ACS Publications. Most Trusted. Most Cited. Most Read
Investigating the Correlation of Segmental Dynamics, Free Volume Characteristics, and Ionic Conductivity in Poly(ethylene oxide)-Based Electrolyte: A Broadband Dielectric and Positron Annihilation Spectroscopy Study
My Activity

Figure 1Loading Img
    Article

    Investigating the Correlation of Segmental Dynamics, Free Volume Characteristics, and Ionic Conductivity in Poly(ethylene oxide)-Based Electrolyte: A Broadband Dielectric and Positron Annihilation Spectroscopy Study
    Click to copy article linkArticle link copied!

    • P. Utpalla
      P. Utpalla
      Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India 400085
      Homi Bhabha National Institute, Anushaktinagar, Mumbai, India 400094
      More by P. Utpalla
    • S. K. Sharma
      S. K. Sharma
      Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India 400085
      Homi Bhabha National Institute, Anushaktinagar, Mumbai, India 400094
      More by S. K. Sharma
    • K. Sudarshan
      K. Sudarshan
      Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India 400085
      Homi Bhabha National Institute, Anushaktinagar, Mumbai, India 400094
      More by K. Sudarshan
    • S. K. Deshpande
      S. K. Deshpande
      UGC-DAE Consortium for Scientific Research, Mumbai, India 400085
    • M. Sahu
      M. Sahu
      Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India 400085
      More by M. Sahu
    • P. K. Pujari*
      P. K. Pujari
      Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India 400085
      Homi Bhabha National Institute, Anushaktinagar, Mumbai, India 400094
      *E-mail: [email protected]
      More by P. K. Pujari
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2020, 124, 8, 4489–4501
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.9b11722
    Published January 31, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Poly(ethylene oxide), PEO, based solid polymer electrolyte with different loadings of a lithium salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), has been investigated to study the role of PEO–Li cross-linking on segmental dynamics and free volume structure of PEO which consequently determine thermal, mechanical, and ion conduction properties of the electrolyte. In order to investigate the interrelation between segmental dynamics, free volume structure, and ion conduction mechanism, broadband dielectric spectroscopy and positron annihilation spectroscopy have been employed. The ion conduction process in the polymer electrolyte has been explained according to Almond–West formalism considering two different universalities dominating at different temperature or frequency regimes. Ionic conductivity was observed to increase in a nonlinear trend with salt loading, confirming the additional role of the ion diffusion process. The present study has shown that segmental dynamics and free volume structure of PEO-electrolyte which primarily govern the ion diffusion process are interrelated. These have been invoked to explain the observed variations in ionic conductivity, crystallinity, ductility, and thermal stability of PEO–LiTFSI electrolytes.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.9b11722.

    • XRD patterns, FTIR spectra, DSC thermograms, melting point determination from DSC, TGA, SEM images of selected samples, and BDS data at different loadings of LiTFSI (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 35 publications.

    1. Bikash Chandra Saha, Anup Kumar Bera, Seikh Mohammad Yusuf. Two-Dimensional Na-Ionic Conduction in Layered Cobaltate Na2Co2TeO6: A Combined Neutron Diffraction and Impedance Spectroscopy Study. ACS Applied Energy Materials 2025, 8 (6) , 3779-3792. https://doi.org/10.1021/acsaem.5c00012
    2. Seunghan Yun, Insu Hwang, Jang Wook Choi, So Youn Kim. Enhanced Ionic Conductivity via Suppressed Crystallization and Strengthened Dynamics in Solid Polymer-Blend Electrolytes: A Comprehensive Broadband Dielectric Spectroscopy Study. Macromolecules 2025, 58 (1) , 639-651. https://doi.org/10.1021/acs.macromol.4c01879
    3. Zilin Wang, Hong Du, Hanshen Xin, Jie Xue, Jianhua Zhang, Haoyuan Li. Microscopic Mechanisms of Reaction-Coupled Acid Diffusion in Chemically Amplified Photoresists. Chemistry of Materials 2024, 36 (21) , 10841-10849. https://doi.org/10.1021/acs.chemmater.4c02731
    4. Marianna Pannico, Valerio Loianno, Giuseppe Mensitieri, Pellegrino Musto. Sampling Free-Volume in Polymer Glasses by Vibrational Dynamics. Macromolecules 2024, 57 (20) , 9788-9801. https://doi.org/10.1021/acs.macromol.4c01264
    5. S. K. Sharma, J. Mor. Free Volume Mediated Decoupling of Ionic Conduction from Segmental Relaxation Leading to Enhancement in Ionic Conductivity of Polymer Electrolytes at Low Temperatures. ACS Macro Letters 2024, 13 (9) , 1211-1217. https://doi.org/10.1021/acsmacrolett.4c00467
    6. Haiming Hua, Xueying Yang, Peng Zhang, Jinbao Zhao. Understanding the Influence of Functional Groups on the PEO Composite Electrolytes through a Theoretical, Spectroscopic, and Conduction Behavior Study of Model Systems. The Journal of Physical Chemistry C 2023, 127 (35) , 17324-17334. https://doi.org/10.1021/acs.jpcc.3c02823
    7. S. K. Sharma, J. Mor. Coupled Ion-Conduction Mechanism for Enhanced Ionic Conductivity in Mg2B2O5 Nanowires Enabled Poly(ethylene oxide)-Based Quasi Solid State Electrolytes. The Journal of Physical Chemistry C 2023, 127 (25) , 11854-11863. https://doi.org/10.1021/acs.jpcc.3c02575
    8. Recep Bakar, Saeid Darvishi, Umut Aydemir, Ugur Yahsi, Cumali Tav, Yusuf Ziya Menceloglu, Erkan Senses. Decoding Polymer Architecture Effect on Ion Clustering, Chain Dynamics, and Ionic Conductivity in Polymer Electrolytes. ACS Applied Energy Materials 2023, 6 (7) , 4053-4064. https://doi.org/10.1021/acsaem.3c00310
    9. Francielli Silva Genier, Shreyas Pathreeker, Paige Olufunmilayo Adebo, Paul Chando, Ian Dean Hosein. Design of a Boron-Containing PTHF-Based Solid Polymer Electrolyte for Sodium-Ion Conduction with High Na+ Mobility and Salt Dissociation. ACS Applied Polymer Materials 2022, 4 (10) , 7645-7663. https://doi.org/10.1021/acsapm.2c01276
    10. Xuewei He, Ang Ye, Xuewei Fu, Wei Yang, Yu Wang. Achieving Low-Energy-Barrier Ion Hopping in Adhesive Composite Polymer Electrolytes by Nanoabsorption. Macromolecules 2022, 55 (16) , 7117-7126. https://doi.org/10.1021/acs.macromol.2c00928
    11. Bikash Chandra Saha, Anup Kumar Bera, Seikh Mohammad Yusuf. Mechanism of Na-Ion Conduction in the Highly Efficient Layered Battery Material Na2Mn3O7. ACS Applied Energy Materials 2021, 4 (6) , 6040-6054. https://doi.org/10.1021/acsaem.1c00825
    12. Kohei Sambe, Norihisa Hoshino, Takashi Takeda, Takayoshi Nakamura, Tomoyuki Akutagawa. Dynamics and Structural Diversity of Li+(Crown Ether) Supramolecular Cations in Electrically Conducting Salts. The Journal of Physical Chemistry C 2020, 124 (25) , 13560-13571. https://doi.org/10.1021/acs.jpcc.0c02686
    13. Mengze Lu, Wei Zhen Lian, Zhenhua Xiao, Lu Liu, Zhiwei Fan, Xiaolin Jin, Chuanxia Jiang, Qian Chen, Zheng-Hai Tang, Panchao Yin, Taolin Sun. Interplay of chain dynamics and ion transport on mechanical behavior and conductivity in ionogels. Soft Matter 2025, 21 (3) , 435-447. https://doi.org/10.1039/D4SM01251H
    14. Stavros X. Drakopoulos, Jiaen Wu, Shawn M. Maguire, Sneha Srinivasan, Katelyn Randazzo, Emily C. Davidson, Rodney D. Priestley. Polymer nanocomposites: Interfacial properties and capacitive energy storage. Progress in Polymer Science 2024, 156 , 101870. https://doi.org/10.1016/j.progpolymsci.2024.101870
    15. Christian Brosseau. Modeling the Interface Between Phases in Dense Polymer‐Carbon Black Nanoparticle Composites by Dielectric Spectroscopy: Where Are We Now and What are the Opportunities?. Macromolecular Theory and Simulations 2024, 33 (3) https://doi.org/10.1002/mats.202400009
    16. J. Mor, S. K. Sharma. Decoupling of ion-transport from polymer segmental relaxation and higher ionic-conductivity in poly(ethylene oxide)/succinonitrile composite-based electrolytes having low lithium salt doping. Physical Chemistry Chemical Physics 2024, 26 (17) , 13306-13315. https://doi.org/10.1039/D4CP00735B
    17. Mohan Jagan, S. P. Vijayachamundeeswari. The significance of fillers in composite polymer electrolytes for optimizing lithium battery. Ionics 2024, 30 (2) , 647-675. https://doi.org/10.1007/s11581-023-05318-y
    18. Katharina Platen, Frederieke Langer, Roland Bayer, Robert Hollmann, Julian Schwenzel, Matthias Busse. Influence of Molecular Weight and Lithium Bis(trifluoromethanesulfonyl)imide on the Thermal Processability of Poly(ethylene oxide) for Solid-State Electrolytes. Polymers 2023, 15 (16) , 3375. https://doi.org/10.3390/polym15163375
    19. Giovanni Consolati, Dario Nichetti, Fiorenza Quasso. Probing the Free Volume in Polymers by Means of Positron Annihilation Lifetime Spectroscopy. Polymers 2023, 15 (14) , 3128. https://doi.org/10.3390/polym15143128
    20. Rajeshwari Mirji, Blaise Lobo, Dhanadeep Dutta, Saraswati P. Masti, Manjunath P. Eelager. Experimental investigation of the structural features of polycarbonate (PC) filled with bismuth nitrate pentahydrate (BNP) composite films in terms of free volume defects probed by positron annihilation lifetime spectroscopy. Applied Radiation and Isotopes 2023, 196 , 110773. https://doi.org/10.1016/j.apradiso.2023.110773
    21. Yuchi Liu, Xiaopeng Zhao, Jianbo Yin. Enhanced electro-responsive electrorheological efficiency of polyethylene oxide-intercalated montmorillonite nanocomposite suspension. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 666 , 131239. https://doi.org/10.1016/j.colsurfa.2023.131239
    22. Dongmei Zhang, Xianglong Meng, Wenyan Hou, Weihao Hu, Jinshan Mo, Tianrong Yang, Wendi Zhang, Qianxiao Fan, Lehao Liu, Bing Jiang, Lihua Chu, Meicheng Li. Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies. Nano Research Energy 2023, 2 , e9120050. https://doi.org/10.26599/NRE.2023.9120050
    23. Mahdy M. Elmahdy, Khalid A. Aldhafeeri, Moustafa T. Ahmed, Maged A. Azzam, Tarek Fahmy. Molecular dynamics and conduction mechanism of poly(vinyl chloride‐co‐vinyl acetate‐co‐2‐hydroxypropyl acrylate) terpolymer containing ionic liquid. Polymers for Advanced Technologies 2023, 34 (2) , 800-816. https://doi.org/10.1002/pat.5932
    24. P. Utpalla, J. Mor, S. K. Sharma. On enhancing the Li-ion conductivity of quasi-solid-state electrolytes by suppressing the flexibility of zeolitic imidazolate framework-8 via a mixed ligand strategy. Physical Chemistry Chemical Physics 2023, 25 (5) , 3959-3968. https://doi.org/10.1039/D2CP05811A
    25. Lei Tao, Jinlong He, Tom Arbaugh, Jeffrey R. McCutcheon, Ying Li. Machine learning prediction on the fractional free volume of polymer membranes. Journal of Membrane Science 2023, 665 , 121131. https://doi.org/10.1016/j.memsci.2022.121131
    26. Deborath M. Reinoso, Marisa A. Frechero. Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Materials 2022, 52 , 430-464. https://doi.org/10.1016/j.ensm.2022.08.019
    27. P. Utpalla, J. Mor, P. K. Pujari, S. K. Sharma. High ionic conductivity and ion conduction mechanism in ZIF-8 based quasi-solid-state electrolytes: a positron annihilation and broadband dielectric spectroscopy study. Physical Chemistry Chemical Physics 2022, 24 (40) , 24999-25009. https://doi.org/10.1039/D2CP03451D
    28. Anurag Tiwari, Shishir K Singh, Nitin Srivastava, Dipika Meghnani, Raghvendra Mishra, Rupesh K Tiwari, Anupam Patel, Himani Gupta, Vimal K Tiwari, Rajendra K Singh. Diffusion mechanism in a sodium superionic sulfide-based solid electrolyte: Na 11 Sn 2 AsS 12. Journal of Physics D: Applied Physics 2022, 55 (35) , 355503. https://doi.org/10.1088/1361-6463/ac7363
    29. P. Utpalla, S.K. Sharma, J. Prakash, J. Bahadur, M. Sahu, P.K. Pujari. Free volume structure at interphase region of poly (ethylene oxide)-Al2O3 nanorods composites based solid polymer electrolyte and its direct correlation with Li ion conductivity. Solid State Ionics 2022, 375 , 115840. https://doi.org/10.1016/j.ssi.2021.115840
    30. Sujeet Kumar Chaurasia, Manish Pratap Singh, Manoj K. Singh, Pramod Kumar, A. L. Saroj. Impact of ionic liquid incorporation on ionic transport and dielectric properties of PEO-lithium salt-based quasi-solid-state electrolytes: role of ion-pairing. Journal of Materials Science: Materials in Electronics 2022, 33 (3) , 1641-1656. https://doi.org/10.1007/s10854-022-07706-y
    31. Qingli Ma, Yong Wang, Youlin Gu, Nanxiang Zhao, Sheng Luo, Lei Wang, Yihua Hu, Jiajie Fang. Correlation between fragility and free volume void size at glass transition temperature. AIP Advances 2022, 12 (1) https://doi.org/10.1063/5.0069962
    32. Tomoyuki Akutagawa, Takashi Takeda, Norihisa Hoshino. Dynamics of proton, ion, molecule, and crystal lattice in functional molecular assemblies. Chemical Communications 2021, 57 (68) , 8378-8401. https://doi.org/10.1039/D1CC01586A
    33. P. Utpalla, S. K. Sharma, S. K. Deshpande, J. Bahadur, D. Sen, M. Sahu, P. K. Pujari. Role of free volumes and segmental dynamics on ion conductivity of PEO/LiTFSI solid polymer electrolytes filled with SiO 2 nanoparticles: a positron annihilation and broadband dielectric spectroscopy study. Physical Chemistry Chemical Physics 2021, 23 (14) , 8585-8597. https://doi.org/10.1039/D1CP00194A
    34. Somia Awad, Tahani Alkureda, Esam E. Abdel‐Hady, Mahmoud M. Gomaa. Electron irradiation induced molecular changes in PMMA : A positron spectroscopy study. Polymers for Advanced Technologies 2021, 32 (2) , 725-735. https://doi.org/10.1002/pat.5125
    35. M.F.H. Abd El-Kader, M.T. Elabbasy. Gamma radiation modified the optical, electrical, and antibacterial characterization of CuONPs doped in polyethylene oxide/polyvinyl alcohol. Journal of Materials Research and Technology 2020, 9 (6) , 16179-16185. https://doi.org/10.1016/j.jmrt.2020.11.046

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2020, 124, 8, 4489–4501
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpcc.9b11722
    Published January 31, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    847

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.