ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Solvent Effects on the Absorption Profile, Kinetic Stability, and Photoisomerization Process of the Norbornadiene–Quadricyclanes System

  • Maria Quant
    Maria Quant
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Gothenburg, Sweden
    More by Maria Quant
  • Alice Hamrin
    Alice Hamrin
    Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
    More by Alice Hamrin
  • Anders Lennartson
    Anders Lennartson
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Gothenburg, Sweden
  • Paul Erhart*
    Paul Erhart
    Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
    *(P.E.) E-mail: [email protected]
    More by Paul Erhart
  • , and 
  • Kasper Moth-Poulsen*
    Kasper Moth-Poulsen
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Gothenburg, Sweden
    *(K.M.-P.) E-mail: [email protected]
Cite this: J. Phys. Chem. C 2019, 123, 12, 7081–7087
Publication Date (Web):March 6, 2019
https://doi.org/10.1021/acs.jpcc.9b02111
Copyright © 2019 American Chemical Society

    Article Views

    966

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Molecular photoswitches based on the norbornadiene–quadricyclane (NBD-QC) couple can be used to store solar energy and to release the stored energy as heat on demand. In this context, the energy storage time as well as the quantum yield of the energy storing reaction are important parameters. Here, we explore for the first time solvent effects on these processes for a series of four NBD-QC compounds in four different solvents with different polarity (acetonitrile, tetrahydrofuran, toluene, and hexane). We show that the energy storage time of the QC forms can vary by up to a factor of 2 when going from the most to the least polar solvent. Moreover, we show that for the norbornadiene derivatives with an asymmetric 1,2 substitution pattern, the quantum yield of conversion is highly solvent dependent, whereas this is not the case for the symmetrically substituted compounds. The spectroscopic observations are further rationalized using classical molecular dynamics (MD) simulations and time-dependent density functional theory (TDDFT) calculations. These demonstrate the importance of vibrational and rotational excitations for obtaining broad-band absorption, which is a prerequisite for capturing a wide range of the solar spectrum.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.9b02111.

    • Section S1, absorption profiles in different solvents; section S2, kinetic study of the back-conversion; section S3, NMR study of the photoisomerization; and section S4, quantum yield measurements (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 28 publications.

    1. Andreas Erbs Hillers-Bendtsen, Yogesh Todarwal, Patrick Norman, Kurt V. Mikkelsen. Dynamical Effects of Solvation on Norbornadiene/Quadricyclane Systems. The Journal of Physical Chemistry A 2024, 128 (13) , 2602-2610. https://doi.org/10.1021/acs.jpca.4c00045
    2. Ambra Dreos, Junyue Ge, Francisco Najera, Behabitu Ergette Tebikachew, Ezequiel Perez-Inestrosa, Kasper Moth-Poulsen, Kaj Blennow, Henrik Zetterberg, Jörg Hanrieder. Investigating New Applications of a Photoswitchable Fluorescent Norbornadiene as a Multifunctional Probe for Delineation of Amyloid Plaque Polymorphism. ACS Sensors 2023, 8 (4) , 1500-1509. https://doi.org/10.1021/acssensors.2c02496
    3. Evanie Franz, Corinna Stumm, Fabian Waidhas, Manon Bertram, Martyn Jevric, Jessica Orrego-Hernández, Helen Hölzel, Kasper Moth-Poulsen, Olaf Brummel, Jörg Libuda. Tunable Energy Release in a Reversible Molecular Solar Thermal System. ACS Catalysis 2022, 12 (21) , 13418-13425. https://doi.org/10.1021/acscatal.2c03043
    4. Qian Liu, Zhe Wang, Manabu Abe. Impacts of Solvent and Alkyl Chain Length on the Lifetime of Singlet Cyclopentane-1,3-diyl Diradicaloids with π-Single Bonding. The Journal of Organic Chemistry 2022, 87 (3) , 1858-1866. https://doi.org/10.1021/acs.joc.1c02895
    5. Wiebke Alex, Patrick Lorenz, Christian Henkel, Timothy Clark, Andreas Hirsch, Dirk M. Guldi. Solar Energy Storage: Competition between Delocalized Charge Transfer and Localized Excited States in the Norbornadiene to Quadricyclane Photoisomerization. Journal of the American Chemical Society 2022, 144 (1) , 153-162. https://doi.org/10.1021/jacs.1c04322
    6. Andreas Erbs Hillers-Bendtsen, Maria Quant, Kasper Moth-Poulsen, Kurt V. Mikkelsen. Investigation of the Structural and Thermochemical Properties of [2.2.2]-Bicyclooctadiene Photoswitches. The Journal of Physical Chemistry A 2021, 125 (48) , 10330-10339. https://doi.org/10.1021/acs.jpca.1c07737
    7. Ugo Jacovella, Eduardo Carrascosa, Jack T. Buntine, Nicolai Ree, Kurt V. Mikkelsen, Martyn Jevric, Kasper Moth-Poulsen, Evan J. Bieske. Photo- and Collision-Induced Isomerization of a Charge-Tagged Norbornadiene–Quadricyclane System. The Journal of Physical Chemistry Letters 2020, 11 (15) , 6045-6050. https://doi.org/10.1021/acs.jpclett.0c01198
    8. Felix Hemauer, Hans‐Peter Steinrück, Christian Papp. The Norbornadiene/Quadricyclane Pair as Molecular Solar Thermal Energy Storage System: Surface Science Investigations. ChemPhysChem 2024, 107 https://doi.org/10.1002/cphc.202300806
    9. Yi Wang, Lisha Sheng, Haiyi Du, Juan Shi, Zhenqian Chen. Study on photochemistry and component transport coupling processes of azobenzene molecular solar thermal system. Applied Energy 2024, 358 , 122607. https://doi.org/10.1016/j.apenergy.2023.122607
    10. Jacob Lynge Elholm, Zacharias Liasi, Marie Kathrine Mikkelsen, Andreas Erbs Hillers-Bendtsen, Kurt V. Mikkelsen. Computational investigation of photoswitch conjugates for molecular solar energy storage. Physical Chemistry Chemical Physics 2023, 25 (33) , 21964-21969. https://doi.org/10.1039/D3CP02555A
    11. Evanie Franz, Daniel Krappmann, Lukas Fromm, Tobias Luchs, Andreas Görling, Andreas Hirsch, Olaf Brummel, Jörg Libuda. Electrocatalytic Energy Release of Norbornadiene‐Based Molecular Solar Thermal Systems: Tuning the Electrochemical Stability by Molecular Design. ChemSusChem 2022, 15 (24) https://doi.org/10.1002/cssc.202201483
    12. Bo Zhang, Yiyu Feng, Wei Feng. Azobenzene-Based Solar Thermal Fuels: A Review. Nano-Micro Letters 2022, 14 (1) https://doi.org/10.1007/s40820-022-00876-8
    13. Jessica Orrego‐Hernández, Helen Hölzel, Zhihang Wang, Maria Quant, Kasper Moth‐Poulsen. Norbornadiene/Quadricyclane ( NBD / QC ) and Conversion of Solar Energy. 2022, 351-378. https://doi.org/10.1002/9783527827626.ch16
    14. Zakariaa Refaa, Anna Hofmann, Marcial Fernandez Castro, Jessica O. Hernandez, Zhihang Wang, Helen Hölzel, Jens Wenzel Andreasen, Kasper Moth-Poulsen, Angela Sasic Kalagasidis. Thermo-optical performance of molecular solar thermal energy storage films. Applied Energy 2022, 310 , 118541. https://doi.org/10.1016/j.apenergy.2022.118541
    15. Maria Quant, Andreas Erbs Hillers-Bendtsen, Shima Ghasemi, Mate Erdelyi, Zhihang Wang, Lidiya M. Muhammad, Nina Kann, Kurt V. Mikkelsen, Kasper Moth-Poulsen. Synthesis, characterization and computational evaluation of bicyclooctadienes towards molecular solar thermal energy storage. Chemical Science 2022, 13 (3) , 834-841. https://doi.org/10.1039/D1SC05791J
    16. Longkun Xu, Michelle L. Coote. Recent advances in solvation modeling applications: Chemical properties, reaction mechanisms and catalysis. 2022, 53-121. https://doi.org/10.1016/bs.arcc.2022.09.001
    17. Zhihang Wang, Paul Erhart, Tao Li, Zhao-Yang Zhang, Diego Sampedro, Zhiyu Hu, Hermann A. Wegner, Olaf Brummel, Jörg Libuda, Mogens Brøndsted Nielsen, Kasper Moth-Poulsen. Storing energy with molecular photoisomers. Joule 2021, 5 (12) , 3116-3136. https://doi.org/10.1016/j.joule.2021.11.001
    18. Jana Volarić, Wiktor Szymanski, Nadja A. Simeth, Ben L. Feringa. Molecular photoswitches in aqueous environments. Chemical Society Reviews 2021, 50 (22) , 12377-12449. https://doi.org/10.1039/D0CS00547A
    19. Nicolai Ree, Mads Koerstz, Kurt V. Mikkelsen, Jan H. Jensen. Virtual screening of norbornadiene-based molecular solar thermal energy storage systems using a genetic algorithm. The Journal of Chemical Physics 2021, 155 (18) https://doi.org/10.1063/5.0063694
    20. Michael H. Palmer, Søren Vrønning Hoffmann, Nykola C. Jones, Marcello Coreno, Monica de Simone, Cesare Grazioli, R. Alan Aitken. The vacuum ultraviolet absorption spectrum of norbornadiene: Vibrational analysis of the singlet and triplet valence states of norbornadiene by configuration interaction and density functional calculations. The Journal of Chemical Physics 2021, 155 (3) https://doi.org/10.1063/5.0053962
    21. Reuben Szabo, Khoa N. Le, Tim Kowalczyk. Multifactor theoretical modeling of solar thermal fuels built on azobenzene and norbornadiene scaffolds. Sustainable Energy & Fuels 2021, 5 (8) , 2335-2346. https://doi.org/10.1039/D1SE00041A
    22. Patrick Lorenz, Tobias Luchs, Andreas Hirsch. Molecular Solar Thermal Batteries through Combination of Magnetic Nanoparticle Catalysts and Tailored Norbornadiene Photoswitches. Chemistry – A European Journal 2021, 27 (15) , 4993-5002. https://doi.org/10.1002/chem.202005427
    23. Anne Kunz, Hermann A. Wegner. 1+1≥2? Norbornadiene‐Azobenzene Molecules as Multistate Photoswitches. ChemSystemsChem 2021, 3 (2) https://doi.org/10.1002/syst.202000035
    24. Michael H. Palmer, Marcello Coreno, Monica de Simone, Cesare Grazioli, R. Alan Aitken, Søren Vrønning Hoffmann, Nykola C. Jones, Coralyse Peureux. High-level studies of the ionic states of norbornadiene and quadricyclane, including analysis of new experimental photoelectron spectra by configuration interaction and coupled cluster calculations. The Journal of Chemical Physics 2020, 153 (20) https://doi.org/10.1063/5.0031387
    25. Alejandra M. Arango, Julien Wist, Javier Ellena, Richard D'Vries, Manuel N. Chaur. Multiple Reversible Dynamics of Pyrimidine Based Acylhydrazones. European Journal of Organic Chemistry 2020, 2020 (26) , 4009-4017. https://doi.org/10.1002/ejoc.202000553
    26. Mads Mansø, Anne Ugleholdt Petersen, Kasper Moth-Poulsen, Mogens Brøndsted Nielsen. Establishing linear-free-energy relationships for the quadricyclane-to-norbornadiene reaction. Organic & Biomolecular Chemistry 2020, 18 (11) , 2113-2119. https://doi.org/10.1039/D0OB00147C
    27. Manon Bertram, Fabian Waidhas, Martyn Jevric, Lukas Fromm, Christian Schuschke, Maximilian Kastenmeier, Andreas Görling, Kasper Moth-Poulsen, Olaf Brummel, Jörg Libuda. Norbornadiene photoswitches anchored to well-defined oxide surfaces: From ultrahigh vacuum into the liquid and the electrochemical environment. The Journal of Chemical Physics 2020, 152 (4) https://doi.org/10.1063/1.5137897
    28. Martin Drøhse Kilde, Mads Mansø, Nicolai Ree, Anne Ugleholdt Petersen, Kasper Moth-Poulsen, Kurt V. Mikkelsen, Mogens Brøndsted Nielsen. Norbornadiene–dihydroazulene conjugates. Organic & Biomolecular Chemistry 2019, 17 (33) , 7735-7746. https://doi.org/10.1039/C9OB01545K

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect