/j.apcatb.2022.121208
    11. Anastasiia Efremova, Imre Szenti, János Kiss, Ákos Szamosvölgyi, András Sápi, Kornélia Baán, Luca Olivi, Gábor Varga, Zsolt Fogarassy, Béla Pécz, Ákos Kukovecz, Zoltán Kónya. Nature of the Pt-Cobalt-Oxide surface interaction and its role in the CO2 Methanation. Applied Surface Science 2022, 571 , 151326. https://doi.org/10.1016/j.apsusc.2021.151326
    12. Tian Yang, Maximilian Kastenmeier, Michal Ronovský, Lukáš Fusek, Tomáš Skála, Fabian Waidhas, Manon Bertram, Nataliya Tsud, Peter Matvija, Kevin C Prince, Vladimír Matolín, Zhi Liu, Viktor Johánek, Josef Mysliveček, Yaroslava Lykhach, Olaf Brummel, Jörg Libuda. Selective electrooxidation of 2-propanol on Pt nanoparticles supported on Co 3 O 4 : an in-situ study on atomically defined model systems. Journal of Physics D: Applied Physics 2021, 54 (16) , 164002. https://doi.org/10.1088/1361-6463/abd9ea
    13. Lichen Liu, Avelino Corma. Structural transformations of solid electrocatalysts and photocatalysts. Nature Reviews Chemistry 2021, 5 (4) , 256-276. https://doi.org/10.1038/s41570-021-00255-8
    14. Henrike Schmies, Arno Bergmann, Elisabeth Hornberger, Jakub Drnec, Guanxiong Wang, Fabio Dionigi, Stefanie Kühl, Daniel J. S. Sandbeck, Karl J. J. Mayrhofer, Vijay Ramani, Serhiy Cherevko, Peter Strasser. Anisotropy of Pt nanoparticles on carbon- and oxide-support and their structural response to electrochemical oxidation probed by in situ techniques. Physical Chemistry Chemical Physics 2020, 22 (39) , 22260-22270. https://doi.org/10.1039/D0CP03233F
    15. Olaf Brummel, Jörg Libuda. Electrifying Oxide Model Catalysis: Complex Electrodes Based on Atomically-Defined Oxide Films. Catalysis Letters 2020, 150 (6) , 1546-1560. https://doi.org/10.1007/s10562-019-03078-x
    16. Yaroslava Lykhach, Jan Kubát, Armin Neitzel, Nataliya Tsud, Mykhailo Vorokhta, Tomáš Skála, Filip Dvořák, Yuliia Kosto, Kevin C. Prince, Vladimír Matolín, Viktor Johánek, Josef Mysliveček, Jörg Libuda. Charge transfer and spillover phenomena in ceria-supported iridium catalysts: A model study. The Journal of Chemical Physics 2019, 151 (20) https://doi.org/10.1063/1.5126031
    17. Manon Bertram, Christian Schuschke, Fabian Waidhas, Matthias Schwarz, Chantal Hohner, María A. Montero, Olaf Brummel, Jörg Libuda. Molecular anchoring to oxide surfaces in ultrahigh vacuum and in aqueous electrolytes: phosphonic acids on atomically-defined cobalt oxide. Physical Chemistry Chemical Physics 2019, 21 (42) , 23364-23374. https://doi.org/10.1039/C9CP03779A
    18. Florian Kraushofer, Francesca Mirabella, Jian Xu, Jiří Pavelec, Jan Balajka, Matthias Müllner, Nikolaus Resch, Zdeněk Jakub, Jan Hulva, Matthias Meier, Michael Schmid, Ulrike Diebold, Gareth S. Parkinson. Self-limited growth of an oxyhydroxide phase at the Fe3O4(001) surface in liquid and ambient pressure water. The Journal of Chemical Physics 2019, 151 (15) https://doi.org/10.1063/1.5116652

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2019, 123, 14, 8746–8758
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.8b08890
    Published March 11, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    1165

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.