ACS Publications. Most Trusted. Most Cited. Most Read
The Bethe–Salpeter Equation Formalism: From Physics to Chemistry
My Activity

Figure 1Loading Img
    Perspective

    The Bethe–Salpeter Equation Formalism: From Physics to Chemistry
    Click to copy article linkArticle link copied!

    Other Access Options

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2020, 11, 17, 7371–7382
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.0c01875
    Published August 7, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The Bethe–Salpeter equation (BSE) formalism is steadily asserting itself as a new efficient and accurate tool in the ensemble of computational methods available to chemists in order to predict optical excitations in molecular systems. In particular, the combination of the so-called GW approximation, giving access to reliable ionization energies and electron affinities, and the BSE formalism, able to model UV/vis spectra, has shown to provide accurate singlet excitation energies with a typical error of 0.1–0.3 eV. With a similar computational cost as time-dependent density-functional theory (TD-DFT), BSE is able to provide an accuracy on par with the most accurate global and range-separated hybrid functionals without the unsettling choice of the exchange–correlation functional, resolving further known issues (e.g., charge-transfer excitations). In this Perspective, we provide a historical overview of BSE, with a particular focus on its condensed-matter roots. We also propose a critical review of its strengths and weaknesses in different chemical situations.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 123 publications.

    1. Eimear Madden, Martijn A. Zwijnenburg. Optical Properties of Phenylthiolate-Capped CdS Nanoparticles. The Journal of Physical Chemistry C 2025, 129 (3) , 1797-1805. https://doi.org/10.1021/acs.jpcc.4c06753
    2. Ruiyi Zhou, Yi Yao, Volker Blum, Xinguo Ren, Yosuke Kanai. All-Electron BSE@GW Method with Numeric Atom-Centered Orbitals for Extended Periodic Systems. Journal of Chemical Theory and Computation 2025, 21 (1) , 291-306. https://doi.org/10.1021/acs.jctc.4c01245
    3. Arno Förster, Fabien Bruneval. Why Does the GW Approximation Give Accurate Quasiparticle Energies? The Cancellation of Vertex Corrections Quantified. The Journal of Physical Chemistry Letters 2024, 15 (51) , 12526-12534. https://doi.org/10.1021/acs.jpclett.4c03126
    4. Iryna Knysh, Filippo Lipparini, Aymeric Blondel, Ivan Duchemin, Xavier Blase, Pierre-François Loos, Denis Jacquemin. Reference CC3 Excitation Energies for Organic Chromophores: Benchmarking TD-DFT, BSE/GW, and Wave Function Methods. Journal of Chemical Theory and Computation 2024, 20 (18) , 8152-8174. https://doi.org/10.1021/acs.jctc.4c00906
    5. Fábris Kossoski, Martial Boggio-Pasqua, Pierre-François Loos, Denis Jacquemin. Reference Energies for Double Excitations: Improvement and Extension. Journal of Chemical Theory and Computation 2024, 20 (13) , 5655-5678. https://doi.org/10.1021/acs.jctc.4c00410
    6. Yann Damour, Anthony Scemama, Denis Jacquemin, Fábris Kossoski, Pierre-François Loos. State-Specific Coupled-Cluster Methods for Excited States. Journal of Chemical Theory and Computation 2024, 20 (10) , 4129-4145. https://doi.org/10.1021/acs.jctc.4c00034
    7. Xiaopeng Wang, Siyu Gao, Yiqun Luo, Xingyu Liu, Rithwik Tom, Kaiji Zhao, Vincent Chang, Noa Marom. Computational Discovery of Intermolecular Singlet Fission Materials Using Many-Body Perturbation Theory. The Journal of Physical Chemistry C 2024, 128 (19) , 7841-7864. https://doi.org/10.1021/acs.jpcc.4c01340
    8. Maximilian Graml, Klaus Zollner, Daniel Hernangómez-Pérez, Paulo E. Faria Junior, Jan Wilhelm. Low-Scaling GW Algorithm Applied to Twisted Transition-Metal Dichalcogenide Heterobilayers. Journal of Chemical Theory and Computation 2024, 20 (5) , 2202-2208. https://doi.org/10.1021/acs.jctc.3c01230
    9. Bezzerga Djamel, El-Abed Haidar, Catherine Stampfl, Chelil Naouel, Mir Ali, Mohammed Sahnoun. Strain Engineering of the Pentagonal PtSiTe Monolayer for Enhanced Photovoltaic and Thermoelectric Efficiency: A First-Principles Investigation. ACS Applied Nano Materials 2024, 7 (1) , 142-152. https://doi.org/10.1021/acsanm.3c03976
    10. Roberto Cardia, Nicolas Dardenne, Guido Mula, Elisa Pinna, Gian-Marco Rignanese, Jean-Christophe Charlier, Giancarlo Cappellini. First-Principles Investigation of the Optical Properties of Eumelanin Protomolecules. The Journal of Physical Chemistry A 2023, 127 (51) , 10797-10806. https://doi.org/10.1021/acs.jpca.3c04898
    11. Denis Jacquemin, Fábris Kossoski, Franck Gam, Martial Boggio-Pasqua, Pierre-François Loos. Reference Vertical Excitation Energies for Transition Metal Compounds. Journal of Chemical Theory and Computation 2023, 19 (23) , 8782-8800. https://doi.org/10.1021/acs.jctc.3c01080
    12. Daniel S. King, Donald G. Truhlar, Laura Gagliardi. Variational Active Space Selection with Multiconfiguration Pair-Density Functional Theory. Journal of Chemical Theory and Computation 2023, 19 (22) , 8118-8128. https://doi.org/10.1021/acs.jctc.3c00792
    13. Matthew R. Hennefarth, Daniel S. King, Laura Gagliardi. Linearized Pair-Density Functional Theory for Vertical Excitation Energies. Journal of Chemical Theory and Computation 2023, 19 (22) , 7983-7988. https://doi.org/10.1021/acs.jctc.3c00863
    14. Daniel Mejia-Rodriguez, Edoardo Aprà, Jochen Autschbach, Nicholas P. Bauman, Eric J. Bylaska, Niranjan Govind, Jeff R. Hammond, Karol Kowalski, Alexander Kunitsa, Ajay Panyala, Bo Peng, John J. Rehr, Huajing Song, Sergei Tretiak, Marat Valiev, Fernando D. Vila. NWChem: Recent and Ongoing Developments. Journal of Chemical Theory and Computation 2023, 19 (20) , 7077-7096. https://doi.org/10.1021/acs.jctc.3c00421
    15. Antoine Marie, Pierre-François Loos. A Similarity Renormalization Group Approach to Green’s Function Methods. Journal of Chemical Theory and Computation 2023, 19 (13) , 3943-3957. https://doi.org/10.1021/acs.jctc.3c00281
    16. Min Zhang, Yaru Liu, Ya-nan Jiang, Yuchen Ma. Many-Body Green’s Function Theory for Electronic Excitations in Complex Chemical Systems. The Journal of Physical Chemistry Letters 2023, 14 (23) , 5267-5282. https://doi.org/10.1021/acs.jpclett.3c00836
    17. Christof Holzer. Practical Post-Kohn–Sham Methods for Time-Reversal Symmetry Breaking References. Journal of Chemical Theory and Computation 2023, 19 (11) , 3131-3145. https://doi.org/10.1021/acs.jctc.3c00156
    18. Iryna Knysh, Jose D. J. Villalobos-Castro, Ivan Duchemin, Xavier Blase, Denis Jacquemin. Exploring Bethe–Salpeter Excited-State Dipoles: The Challenging Case of Increasingly Long Push–Pull Oligomers. The Journal of Physical Chemistry Letters 2023, 14 (15) , 3727-3734. https://doi.org/10.1021/acs.jpclett.3c00699
    19. Pedram Abbasi, Nozomi Shirato, Rishi E. Kumar, Isabel V. Albelo, Matthew R. Barone, Deniz N. Cakan, Ma. de la Paz Cruz-Jáuregui, Sarah Wieghold, Darrell G. Schlom, Volker Rose, Tod A. Pascal, David P. Fenning. Nanoscale Surface Structure of Nanometer-Thick Ferroelectric BaTiO3 Films Revealed by Synchrotron X-ray Scanning Tunneling Microscopy: Implications for Catalytic Adsorption Reactions. ACS Applied Nano Materials 2023, 6 (3) , 2162-2170. https://doi.org/10.1021/acsanm.2c05257
    20. Valentin Diez-Cabanes, Alekos Segalina, Mariachiara Pastore. Effects of Size and Morphology on the Excited-State Properties of Nanoscale WO3 Materials from First-Principles Calculations: Implications for Optoelectronic Devices. ACS Applied Nano Materials 2022, 5 (11) , 16289-16297. https://doi.org/10.1021/acsanm.2c03331
    21. Jiachen Li, Dorothea Golze, Weitao Yang. Combining Renormalized Singles GW Methods with the Bethe–Salpeter Equation for Accurate Neutral Excitation Energies. Journal of Chemical Theory and Computation 2022, 18 (11) , 6637-6645. https://doi.org/10.1021/acs.jctc.2c00686
    22. Sandip Aryal, Joseph Frimpong, Zhen-Fei Liu. Comparative Study of Covalent and van der Waals CdS Quantum Dot Assemblies from Many-Body Perturbation Theory. The Journal of Physical Chemistry Letters 2022, 13 (43) , 10153-10161. https://doi.org/10.1021/acs.jpclett.2c02856
    23. Daniel S. King, Matthew R. Hermes, Donald G. Truhlar, Laura Gagliardi. Large-Scale Benchmarking of Multireference Vertical-Excitation Calculations via Automated Active-Space Selection. Journal of Chemical Theory and Computation 2022, 18 (10) , 6065-6076. https://doi.org/10.1021/acs.jctc.2c00630
    24. Enzo Monino, Martial Boggio-Pasqua, Anthony Scemama, Denis Jacquemin, Pierre-François Loos. Reference Energies for Cyclobutadiene: Automerization and Excited States. The Journal of Physical Chemistry A 2022, 126 (28) , 4664-4679. https://doi.org/10.1021/acs.jpca.2c02480
    25. Pierre-François Loos, Filippo Lipparini, Devin A. Matthews, Aymeric Blondel, Denis Jacquemin. A Mountaineering Strategy to Excited States: Revising Reference Values with EOM-CC4. Journal of Chemical Theory and Computation 2022, 18 (7) , 4418-4427. https://doi.org/10.1021/acs.jctc.2c00416
    26. Yeongsu Cho, Sylvia J. Bintrim, Timothy C. Berkelbach. Simplified GW/BSE Approach for Charged and Neutral Excitation Energies of Large Molecules and Nanomaterials. Journal of Chemical Theory and Computation 2022, 18 (6) , 3438-3446. https://doi.org/10.1021/acs.jctc.2c00087
    27. Linyao Zhang, Yinan Shu, Chang Xing, Xiye Chen, Shaozeng Sun, Yudong Huang, Donald G. Truhlar. Recommendation of Orbitals for G0W0 Calculations on Molecules and Crystals. Journal of Chemical Theory and Computation 2022, 18 (6) , 3523-3537. https://doi.org/10.1021/acs.jctc.2c00242
    28. Rudraditya Sarkar, Pierre-François Loos, Martial Boggio-Pasqua, Denis Jacquemin. Assessing the Performances of CASPT2 and NEVPT2 for Vertical Excitation Energies. Journal of Chemical Theory and Computation 2022, 18 (4) , 2418-2436. https://doi.org/10.1021/acs.jctc.1c01197
    29. Alexander Zech, Timur Bazhirov. CateCom: A Practical Data-Centric Approach to Categorization of Computational Models. Journal of Chemical Information and Modeling 2022, 62 (5) , 1268-1281. https://doi.org/10.1021/acs.jcim.2c00112
    30. Yi Yao, Dorothea Golze, Patrick Rinke, Volker Blum, Yosuke Kanai. All-Electron BSE@GW Method for K-Edge Core Electron Excitation Energies. Journal of Chemical Theory and Computation 2022, 18 (3) , 1569-1583. https://doi.org/10.1021/acs.jctc.1c01180
    31. Yannick J. Franzke, Christof Holzer, Fabian Mack. NMR Coupling Constants Based on the Bethe–Salpeter Equation in the GW Approximation. Journal of Chemical Theory and Computation 2022, 18 (2) , 1030-1045. https://doi.org/10.1021/acs.jctc.1c00999
    32. Johannes Tölle, Johannes Neugebauer. The Seamless Connection of Local and Collective Excited States in Subsystem Time-Dependent Density Functional Theory. The Journal of Physical Chemistry Letters 2022, 13 (4) , 1003-1018. https://doi.org/10.1021/acs.jpclett.1c04023
    33. Fabio Urbina, Kushal Batra, Kevin J. Luebke, Jason D. White, Daniel Matsiev, Lori L. Olson, Jeremiah P. Malerich, Maggie A. Z. Hupcey, Peter B. Madrid, Sean Ekins. UV-adVISor: Attention-Based Recurrent Neural Networks to Predict UV–Vis Spectra. Analytical Chemistry 2021, 93 (48) , 16076-16085. https://doi.org/10.1021/acs.analchem.1c03741
    34. Giovanni Macetti, Alessandro Genoni. Initial Maximum Overlap Method for Large Systems by the Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Technique. Journal of Chemical Theory and Computation 2021, 17 (7) , 4169-4182. https://doi.org/10.1021/acs.jctc.1c00388
    35. Olajumoke Adeyiga, Olabisi Suleiman, Samuel O. Odoh. Copper-Oxo Active Sites for Methane C–H Activation in Zeolites: Molecular Understanding of Impact of Methane Hydroxylation on UV–Vis Spectra. Inorganic Chemistry 2021, 60 (12) , 8489-8499. https://doi.org/10.1021/acs.inorgchem.0c03510
    36. Pierre-François Loos, Massimiliano Comin, Xavier Blase, Denis Jacquemin. Reference Energies for Intramolecular Charge-Transfer Excitations. Journal of Chemical Theory and Computation 2021, 17 (6) , 3666-3686. https://doi.org/10.1021/acs.jctc.1c00226
    37. Enzo Monino, Pierre-François Loos. Spin-Conserved and Spin-Flip Optical Excitations from the Bethe–Salpeter Equation Formalism. Journal of Chemical Theory and Computation 2021, 17 (5) , 2852-2867. https://doi.org/10.1021/acs.jctc.1c00074
    38. Jan Wilhelm, Patrick Seewald, Dorothea Golze. Low-Scaling GW with Benchmark Accuracy and Application to Phosphorene Nanosheets. Journal of Chemical Theory and Computation 2021, 17 (3) , 1662-1677. https://doi.org/10.1021/acs.jctc.0c01282
    39. Rudraditya Sarkar, Martial Boggio-Pasqua, Pierre-François Loos, Denis Jacquemin. Benchmarking TD-DFT and Wave Function Methods for Oscillator Strengths and Excited-State Dipole Moments. Journal of Chemical Theory and Computation 2021, 17 (2) , 1117-1132. https://doi.org/10.1021/acs.jctc.0c01228
    40. J. Arjan Berger, Pierre-François Loos, Pina Romaniello. Potential Energy Surfaces without Unphysical Discontinuities: The Coulomb Hole Plus Screened Exchange Approach. Journal of Chemical Theory and Computation 2021, 17 (1) , 191-200. https://doi.org/10.1021/acs.jctc.0c00896
    41. Evgeniia D. Cherotchenko, Ivan I. Vrubel, Alexander Pavlov, Anna S. Konanykhina, Ilya E. Rafailov, Roman G. Polozkov, Vladislav V. Dudelev, Grigorii S. Sokolovskii. Thermally stimulated chirp in a pulsed QCL: Microscopic origins behind Fabry-Perot pattern drift. International Journal of Thermal Sciences 2025, 210 , 109618. https://doi.org/10.1016/j.ijthermalsci.2024.109618
    42. Zewei Li, Jiahao Xie, Muhammad Faizan, Shengqiao Wang, Xiankai Chen, Lijun Zhang. Luminescence From Localized States in Solids: A First‐Principles Perspective. Advanced Functional Materials 2025, 6 https://doi.org/10.1002/adfm.202422716
    43. Giovanni Caldarelli, Alberto Guandalini, Francesco Macheda, Francesco Mauri. Variational formulation of dynamical electronic response functions in the presence of nonlocal exchange interactions. Physical Review B 2025, 111 (7) https://doi.org/10.1103/PhysRevB.111.075137
    44. V.J. Keast. Beyond the random phase approximation (RPA): First principles calculation of the valence EELS spectrum for KBr including local field, quasiparticle, excitonic and spin orbit coupling effects. Ultramicroscopy 2025, 268 , 114070. https://doi.org/10.1016/j.ultramic.2024.114070
    45. Marcel Reutzel, G. S. Matthijs Jansen, Stefan Mathias. Probing excitons with time-resolved momentum microscopy. Advances in Physics: X 2024, 9 (1) https://doi.org/10.1080/23746149.2024.2378722
    46. Paula Himmelsbach, Christof Holzer. Excited state properties from the Bethe–Salpeter equation: State-to-state transitions and spin–orbit coupling. The Journal of Chemical Physics 2024, 161 (24) https://doi.org/10.1063/5.0244254
    47. Wiebke Bennecke, Andreas Windischbacher, David Schmitt, Jan Philipp Bange, Ralf Hemm, Christian S. Kern, Gabriele D’Avino, Xavier Blase, Daniel Steil, Sabine Steil, Martin Aeschlimann, Benjamin Stadtmüller, Marcel Reutzel, Peter Puschnig, G. S. Matthijs Jansen, Stefan Mathias. Disentangling the multiorbital contributions of excitons by photoemission exciton tomography. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-45973-x
    48. S. Y. Vaselnia, M. Khajeh Aminian. Review on the application of density functional theory to predict the color, electronic, and optical properties of ceramic pigments along with experimental confirmation. Journal of Materials Science 2024, 59 (48) , 21987-22023. https://doi.org/10.1007/s10853-024-10455-4
    49. Nadine C. Bradbury, Barry Y. Li, Tucker Allen, Justin R. Caram, Daniel Neuhauser. No more gap-shifting: Stochastic many-body-theory based TDHF for accurate theory of polymethine cyanine dyes. The Journal of Chemical Physics 2024, 161 (14) https://doi.org/10.1063/5.0223783
    50. Lihao Wang, Wanglin Yang, Zhongyang Wang, Hongchao Li, Hao Gong, Jingyi Pan, Tongxiang Fan, Xiao Zhou. A comprehensive study on optical properties of La 2 O 3 and HfO 2 for radiative cooling via multiscale simulations. Chinese Physics B 2024, https://doi.org/10.1088/1674-1056/ad84c0
    51. Hosung Seo, Viktor Ivády, Yuan Ping. First-principles computational methods for quantum defects in two-dimensional materials: A perspective. Applied Physics Letters 2024, 125 (14) https://doi.org/10.1063/5.0230736
    52. Elisabetta Inico, Clara Saetta, Giovanni Di Liberto. Impact of quantum size effects to the band gap of catalytic materials: a computational perspective*. Journal of Physics: Condensed Matter 2024, 36 (36) , 361501. https://doi.org/10.1088/1361-648X/ad53b5
    53. Mia Schambeck, Dorothea Golze, Jan Wilhelm. Solving multipole challenges in the G W 100 benchmark enables precise low-scaling G W calculations. Physical Review B 2024, 110 (12) https://doi.org/10.1103/PhysRevB.110.125146
    54. Shunshun Liu, Victor K. Champagne, David R. Clarke, Prasanna V. Balachandran. Optical absorption study of iron-substituted zirconia and yttria-stabilized zirconia using experimental measurements and many-body perturbation theory. Physical Review Materials 2024, 8 (8) https://doi.org/10.1103/PhysRevMaterials.8.085203
    55. Jinyuan Wu, Bowen Hou, Wenxin Li, Yu He, Diana Y. Qiu. Quasiparticle and excitonic properties of monolayer 1 T ′ WTe 2 within many-body perturbation theory. Physical Review B 2024, 110 (7) https://doi.org/10.1103/PhysRevB.110.075133
    56. Nina Krainova, Holly M. Johnson, Raju Lampande, Siyu Gao, Noa Marom, Barry P. Rand, Noel C. Giebink. Vacuum deposition of χ(2) nonlinear organic single crystal films on silicon. Applied Physics Letters 2024, 125 (3) https://doi.org/10.1063/5.0207675
    57. Christof Holzer, Yannick J. Franzke. Beyond Electrons: Correlation and Self‐Energy in Multicomponent Density Functional Theory. ChemPhysChem 2024, 25 (13) https://doi.org/10.1002/cphc.202400120
    58. Chen‐Chen Er, Cheng‐May Fung, Wei‐Kean Chong, Yong Jieh Lee, Lling‐Lling Tan, Yee Sin Ang, Nikhil V. Medhekar, Siang‐Piao Chai. Computational Design of 2D Phosphorus Nanostructures for Renewable Energy Applications: A Review. Advanced Electronic Materials 2024, 10 (7) https://doi.org/10.1002/aelm.202300869
    59. Anna O. Schouten, LeeAnn M. Sager-Smith, David A. Mazziotti. Computation of exciton binding energies in exciton condensation. Physical Review B 2024, 110 (3) https://doi.org/10.1103/PhysRevB.110.035110
    60. Cong Su, Eli Janzen, Mingze He, Chi Li, Alex Zettl, Joshua D. Caldwell, James H. Edgar, Igor Aharonovich. Fundamentals and emerging optical applications of hexagonal boron nitride: a tutorial. Advances in Optics and Photonics 2024, 16 (2) , 229. https://doi.org/10.1364/AOP.502922
    61. Filip Cernatic, Pierre-François Loos, Bruno Senjean, Emmanuel Fromager. Neutral electronic excitations and derivative discontinuities: An extended N -centered ensemble density functional theory perspective. Physical Review B 2024, 109 (23) https://doi.org/10.1103/PhysRevB.109.235113
    62. Maximilian T Meyer, Arno Schindlmayr. Derivation of Miller’s rule for the nonlinear optical susceptibility of a quantum anharmonic oscillator. Journal of Physics B: Atomic, Molecular and Optical Physics 2024, 57 (9) , 095001. https://doi.org/10.1088/1361-6455/ad369c
    63. Siarhei Zavatski, Elina Neilande, Hanna Bandarenka, Anatoli Popov, Sergei Piskunov, Dmitry Bocharov. Density functional theory for doped TiO 2 : current research strategies and advancements. Nanotechnology 2024, 35 (19) , 192001. https://doi.org/10.1088/1361-6528/ad272e
    64. Iryna Knysh, Denez Raimbault, Ivan Duchemin, Xavier Blase, Denis Jacquemin. Assessing the accuracy of TD-DFT excited-state geometries through optimal tuning with GW energy levels. The Journal of Chemical Physics 2024, 160 (14) https://doi.org/10.1063/5.0203818
    65. R Botella, W Cao, J Celis, J Fernández-Catalá, R Greco, L Lu, V Pankratova, F Temerov. Activating two-dimensional semiconductors for photocatalysis: a cross-dimensional strategy. Journal of Physics: Condensed Matter 2024, 36 (14) , 141501. https://doi.org/10.1088/1361-648X/ad14c8
    66. Braden M. Weight, Brendan J. Gifford, Grace Tiffany, Elva Henderson, Deyan Mihaylov, Dmitri Kilin, Svetlana Kilina. Optically active defects in carbon nanotubes via chlorination: computational insights. RSC Applied Interfaces 2024, 1 (2) , 281-300. https://doi.org/10.1039/D3LF00064H
    67. Nina Rauwolf, Wim Klopper, Christof Holzer. Non-linear light–matter interactions from the Bethe–Salpeter equation. The Journal of Chemical Physics 2024, 160 (6) https://doi.org/10.1063/5.0191499
    68. Konrad Merkel, Frank Ortmann. Linear scaling approach for optical excitations using maximally localized Wannier functions. Journal of Physics: Materials 2024, 7 (1) , 015001. https://doi.org/10.1088/2515-7639/ad06cd
    69. Iryna Knysh, Jose D. J. Villalobos-Castro, Ivan Duchemin, Xavier Blase, Denis Jacquemin. Excess and excited-state dipole moments of real-life dyes: a comparison between wave-function, BSE/ GW , and TD-DFT values. Physical Chemistry Chemical Physics 2023, 25 (43) , 29993-30004. https://doi.org/10.1039/D3CP04467J
    70. F. Goto, A. Calloni, I. Majumdar, R. Yivlialin, C. Filoni, C. Hogan, M. Palummo, A. Orbelli Biroli, M. Finazzi, L. Duò, F. Ciccacci, G. Bussetti. Exploring the range of applicability of anisotropic optical detection in axially coordinated supramolecular structures. Inorganica Chimica Acta 2023, 556 , 121612. https://doi.org/10.1016/j.ica.2023.121612
    71. Huai-Yang Sun, Lin Xiong, Hong Jiang. Toward first-principles approaches for mechanistic study of self-trapped exciton luminescence. Chemical Physics Reviews 2023, 4 (3) https://doi.org/10.1063/5.0147710
    72. Pedro Roman-Taboada, Estefania Obregon-Castillo, Andrés R. Botello-Mendez, Cecilia Noguez. Excitons in twisted AA ′ hexagonal boron nitride bilayers. Physical Review B 2023, 108 (7) https://doi.org/10.1103/PhysRevB.108.075109
    73. Enzo Monino, Pierre-François Loos. Connections and performances of Green’s function methods for charged and neutral excitations. The Journal of Chemical Physics 2023, 159 (3) https://doi.org/10.1063/5.0159853
    74. J. Villalobos-Castro, Iryna Knysh, Denis Jacquemin, Ivan Duchemin, Xavier Blase. Lagrangian Z -vector approach to Bethe–Salpeter analytic gradients: Assessing approximations. The Journal of Chemical Physics 2023, 159 (2) https://doi.org/10.1063/5.0156687
    75. Yachao Zhang. Many-Body Calculations of Excitons in Two-Dimensional GaN. Crystals 2023, 13 (7) , 1048. https://doi.org/10.3390/cryst13071048
    76. Zohreh Hashemi, Matthias Knodt, Mario R G Marques, Linn Leppert. Mapping charge-transfer excitations in Bacteriochlorophyll dimers from first principles. Electronic Structure 2023, 5 (2) , 024006. https://doi.org/10.1088/2516-1075/acd28e
    77. Jurij Grechenkov, Aleksejs Gopejenko, Dmitry Bocharov, Inta Isakoviča, Anatoli I. Popov, Mikhail G. Brik, Sergei Piskunov. Ab Initio Modeling of CuGa1−xInxS2, CuGaS2(1−x)Se2x and Ag1−xCuxGaS2 Chalcopyrite Solid Solutions for Photovoltaic Applications. Energies 2023, 16 (12) , 4823. https://doi.org/10.3390/en16124823
    78. Nadine C. Bradbury, Tucker Allen, Minh Nguyen, Khaled Z. Ibrahim, Daniel Neuhauser. Optimized attenuated interaction: Enabling stochastic Bethe–Salpeter spectra for large systems. The Journal of Chemical Physics 2023, 158 (15) https://doi.org/10.1063/5.0146555
    79. Laurenz Monzel, Christof Holzer, Wim Klopper. Natural virtual orbitals for the GW method in the random-phase approximation and beyond. The Journal of Chemical Physics 2023, 158 (14) https://doi.org/10.1063/5.0144469
    80. Iryna Knysh, Kelvine Letellier, Ivan Duchemin, Xavier Blase, Denis Jacquemin. Excited state potential energy surfaces of N -phenylpyrrole upon twisting: reference values and comparison between BSE/ GW and TD-DFT. Physical Chemistry Chemical Physics 2023, 25 (12) , 8376-8385. https://doi.org/10.1039/D3CP00474K
    81. Raja Ghosh, Francesco Paesani. Connecting the dots for fundamental understanding of structure–photophysics–property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chemical Science 2023, 14 (5) , 1040-1064. https://doi.org/10.1039/D2SC03793A
    82. Israel Perez. Ab initio methods for the computation of physical properties and performance parameters of electrochemical energy storage devices. Physical Chemistry Chemical Physics 2023, 25 (3) , 1476-1503. https://doi.org/10.1039/D2CP03611H
    83. Alejandro Molina-Sánchez. First-principles modeling of the optoelectronic properties of metal halide perovskites. 2023, 63-73. https://doi.org/10.1016/B978-0-323-91661-5.00010-6
    84. Valentin Diez-Cabanes, Simona Fantacci, Mariachiara Pastore. First-principles modeling of dye-sensitized solar cells: From the optical properties of standalone dyes to the charge separation at dye/TiO2 interfaces. 2023, 215-245. https://doi.org/10.1016/B978-0-323-91738-4.00013-0
    85. Roberto Orlando, Pina Romaniello, Pierre-François Loos. Exploring new exchange-correlation kernels in the Bethe–Salpeter equation: A study of the asymmetric Hubbard dimer. 2023, 183-211. https://doi.org/10.1016/bs.aiq.2023.02.007
    86. Iryna Andrusenko, Charlie L. Hall, Enrico Mugnaioli, Jason Potticary, Simon R. Hall, Werner Schmidt, Siyu Gao, Kaiji Zhao, Noa Marom, Mauro Gemmi. True molecular conformation and structure determination by three-dimensional electron diffraction of PAH by-products potentially useful for electronic applications. IUCrJ 2023, 10 (1) , 131-142. https://doi.org/10.1107/S205225252201154X
    87. Nimra Maqsood, Areeba Asif, Abraham Elmushyakhi, Muhammad Ans, Rao Aqil Shehzad, Alvina Rasool, Zainab Bibi, Ahmed M. Shawky, Javed Iqbal. Environmentally affable and highly efficient donor material based on cyclopentadithiophene (CPDT) framework for remarkable organic solar cells. Optical Materials 2023, 135 , 113316. https://doi.org/10.1016/j.optmat.2022.113316
    88. Christopher N. Singh, Blas Pedro Uberuaga, Stephen J. Tobin, Xiang-Yang Liu. Impact of radiation-induced point defects on thermal carrier decay processes in GaAs. Acta Materialia 2023, 242 , 118480. https://doi.org/10.1016/j.actamat.2022.118480
    89. Raúl Quintero-Monsebaiz, Enzo Monino, Antoine Marie, Pierre-François Loos. Connections between many-body perturbation and coupled-cluster theories. The Journal of Chemical Physics 2022, 157 (23) https://doi.org/10.1063/5.0130837
    90. Martín A. Mosquera. Excited-state response theory within the context of the coupled-cluster formalism. Physical Review A 2022, 106 (5) https://doi.org/10.1103/PhysRevA.106.052805
    91. Ezekiel Oyeniyi. Electronic and optical properties of Mg3XN (X = P, As, Sb, Bi) antiperovskites: The GW/BSE approach. Solid State Communications 2022, 355 , 114927. https://doi.org/10.1016/j.ssc.2022.114927
    92. A. Ghribi, S. Ben Radhia, K. Boujdaria, L. Legrand, T. Barisien, M. Chamarro, C. Testelin. Dielectric effects, crystal field, and shape anisotropy tuning of the exciton fine structure of halide perovskite nanocrystals. Physical Review Materials 2022, 6 (10) https://doi.org/10.1103/PhysRevMaterials.6.106001
    93. Martijn A. Zwijnenburg. The effect of particle size and composition on the optical and electronic properties of CdO and CdS rocksalt nanoparticles. Physical Chemistry Chemical Physics 2022, 24 (36) , 21954-21965. https://doi.org/10.1039/D2CP01342H
    94. Peter Benner, Yuji Nakatsukasa, Carolin Penke. Stable and Efficient Computation of Generalized Polar Decompositions. SIAM Journal on Matrix Analysis and Applications 2022, 43 (3) , 1058-1083. https://doi.org/10.1137/21M1411986
    95. Caroline A. McKeon, Samia M. Hamed, Fabien Bruneval, Jeffrey B. Neaton. An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe–Salpeter equation calculations of molecules. The Journal of Chemical Physics 2022, 157 (7) https://doi.org/10.1063/5.0097582
    96. Jungcheol Kim, Eunjung Ko, Jaeyeon Jo, Miyoung Kim, Hyobin Yoo, Young-Woo Son, Hyeonsik Cheong. Anomalous optical excitations from arrays of whirlpooled lattice distortions in moiré superlattices. Nature Materials 2022, 21 (8) , 890-895. https://doi.org/10.1038/s41563-022-01240-2
    97. Nadine C. Bradbury, Minh Nguyen, Justin R. Caram, Daniel Neuhauser. Bethe–Salpeter equation spectra for very large systems. The Journal of Chemical Physics 2022, 157 (3) https://doi.org/10.1063/5.0100213
    98. Enzo Monino, Pierre-François Loos. Unphysical discontinuities, intruder states and regularization in GW methods. The Journal of Chemical Physics 2022, 156 (23) https://doi.org/10.1063/5.0089317
    99. John Vinson. Advances in the ocean -3 spectroscopy package. Physical Chemistry Chemical Physics 2022, 24 (21) , 12787-12803. https://doi.org/10.1039/D2CP01030E
    100. Begoña Puértolas, Miguel Comesaña‐Hermo, Lucas V. Besteiro, Margarita Vázquez‐González, Miguel A. Correa‐Duarte. Challenges and Opportunities for Renewable Ammonia Production via Plasmon‐Assisted Photocatalysis. Advanced Energy Materials 2022, 12 (18) https://doi.org/10.1002/aenm.202103909
    Load all citations

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2020, 11, 17, 7371–7382
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.0c01875
    Published August 7, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    6678

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.