ACS Publications. Most Trusted. Most Cited. Most Read
Real-Time In Situ Observations Reveal a Double Role for Ascorbic Acid in the Anisotropic Growth of Silver on Gold
My Activity

Figure 1Loading Img
    Letter

    Real-Time In Situ Observations Reveal a Double Role for Ascorbic Acid in the Anisotropic Growth of Silver on Gold
    Click to copy article linkArticle link copied!

    • Kinanti Aliyah
      Kinanti Aliyah
      Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
    • Jieli Lyu
      Jieli Lyu
      Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
      More by Jieli Lyu
    • Claire Goldmann
      Claire Goldmann
      Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
    • Thomas Bizien
      Thomas Bizien
      SWING beamline, SOLEIL Synchrotron, 91192 Gif-sur-Yvette, France
    • Cyrille Hamon*
      Cyrille Hamon
      Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
    • Damien Alloyeau*
      Damien Alloyeau
      Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, F-75013 Paris, France
    • Doru Constantin*
      Doru Constantin
      Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
    Other Access OptionsSupporting Information (4)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2020, 11, 8, 2830–2837
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.0c00121
    Published March 22, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Rational nanoparticle design is one of the main goals of materials science, but it can only be achieved via a thorough understanding of the growth process and of the respective roles of the molecular species involved. We demonstrate that a combination of complementary techniques can yield novel information with respect to their individual contributions. We monitored the growth of long aspect ratio silver rods from gold pentatwinned seeds by three in situ techniques (small-angle X-ray scattering, optical extinction spectroscopy and liquid-cell transmission electron microscopy). Exploiting the difference in reaction speed between the bulk synthesis and the nanoparticle formation in the TEM cell, we show that the anisotropic growth is thermodynamically controlled (rather than kinetically) and that ascorbic acid, widely used for its mild reductive properties, plays a shape-directing role, by stabilizing the {100} facets of the silver cubic lattice, in synergy with the halide ions. This approach can easily be applied to a wide variety of synthesis strategies.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpclett.0c00121.

    • Full kinetics corresponding to the images in Figure 3a (MP4)

    • Full kinetics corresponding to the images in Figure 4a (MP4)

    • Full kinetics corresponding to the data in Figure S11b (MP4)

    • Preparation and characterization discussion, derivation of the equation for the length evolution in time, UV–vis spectra, TEM, HRTEM, LCTEM, and STEM images, particle width data from SAXS measurements, position of the maximum of the longitudinal LSPR as a function of time, growth kinetics, nanorod length as a function of time, comparison between the experimental outlines and the fits, BEM simulations. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 35 publications.

    1. Au Lac Nguyen, Quinn J. Griffin, Ankai Wang, Shengli Zou, Hao Jing. Optimization of the Surfactant Ratio in the Formation of Penta-Twinned Seeds for Precision Synthesis of Gold Nanobipyramids with Tunable Plasmon Resonances. The Journal of Physical Chemistry C 2025, 129 (8) , 4303-4312. https://doi.org/10.1021/acs.jpcc.4c08818
    2. Jieli Lyu, Lauren Matthews, Thomas Zinn, Damien Alloyeau, Cyrille Hamon, Doru Constantin. Two-Step Reshaping of Acicular Gold Nanoparticles. Nano Letters 2025, 25 (4) , 1544-1549. https://doi.org/10.1021/acs.nanolett.4c05601
    3. Junyu Zhang. Imaging Metal/Metal Oxide Electrocatalyst Transformations in Liquids. Crystal Growth & Design 2024, 24 (8) , 3559-3580. https://doi.org/10.1021/acs.cgd.4c00031
    4. Birk Fritsch, Andreas Körner, Thaïs Couasnon, Roberts Blukis, Mehran Taherkhani, Liane G. Benning, Michael P. M. Jank, Erdmann Spiecker, Andreas Hutzler. Tailoring the Acidity of Liquid Media with Ionizing Radiation: Rethinking the Acid–Base Correlation beyond pH. The Journal of Physical Chemistry Letters 2023, 14 (20) , 4644-4651. https://doi.org/10.1021/acs.jpclett.3c00593
    5. Amy Chen, Asher C. Leff, Gregory T. Forcherio, Jonathan Boltersdorf, Taylor J. Woehl. Examining Silver Deposition Pathways onto Gold Nanorods with Liquid-Phase Transmission Electron Microscopy. The Journal of Physical Chemistry Letters 2023, 14 (6) , 1379-1388. https://doi.org/10.1021/acs.jpclett.2c03666
    6. Junjie Li, Francis Leonard Deepak. In Situ Kinetic Observations on Crystal Nucleation and Growth. Chemical Reviews 2022, 122 (23) , 16911-16982. https://doi.org/10.1021/acs.chemrev.1c01067
    7. Claire Goldmann, Xiaoyan Li, Mathieu Kociak, Doru Constantin, Cyrille Hamon. Longitudinal and Transversal Directed Overgrowth of Pentatwinned Silver Nanorods with Tunable Optical Properties. The Journal of Physical Chemistry C 2022, 126 (28) , 11667-11673. https://doi.org/10.1021/acs.jpcc.2c02846
    8. Asela S. Dikkumbura, Prakash Hamal, Min Chen, Daniel A. Babayode, Jeewan C. Ranasinghe, Kenneth Lopata, Louis H. Haber. Growth Dynamics of Colloidal Silver–Gold Core–Shell Nanoparticles Studied by In Situ Second Harmonic Generation and Extinction Spectroscopy. The Journal of Physical Chemistry C 2021, 125 (46) , 25615-25623. https://doi.org/10.1021/acs.jpcc.1c06094
    9. Muhua Sun, Zhihua Cheng, Weiyin Chen, Matthew Jones. Understanding Symmetry Breaking at the Single-Particle Level via the Growth of Tetrahedron-Shaped Nanocrystals from Higher-Symmetry Precursors. ACS Nano 2021, 15 (10) , 15953-15961. https://doi.org/10.1021/acsnano.1c04056
    10. Claire Goldmann, Marta De Frutos, Eric H. Hill, Doru Constantin, Cyrille Hamon. Symmetry Breaking in Seed-Mediated Silver Nanorod Growth Induced by Dimethyl Sulfoxide. Chemistry of Materials 2021, 33 (8) , 2948-2956. https://doi.org/10.1021/acs.chemmater.1c00454
    11. Mei Wang, Asher C. Leff, Yue Li, Taylor J. Woehl. Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with in Situ Liquid-Phase Transmission Electron Microscopy Synthesis. ACS Nano 2021, 15 (2) , 2578-2588. https://doi.org/10.1021/acsnano.0c07131
    12. Yao Yang, Yin Xiong, Rui Zeng, Xinyao Lu, Mihail Krumov, Xin Huang, Weixuan Xu, Hongsen Wang, Francis J. DiSalvo, Joel. D. Brock, David A. Muller, Héctor D. Abruña. Operando Methods in Electrocatalysis. ACS Catalysis 2021, 11 (3) , 1136-1178. https://doi.org/10.1021/acscatal.0c04789
    13. Cyrille Hamon, Doru Constantin. Growth Kinetics of Core–Shell Au/Ag Nanoparticles. The Journal of Physical Chemistry C 2020, 124 (39) , 21717-21721. https://doi.org/10.1021/acs.jpcc.0c06142
    14. Taylor J. Woehl. Metal Nanocrystal Formation during Liquid Phase Transmission Electron Microscopy: Thermodynamics and Kinetics of Precursor Conversion, Nucleation, and Growth. Chemistry of Materials 2020, 32 (18) , 7569-7581. https://doi.org/10.1021/acs.chemmater.0c01360
    15. Damien Alloyeau, Nathaly Ortiz Pena, Guillaume Wang, Christian Ricolleau, Jaysen Nelayah. In situ and operando transmission electron microscopy for the synthesis, fundamental understanding and catalytic applications of nanoalloys. Advances in Physics: X 2025, 10 (1) https://doi.org/10.1080/23746149.2025.2481277
    16. Na Li, Xinyang Li, Tian Wang, Bo Wen, Zicheng Yin, Jie Feng, Shengchun Yang, Yawei Yang, Guorui Yang, Shujiang Ding. In situ transmission electron microscopy characterization and manipulation of the morphology, composition and phase evolution of nanomaterials under microenvironmental conditions. Chemical Science 2025, 16 (22) , 9604-9637. https://doi.org/10.1039/D5SC01214G
    17. Jules Marcone, Sabrina Juergensen, Juan Barrios‐Capuchino, Xiaoyian Li, Claire Goldmann, Andrea Köppen, Winnie Pfeiffer, Felix Lehmkühler, Wolfgang J. Parak, Mathieu Kociak, Marianne Impéror‐Clerc, Stephanie Reich, Cyrille Hamon, Florian Schulz. Plasmonic Polymorphs by Combining Shape Anisotropy and Soft Interactions in Bipyramid Thin Films. Small 2025, 12 https://doi.org/10.1002/smll.202500389
    18. Adrien Moncomble, Damien Alloyeau, Maxime Moreaud, Abdelali Khelfa, Guillaume Wang, Nathaly Ortiz-Peña, Hakim Amara, Riccardo Gatti, Romain Moreau, Christian Ricolleau, Jaysen Nelayah. aquaDenoising: AI-enhancement of in situ liquid phase STEM video for automated quantification of nanoparticles growth. Ultramicroscopy 2025, 271 , 114121. https://doi.org/10.1016/j.ultramic.2025.114121
    19. Birk Fritsch, Serin Lee, Andreas Körner, Nicholas M. Schneider, Frances M. Ross, Andreas Hutzler. The Influence of Ionizing Radiation on Quantification for In Situ and Operando Liquid‐Phase Electron Microscopy. Advanced Materials 2025, 37 (13) https://doi.org/10.1002/adma.202415728
    20. Daniela Dobrynin, Ivan Zlotver, Iryna Polishchuk, Yaron Kauffmann, Sharon Suharenko, Ron Koifman, Lucas Kuhrts, Alexander Katsman, Alejandro Sosnik, Boaz Pokroy. Controlled Synthesis of Bimetallic Gold‐Silver Nanostars: Atomic Insights and Predictive Formation Model. Small 2025, 391 https://doi.org/10.1002/smll.202410152
    21. Plassidius J. Chengula, Hazina Charles, Ji Yeon Seo, Caroline Sunyong Lee. Ascorbic Acid-Assisted Morphology Tailoring of Crystalline Bi2WO6 for the Application in CO2 Photoreduction. International Journal of Precision Engineering and Manufacturing-Green Technology 2025, 2 https://doi.org/10.1007/s40684-025-00718-z
    22. Amy Chen, Asher Leff, Zhenpu Li, Carlos A. Ríos Ocampo, Jonathan A. Boltersdorf, Taylor J. Woehl. Visualizing plasmon-mediated metal deposition and nanoparticle reshaping with liquid-phase transmission electron microscopy. Matter 2025, 8 (2) , 101912. https://doi.org/10.1016/j.matt.2024.11.006
    23. Junyu Zhang, Fang Fu, Liangping Xiao, Mi Lu. Observing the evolution of 1D nanostructures in liquids: Advances and application. Chemical Engineering Journal 2025, 504 , 158743. https://doi.org/10.1016/j.cej.2024.158743
    24. Jiayue Sun, Birk Fritsch, Andreas Körner, Mehran Taherkhani, Chiwoo Park, Mei Wang, Andreas Hutzler, Taylor J. Woehl. Discovery of Molecular Intermediates and Nonclassical Nanoparticle Formation Mechanisms by Liquid Phase Electron Microscopy and Reaction Throughput Analysis. Small Structures 2024, 5 (10) https://doi.org/10.1002/sstr.202400146
    25. Meng Dong, Yuchen Pan, Jingfang Zhu, Haiyang Jia, Hui Dong, Feng Xu. Real-time imaging reveal anisotropic dissolution behaviors of silver nanorods. Nanotechnology 2024, 35 (27) , 275703. https://doi.org/10.1088/1361-6528/ad3a6f
    26. N.E. Traoré, T. Schikarski, A. Körner, P. Cardenas Lopez, L. Hartmann, B. Fritsch, J. Walter, A. Hutzler, L. Pflug, W. Peukert. Mechanistic insights into silver-gold nanoalloy formation by two-dimensional population balance modeling. Chemical Engineering Journal 2024, 483 , 149429. https://doi.org/10.1016/j.cej.2024.149429
    27. Claire Goldmann, Wajdi Chaâbani, Claire Hotton, Marianne Impéror‐Clerc, Adrien Moncomble, Doru Constantin, Damien Alloyeau, Cyrille Hamon. Confinement Effects on the Structure of Entropy‐Induced Supercrystals. Small 2023, 19 (44) https://doi.org/10.1002/smll.202303380
    28. Amy Chen, Thilini U. Dissanayake, Jiayue Sun, Taylor J. Woehl. Unraveling chemical processes during nanoparticle synthesis with liquid phase electron microscopy and correlative techniques. Chemical Communications 2023, 59 (86) , 12830-12846. https://doi.org/10.1039/D3CC03723A
    29. Anhua Wei, Jingfang OuYang, Yuyang Guo, Suju Jiang, Feifei Chen, Jun Huang, Qi Xiao, Zihua Wu. Controlled synthesis of monodisperse gold nanorods with a small diameter of around 10 nm and largest plasmon wavelength of 1200 nm. Physical Chemistry Chemical Physics 2023, 25 (31) , 20843-20853. https://doi.org/10.1039/D3CP02203J
    30. Stefan Merkens, Giuseppe De Salvo, Joscha Kruse, Evgenii Modin, Christopher Tollan, Marek Grzelczak, Andrey Chuvilin. Quantification of reagent mixing in liquid flow cells for Liquid Phase-TEM. Ultramicroscopy 2023, 245 , 113654. https://doi.org/10.1016/j.ultramic.2022.113654
    31. Jacob Smith, Sihan Wang, Tim B. Eldred, Cierra DellaRova, Wenpei Gao. Characterization of nanomaterials dynamics with transmission electron microscope. 2023, 123-145. https://doi.org/10.1016/B978-0-12-822425-0.00049-X
    32. Junyu Zhang, Bensheng Xiao, Junhui Zhao, Miao Li, Haichen Lin, Zewen Kang, Xianwen Wu, Haodong Liu, Dong-Liang Peng, Qiaobao Zhang. Understanding the growth mechanisms of metal-based core–shell nanostructures revealed by in situ liquid cell transmission electron microscopy. Journal of Energy Chemistry 2022, 71 , 370-383. https://doi.org/10.1016/j.jechem.2022.04.007
    33. Mehran Taherkhani, Birk Fritsch, Michael P. M. Jank, Erdmann Spiecker, Andreas Hutzler. Modelling the Radiolysis of Silver Nitrate Solutions in presence of Bromide Ions in Liquid-Phase Transmission Electron Microscopy. Microscopy and Microanalysis 2021, 27 (S2) , 103-104. https://doi.org/10.1017/S1431927621013519
    34. Abdelali Khelfa, Jaysen Nelayah, Hakim Amara, Guillaume Wang, Christian Ricolleau, Damien Alloyeau. Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solution. Advanced Materials 2021, 33 (38) https://doi.org/10.1002/adma.202102514
    35. Thi Thuy Nguyen, Fayna Mammeri, Souad Ammar, Thi Bich Ngoc Nguyen, Trong Nghia Nguyen, Thi Ha Lien Nghiem, Nguyen Thi Thuy, Thi Anh Ho. Preparation of Fe3O4-Ag Nanocomposites with Silver Petals for SERS Application. Nanomaterials 2021, 11 (5) , 1288. https://doi.org/10.3390/nano11051288

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2020, 11, 8, 2830–2837
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.0c00121
    Published March 22, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    1635

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.