ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Amorphous versus Crystalline Li3PS4: Local Structural Changes during Synthesis and Li Ion Mobility

  • Heike Stöffler*
    Heike Stöffler
    Institute for Applied Materials − Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
    *E-mail: [email protected]. Tel.: +49-721-680-28502.
  • Tatiana Zinkevich
    Tatiana Zinkevich
    Institute for Applied Materials − Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
    Helmholtz Institute Ulm, Helmholtzstraße 11, 89081 Ulm, Germany
  • Murat Yavuz
    Murat Yavuz
    Institute for Applied Materials − Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
    More by Murat Yavuz
  • Anna-Lena Hansen
    Anna-Lena Hansen
    Institute for Applied Materials − Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
  • Michael Knapp
    Michael Knapp
    Institute for Applied Materials − Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
  • Jozef Bednarčík
    Jozef Bednarčík
    Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
    Department of Condensed Matter Physics, Institute of Physics, P. J. Safarik University, Park Angelinum 9, 041 54 Kosice, Slovakia
  • Simon Randau
    Simon Randau
    Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
    More by Simon Randau
  • Felix H. Richter
    Felix H. Richter
    Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
  • Jürgen Janek
    Jürgen Janek
    Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
    BELLA-Batteries and Electrochemistry Laboratory, Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
  • Helmut Ehrenberg
    Helmut Ehrenberg
    Institute for Applied Materials − Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
    Helmholtz Institute Ulm, Helmholtzstraße 11, 89081 Ulm, Germany
  • , and 
  • Sylvio Indris
    Sylvio Indris
    Institute for Applied Materials − Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
    Helmholtz Institute Ulm, Helmholtzstraße 11, 89081 Ulm, Germany
Cite this: J. Phys. Chem. C 2019, 123, 16, 10280–10290
Publication Date (Web):April 1, 2019
https://doi.org/10.1021/acs.jpcc.9b01425
Copyright © 2019 American Chemical Society

    Article Views

    3580

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Glass–ceramic solid electrolytes have been reported to exhibit high ionic conductivities. Their synthesis can be performed by crystallization of mechanically milled Li2S–P2S5 glasses. Herein, the amorphization process of Li2S–P2S5 (75:25) induced by ball milling was analyzed via X-ray diffraction (XRD), Raman spectroscopy, and 31P magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. Several structural building blocks such as [P4S10], [P2S6]4–, [P2S7]4–, and [PS4]3– occur during this amorphization process. In addition, high-temperature XRD was used to study the crystallization process of the mechanically milled Li2S–P2S5 glass. Crystallization of phase-pure β-Li3PS4 was observed at temperatures up to 548 K. The kinetics of crystallization was analyzed by integration of the intensity of the Bragg reflections. 7Li NMR relaxometry and pulsed field-gradient (PFG) NMR were used to investigate the short-range and long-range Li+ dynamics in these amorphous and crystalline materials. From the diffusion coefficients obtained by PFG NMR, similar Li+ conductivities for the glassy and heat-treated samples were calculated. For the glassy sample and the glass–ceramic β-Li3PS4 (calcination at 523 K for 1 h), a Li+ bulk conductivity σLi of 1.6 × 10–4 S/cm (298 K) was obtained, showing that for this system a well-crystalline material is not essential to achieve fast Li-ion dynamics. Impedance measurements reveal a higher overall conductivity for the amorphous sample, suggesting that the influence of grain boundaries is small in this case.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.9b01425.

    • X-ray diffraction pattern (Mo Kα1) of P4S10 with Rietveld refinement, Raman spectra of initial compounds and empty capillary, in situ HT-XRD patterns (Mo Kα1) of the amorphous sample. The patterns were recorded at temperatures from 298 to 773 K (in red for increasing temperature) and at 298 K (in blue after cooling), in situ HT-XRD patterns (Mo Kα1) of the Li2S–P2S5 glass heated at 413 and 433 K, Nyquist plot of electrochemical impedance for the (a) amorphous and (b) calcined samples at selected temperatures, nitrogen physisorption isotherm of (a) amorphous and (b) calcined samples (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 58 publications.

    1. Jinxue Peng, Xuefan Zheng, Yuqi Wu, Cheng Li, Zhongwei Lv, Chenxi Zheng, Jun Liu, Haoyue Zhong, Zhengliang Gong, Yong Yang. Li2S-Based Composite Cathode with in Situ-Generated Li3PS4 Electrolyte on Li2S for Advanced All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2023, 15 (16) , 20191-20199. https://doi.org/10.1021/acsami.3c02732
    2. Aurelia Gries, Frederieke Langer, Julian Schwenzel, Matthias Busse. Determination of Reaction Enthalpies of Synthesizing β-Li3PS4 in Tetrahydrofuran. ACS Omega 2023, 8 (15) , 14034-14040. https://doi.org/10.1021/acsomega.3c00603
    3. Hirotada Gamo, Kazuhiro Hikima, Atsunori Matsuda. Understanding Decomposition of Electrolytes in All-Solid-State Lithium–Sulfur Batteries. Chemistry of Materials 2022, 34 (24) , 10952-10963. https://doi.org/10.1021/acs.chemmater.2c02926
    4. Frazer N. Forrester, James A. Quirk, Theodosios Famprikis, James A. Dawson. Disentangling Cation and Anion Dynamics in Li3PS4 Solid Electrolytes. Chemistry of Materials 2022, 34 (23) , 10561-10571. https://doi.org/10.1021/acs.chemmater.2c02637
    5. Maxwell W. Terban, Simon J. L. Billinge. Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chemical Reviews 2022, 122 (1) , 1208-1272. https://doi.org/10.1021/acs.chemrev.1c00237
    6. Jonas van Dinter, Sylvio Indris, Alexander Bitter, David Grantz, Giannantonio Cibin, Martin Etter, Wolfgang Bensch. Long-Term Stable, High-Capacity Anode Material for Sodium-Ion Batteries: Taking a Closer Look at CrPS4 from an Electrochemical and Mechanistic Point of View. ACS Applied Materials & Interfaces 2021, 13 (46) , 54936-54950. https://doi.org/10.1021/acsami.1c14980
    7. Marvin Cronau, Marvin Szabo, Christoph König, Tobias Burghardt Wassermann, Bernhard Roling. How to Measure a Reliable Ionic Conductivity? The Stack Pressure Dilemma of Microcrystalline Sulfide-Based Solid Electrolytes. ACS Energy Letters 2021, 6 (9) , 3072-3077. https://doi.org/10.1021/acsenergylett.1c01299
    8. Edda Winter, Philipp Seipel, Vanessa Miß, Stefan Spannenberger, Bernhard Roling, Michael Vogel. 7Li NMR Studies of Short-Range and Long-Range Lithium Ion Dynamics in a Heat-Treated Lithium Iodide-Doped Lithium Thiophosphate Glass Featuring High Ion Conductivity. The Journal of Physical Chemistry C 2020, 124 (52) , 28614-28622. https://doi.org/10.1021/acs.jpcc.0c08801
    9. Ruth Schlenker, Anna-Lena Hansen, Anatoliy Senyshyn, Tatiana Zinkevich, Michael Knapp, Thomas Hupfer, Helmut Ehrenberg, Sylvio Indris. Structure and Diffusion Pathways in Li6PS5Cl Argyrodite from Neutron Diffraction, Pair-Distribution Function Analysis, and NMR. Chemistry of Materials 2020, 32 (19) , 8420-8430. https://doi.org/10.1021/acs.chemmater.0c02418
    10. Florian Strauss, Tatiana Zinkevich, Sylvio Indris, Torsten Brezesinski. Li7GeS5Br—An Argyrodite Li-Ion Conductor Prepared by Mechanochemical Synthesis. Inorganic Chemistry 2020, 59 (17) , 12954-12959. https://doi.org/10.1021/acs.inorgchem.0c02094
    11. Darren H. S. Tan, Erik A. Wu, Han Nguyen, Zheng Chen, Maxwell A. T. Marple, Jean-Marie Doux, Xuefeng Wang, Hedi Yang, Abhik Banerjee, Ying Shirley Meng. Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte. ACS Energy Letters 2019, 4 (10) , 2418-2427. https://doi.org/10.1021/acsenergylett.9b01693
    12. Wenli Pan, Kentaro Yamamoto, Nobuya Machida, Toshiyuki Matsunaga, Mukesh Kumar, Neha Thakur, Toshiki Watanabe, Atsushi Sakuda, Akitoshi Hayashi, Masahiro Tatsumisago, Yoshiharu Uchimoto. Improving the electrochemical performance of Li 2 S cathodes based on point defect control with cation/anion dual doping. Journal of Materials Chemistry A 2023, 11 (45) , 24637-24643. https://doi.org/10.1039/D3TA05426H
    13. Shenghao Li, Jing Lin, Mareen Schaller, Sylvio Indris, Xin Zhang, Torsten Brezesinski, Ce‐Wen Nan, Shuo Wang, Florian Strauss. High‐Entropy Lithium Argyrodite Solid Electrolytes Enabling Stable All‐Solid‐State Batteries. Angewandte Chemie 2023, 8 https://doi.org/10.1002/ange.202314155
    14. Shenghao Li, Jing Lin, Mareen Schaller, Sylvio Indris, Xin Zhang, Torsten Brezesinski, Ce‐Wen Nan, Shuo Wang, Florian Strauss. High‐Entropy Lithium Argyrodite Solid Electrolytes Enabling Stable All‐Solid‐State Batteries. Angewandte Chemie International Edition 2023, 4 https://doi.org/10.1002/anie.202314155
    15. Laura Helmers, Finn Frankenberg, Julian Brokmann, Christine Burmeister, Annika Buchheit, Arno Kwade, Peter Michalowski. Functionalized Thiophosphate and Oxidic Filler Particles for Hybrid Solid Electrolytes. ChemElectroChem 2023, 10 (21) https://doi.org/10.1002/celc.202300310
    16. Masatsugu Yoshimoto, Takuya Kimura, Atsushi Sakuda, Chie Hotehama, Yuji Shiramata, Akitoshi Hayashi, Kazuhiko Omote. Crystallization process of Li3PS4 investigated by X-ray total scattering measurement and the reverse Monte Carlo method. Solid State Ionics 2023, 401 , 116361. https://doi.org/10.1016/j.ssi.2023.116361
    17. Sol Hui Park, Ye Yeong Hwang, Inho Park, Ho Bum Park, Yun Jung Lee. Mechano-chemical solution process for Li3PS4 solid electrolyte using dibromomethane for enhanced conductivity and cyclability in all-solid-state batteries. Energy Storage Materials 2023, 63 , 102985. https://doi.org/10.1016/j.ensm.2023.102985
    18. Zhenggang Zhang, Katherine A. Mazzio, Luise M. Riegger, Wolfgang Brehm, Jürgen Janek, Joachim Sann, Philipp Adelhelm. Copper Thiophosphate (Cu 3 PS 4 ) as an Electrode Material for Lithium Solid‐State Batteries with Lithium Thiophosphate ( β –Li 3 PS 4 ) Electrolyte. Energy Technology 2023, 11 (10) https://doi.org/10.1002/ente.202300553
    19. Xinchang Chen, Jinxiao Zhang, Guiming Zhong, Yimei Ouyang, Shicheng Yu, Chao Wang, Ke Sun, Xunfan Liao, Xiaojun Kuang, Yiwang Chen, Zhangquan Peng. Disentangling the Li‐Ion transport and Boundary Phase Transition Processes in Li 10 GeP 2 S 12 Electrolyte by In‐Operando High‐Pressure and High‐Resolution NMR Spectroscopy. Small 2023, 19 (40) https://doi.org/10.1002/smll.202302863
    20. Hongchang Hao, Yijie Liu, Samuel M. Greene, Guang Yang, Kaustubh G. Naik, Bairav S. Vishnugopi, Yixian Wang, Hugo Celio, Andrei Dolocan, Wan‐Yu Tsai, Ruyi Fang, John Watt, Partha P. Mukherjee, Donald J. Siegel, David Mitlin. Tuned Reactivity at the Lithium Metal–Argyrodite Solid State Electrolyte Interphase. Advanced Energy Materials 2023, 120 https://doi.org/10.1002/aenm.202301338
    21. James A. Quirk, James A. Dawson. Design Principles for Grain Boundaries in Solid‐State Lithium‐Ion Conductors. Advanced Energy Materials 2023, 13 (32) https://doi.org/10.1002/aenm.202301114
    22. Chaochao Wei, Xinrong Liu, Chuang Yu, Shaoqing Chen, Shuai Chen, Shijie Cheng, Jia Xie. Revealing performance of 78Li2S-22P2S5 glass ceramic based solid-state batteries at different operating temperatures. Chinese Chemical Letters 2023, 34 (7) , 107859. https://doi.org/10.1016/j.cclet.2022.107859
    23. Alexander Kraytsberg, Yair Ein-Eli. Recent Developments in the Field of Sulfide Ceramic Solid‐State Electrolytes. Energy Technology 2023, 11 (6) https://doi.org/10.1002/ente.202201291
    24. Moritz Hofer, Michael Grube, Christine Friederike Burmeister, Peter Michalowski, Sabrina Zellmer, Arno Kwade. Effective mechanochemical synthesis of sulfide solid electrolyte Li3PS4 in a high energy ball mill by process investigation. Advanced Powder Technology 2023, 34 (6) , 104004. https://doi.org/10.1016/j.apt.2023.104004
    25. Hongtao Qu, Yantao Wang, Jiangwei Ju, Ernst R. H. van Eck, Guanglei Cui, Arno P. M. Kentgens. Aluminium ion doping mechanism of lithium thiophosphate based solid electrolytes revealed with solid-state NMR. Physical Chemistry Chemical Physics 2023, 25 (6) , 4997-5006. https://doi.org/10.1039/D2CP04670A
    26. Arno Kwade, Marcel Möller, Jannes Müller, Jutta Hesselbach, Sabrina Zellmer, Stefan Doose, Julian Mayer, Peter Michalowski, Malcolm Powell, Sandra Breitung-Faes. Comminution and Classification as Important Process Steps for the Circular Production of Lithium Batteries. KONA Powder and Particle Journal 2023, 40 (0) , 50-73. https://doi.org/10.14356/kona.2023006
    27. Yaoyu Ren, Timo Danner, Alexandra Moy, Martin Finsterbusch, Tanner Hamann, Jan Dippell, Till Fuchs, Marius Müller, Ricky Hoft, André Weber, Larry A. Curtiss, Peter Zapol, Matthew Klenk, Anh T. Ngo, Pallab Barai, Brandon C. Wood, Rongpei Shi, Liwen F. Wan, Tae Wook Heo, Martin Engels, Jagjit Nanda, Felix H. Richter, Arnulf Latz, Venkat Srinivasan, Jürgen Janek, Jeff Sakamoto, Eric D. Wachsman, Dina Fattakhova‐Rohlfing. Oxide‐Based Solid‐State Batteries: A Perspective on Composite Cathode Architecture. Advanced Energy Materials 2023, 13 (1) https://doi.org/10.1002/aenm.202201939
    28. Kent J. Griffith, John M. Griffin. Solid-state NMR of energy storage materials. 2023, 282-329. https://doi.org/10.1016/B978-0-12-823144-9.00147-3
    29. Chen Mi, Simon R. Hall. Preparation and degradation of high air stability sulfide solid electrolyte 75Li2S·25P2S5 glass-ceramic. Solid State Ionics 2023, 389 , 116106. https://doi.org/10.1016/j.ssi.2022.116106
    30. Randy Jalem, Manas Likhit Holekevi Chandrappa, Ji Qi, Yoshitaka Tateyama, Shyue Ping Ong. Lithium dynamics at grain boundaries of β-Li 3 PS 4 solid electrolyte. Energy Advances 2023, 1 https://doi.org/10.1039/D3YA00234A
    31. Jiahui Zhang, Chengwei Gao, Chengmiao He, Linling Tan, Shiliang Kang, Qing Jiao, Tiefeng Xu, Changgui Lin. Effects of different glass formers on Li 2 S–P 2 S 5 –MS 2 (M = Si, Ge, Sn) chalcogenide solid‐state electrolytes. Journal of the American Ceramic Society 2023, 106 (1) , 354-364. https://doi.org/10.1111/jace.18719
    32. Guoda Wang, Bo Liang, Changgui Lin, Chengwei Gao, Xiang Shen, Yongxing Liu, Qing Jiao. Design of cation doped Li7P2S8Br I sulfide electrolyte with improved conductivity and stable interfacial properties for all-solid-state lithium batteries. Applied Materials Today 2022, 29 , 101692. https://doi.org/10.1016/j.apmt.2022.101692
    33. Masatsugu Yoshimoto, Kazuhiko Omote. Determination of Atomic-Scale Density of Materials from Total Scattering Profiles. Journal of the Physical Society of Japan 2022, 91 (10) https://doi.org/10.7566/JPSJ.91.104602
    34. Yu Ni, Chao Huang, Hong Liu, Yuhao Liang, Li‐Zhen Fan. A High Air‐Stability and Li‐Metal‐Compatible Li 3+2x P 1−x Bi x S 4−1.5x O 1.5x Sulfide Electrolyte for All‐Solid‐State Li–Metal Batteries. Advanced Functional Materials 2022, 32 (41) https://doi.org/10.1002/adfm.202205998
    35. Shuo Wang, Yujing Wu, Hong Li, Liquan Chen, Fan Wu. Improving thermal stability of sulfide solid electrolytes: An intrinsic theoretical paradigm. InfoMat 2022, 4 (8) https://doi.org/10.1002/inf2.12316
    36. Wahid Zaman, Kelsey B. Hatzell. Processing and manufacturing of next generation lithium-based all solid-state batteries. Current Opinion in Solid State and Materials Science 2022, 26 (4) , 101003. https://doi.org/10.1016/j.cossms.2022.101003
    37. Niaz Ahmad, Shaorui Sun, Peiwen Yu, Wen Yang. Design Unique Air‐Stable and Li–Metal Compatible Sulfide Electrolyte via Exploration of Anion Functional Units for All‐Solid‐State Lithium–Metal Batteries. Advanced Functional Materials 2022, 32 (28) https://doi.org/10.1002/adfm.202201528
    38. Zhenming Xu, Yongyao Xia. Progress, challenges and perspectives of computational studies on glassy superionic conductors for solid-state batteries. Journal of Materials Chemistry A 2022, 10 (22) , 11854-11880. https://doi.org/10.1039/D2TA02321K
    39. Pingping Dong, Qing Jiao, Zengcheng Zhang, Miao Jiang, Changgui Lin, Xianghua Zhang, Hongli Ma, Baochen Ma, Shixun Dai, Tiefeng Xu. Controllable Li 3 PS 4 –Li 4 SnS 4 solid electrolytes with affordable conductor and high conductivity for solid‐state battery. Journal of the American Ceramic Society 2022, 105 (5) , 3252-3260. https://doi.org/10.1111/jace.18287
    40. Jianing Liang, Xiaowei Xu, Cheng Zeng, Shuhao Wang, Haoyue Liang, Huiqiao Li. Structure transitions of lithium ionic conductor Li3PS4. Chinese Science Bulletin 2022, 67 (11) , 1190-1200. https://doi.org/10.1360/TB-2021-1027
    41. Vitaly I. Volkov, Olga V. Yarmolenko, Alexander V. Chernyak, Nikita A. Slesarenko, Irina A. Avilova, Guzaliya R. Baymuratova, Alena V. Yudina. Polymer Electrolytes for Lithium-Ion Batteries Studied by NMR Techniques. Membranes 2022, 12 (4) , 416. https://doi.org/10.3390/membranes12040416
    42. Shunsuke Ariga, Takahiro Ohkubo, Shingo Urata, Yutaka Imamura, Taketoshi Taniguchi. A new universal force-field for the Li 2 S–P 2 S 5 system. Physical Chemistry Chemical Physics 2022, 24 (4) , 2567-2581. https://doi.org/10.1039/D1CP05393K
    43. Rajesh Rajagopal, Ji-Un Cho, Yuvaraj Subramanian, Yu Jin Jung, Sung Kang, Yoon-Cheol Ha, Kwang-Sun Ryu. Preparation of highly conductive metal doped/substituted Li7P2S8Br(1-x)Ix type lithium superionic conductor for all-solid-state lithium battery applications. Chemical Engineering Journal 2022, 428 , 132155. https://doi.org/10.1016/j.cej.2021.132155
    44. Ömer Ulaş Kudu, Theodosios Famprikis, Sorina Cretu, Benjamin Porcheron, Elodie Salager, Arnaud Demortiere, Matthieu Courty, Virginie Viallet, Thierry Le Mercier, Benoit Fleutot, Marc-David Braida, Christian Masquelier. Structural details in Li3PS4: Variety in thiophosphate building blocks and correlation to ion transport. Energy Storage Materials 2022, 44 , 168-179. https://doi.org/10.1016/j.ensm.2021.10.021
    45. Brandon C. Wood, Joel B. Varley, Kyoung E. Kweon, Patrick Shea, Alex T. Hall, Andrew Grieder, Michael Ward, Vincent P. Aguirre, Dylan Rigling, Eduardo Lopez Ventura, Chimara Stancill, Nicole Adelstein. Paradigms of frustration in superionic solid electrolytes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2021, 379 (2211) https://doi.org/10.1098/rsta.2019.0467
    46. Muhammad Khurram Tufail, Niaz Ahmad, Le Yang, Lei Zhou, Muhammad Adnan Naseer, Renjie Chen, Wen Yang. A panoramic view of Li7P3S11 solid electrolytes synthesis, structural aspects and practical challenges for all-solid-state lithium batteries. Chinese Journal of Chemical Engineering 2021, 39 , 16-36. https://doi.org/10.1016/j.cjche.2021.09.021
    47. Priyadarshini Mirmira, Jin Zheng, Peiyuan Ma, Chibueze V. Amanchukwu. Importance of multimodal characterization and influence of residual Li 2 S impurity in amorphous Li 3 PS 4 inorganic electrolytes. Journal of Materials Chemistry A 2021, 9 (35) , 19637-19648. https://doi.org/10.1039/D1TA02754A
    48. Florencia Marchini, Benjamin Porcheron, Gwenaelle Rousse, Laura Albero Blanquer, Léa Droguet, Dominique Foix, Tuncay Koç, Michael Deschamps, Jean Marie Tarascon. The Hidden Side of Nanoporous β‐Li 3 PS 4 Solid Electrolyte. Advanced Energy Materials 2021, 11 (34) https://doi.org/10.1002/aenm.202101111
    49. Roman Schlem, Christine Friederike Burmeister, Peter Michalowski, Saneyuki Ohno, Georg F. Dewald, Arno Kwade, Wolfgang G. Zeier. Energy Storage Materials for Solid‐State Batteries: Design by Mechanochemistry. Advanced Energy Materials 2021, 11 (30) https://doi.org/10.1002/aenm.202101022
    50. Yujing Wu, Shuo Wang, Hong Li, Liquan Chen, Fan Wu. Progress in thermal stability of all‐solid‐state‐Li‐ion‐batteries. InfoMat 2021, 3 (8) , 827-853. https://doi.org/10.1002/inf2.12224
    51. Tengfei Zhang, Yifei Shao, Xiang Zhang, Yuqin Huang, Shuai Wang, Wei Zhou, Peng Li, Guanglin Xia, Xuebin Yu. Fast Lithium Ionic Conductivity in Complex Hydride‐Sulfide Electrolytes by Double Anions Substitution. Small Methods 2021, 5 (8) https://doi.org/10.1002/smtd.202100609
    52. Shuo Wang, Wenbo Zhang, Xiang Chen, Dyuman Das, Raffael Ruess, Ajay Gautam, Felix Walther, Saneyuki Ohno, Raimund Koerver, Qiang Zhang, Wolfgang G. Zeier, Felix H. Richter, Ce‐Wen Nan, Jürgen Janek. Influence of Crystallinity of Lithium Thiophosphate Solid Electrolytes on the Performance of Solid‐State Batteries. Advanced Energy Materials 2021, 11 (24) https://doi.org/10.1002/aenm.202100654
    53. Cyril O. Ehi-Eromosele, Samuel O. Ajayi, Chizoom N. Onwucha. Optimizing the electrochemical performance of Li2MnO3 cathode materials for Li-ion battery using solution combustion synthesis: Higher temperature and longer syntheses improves performance. Journal of Alloys and Compounds 2021, 861 , 157972. https://doi.org/10.1016/j.jallcom.2020.157972
    54. Feipeng Zhao, Sandamini H. Alahakoon, Keegan Adair, Shumin Zhang, Wei Xia, Weihan Li, Chuang Yu, Renfei Feng, Yongfeng Hu, Jianwen Liang, Xiaoting Lin, Yang Zhao, Xiaofei Yang, Tsun‐Kong Sham, Huan Huang, Li Zhang, Shangqian Zhao, Shigang Lu, Yining Huang, Xueliang Sun. An Air‐Stable and Li‐Metal‐Compatible Glass‐Ceramic Electrolyte enabling High‐Performance All‐Solid‐State Li Metal Batteries. Advanced Materials 2021, 33 (8) https://doi.org/10.1002/adma.202006577
    55. Marcel Sadowski, Karsten Albe. Computational study of crystalline and glassy lithium thiophosphates: Structure, thermodynamic stability and transport properties. Journal of Power Sources 2020, 478 , 229041. https://doi.org/10.1016/j.jpowsour.2020.229041
    56. Chun‐Sheng Jiang, Nathan Dunlap, Yejing Li, Harvey Guthrey, Ping Liu, Se‐Hee Lee, Mowafak M. Al‐Jassim. Nonuniform Ionic and Electronic Transport of Ceramic and Polymer/Ceramic Hybrid Electrolyte by Nanometer‐Scale Operando Imaging for Solid‐State Battery. Advanced Energy Materials 2020, 10 (21) https://doi.org/10.1002/aenm.202000219
    57. Tammo K. Schwietert, Violetta A. Arszelewska, Chao Wang, Chuang Yu, Alexandros Vasileiadis, Niek J. J. de Klerk, Jart Hageman, Thomas Hupfer, Ingo Kerkamm, Yaolin Xu, Eveline van der Maas, Erik M. Kelder, Swapna Ganapathy, Marnix Wagemaker. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nature Materials 2020, 19 (4) , 428-435. https://doi.org/10.1038/s41563-019-0576-0
    58. Charlotte Fritsch, Anna-Lena Hansen, Sylvio Indris, Michael Knapp, Helmut Ehrenberg. Mechanochemical synthesis of amorphous and crystalline Na 2 P 2 S 6 – elucidation of local structural changes by X-ray total scattering and NMR. Dalton Transactions 2020, 49 (5) , 1668-1673. https://doi.org/10.1039/C9DT04777H

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect