ACS Publications. Most Trusted. Most Cited. Most Read
Charge Redistribution Mechanisms in SnSe2 Surfaces Exposed to Oxidative and Humid Environments and Their Related Influence on Chemical Sensing
My Activity

Figure 1Loading Img
  • Open Access
Physical Insights into Chemistry, Catalysis, and Interfaces

Charge Redistribution Mechanisms in SnSe2 Surfaces Exposed to Oxidative and Humid Environments and Their Related Influence on Chemical Sensing
Click to copy article linkArticle link copied!

  • Gianluca D’Olimpio
    Gianluca D’Olimpio
    Department of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, 67100 L’Aquila, AQ, Italy
  • Francesca Genuzio
    Francesca Genuzio
    Elettra-Sincrotrone S.C.p.A., S.S. 14-km 163.5 in AREA Science Park, 34149 Trieste, Italy
  • Tevfik Onur Menteş
    Tevfik Onur Menteş
    Elettra-Sincrotrone S.C.p.A., S.S. 14-km 163.5 in AREA Science Park, 34149 Trieste, Italy
  • Valentina Paolucci
    Valentina Paolucci
    Department of Industrial and Information Engineering and Economics, University of L’Aquila, Via G. Gronchi 18, I-67100 L’Aquila, Italy
  • Chia-Nung Kuo
    Chia-Nung Kuo
    Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
  • Amjad Al Taleb
    Amjad Al Taleb
    Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
  • Chin Shan Lue
    Chin Shan Lue
    Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
  • Piero Torelli
    Piero Torelli
    Elettra-Sincrotrone S.C.p.A., S.S. 14-km 163.5 in AREA Science Park, 34149 Trieste, Italy
    Consiglio Nazionale delle Ricerche (CNR)-Istituto Officina dei Materiali (IOM), Laboratorio TASC in Area Science Park S.S. 14 km 163.5, 34149 Trieste, Italy
  • Daniel Farías
    Daniel Farías
    Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
    Instituto ‘Nicolás Cabrera’, Universidad Autónoma de Madrid, 28049 Madrid, Spain
    Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
  • Andrea Locatelli
    Andrea Locatelli
    Elettra-Sincrotrone S.C.p.A., S.S. 14-km 163.5 in AREA Science Park, 34149 Trieste, Italy
  • Danil W. Boukhvalov
    Danil W. Boukhvalov
    College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. China
    Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
  • Carlo Cantalini*
    Carlo Cantalini
    Department of Industrial and Information Engineering and Economics, University of L’Aquila, Via G. Gronchi 18, I-67100 L’Aquila, Italy
    *Email: [email protected]
  • Antonio Politano*
    Antonio Politano
    Department of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, 67100 L’Aquila, AQ, Italy
    CNR-IMM Istituto per la Microelettronica e Microsistemi, VIII strada 5, I-95121 Catania, Italy
    *Email: [email protected]
Open PDFSupporting Information (1)

The Journal of Physical Chemistry Letters

Cite this: J. Phys. Chem. Lett. 2020, 11, 21, 9003–9011
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jpclett.0c02616
Published October 9, 2020

Copyright © 2020 American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

Tin diselenide (SnSe2) is a van der Waals semiconductor, which spontaneously forms a subnanometric SnO2 skin once exposed to air. Here, by means of surface-science spectroscopies and density functional theory, we have investigated the charge redistribution at the SnO2–SnSe2 heterojunction in both oxidative and humid environments. Explicitly, we find that the work function of the pristine SnSe2 surface increases by 0.23 and 0.40 eV upon exposure to O2 and air, respectively, with a charge transfer reaching 0.56 e/SnO2 between the underlying SnSe2 and the SnO2 skin. Remarkably, both pristine SnSe2 and defective SnSe2 display chemical inertness toward water, in contrast to other metal chalcogenides. Conversely, the SnO2–SnSe2 interface formed upon surface oxidation is highly reactive toward water, with subsequent implications for SnSe2-based devices working in ambient humidity, including chemical sensors. Our findings also imply that recent reports on humidity sensing with SnSe2 should be reinterpreted, considering the pivotal role of the oxide skin in the interaction with water molecules.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2020 American Chemical Society
After the advent of graphene, (1−3) van der Waals semiconductors are attracting considerable attention, owing to their application capabilities that are often complementary to those of graphene, (4−6) with the subsequent prospect of novel disruptive technologies in different technological areas. (4,7,8) This class of materials is characterized by weak van der Waals bonds between layers enabling their cleavage by mechanical (9) and liquid-phase (10) exfoliation. Among van der Waals semiconductors, several materials show serious drawbacks, limiting their technological potential. Specifically, MoS2 and WS2 display intrinsic electron mobility as low as some tens of cm2 V–1 s–1 at 300 K; (11) black phosphorus rapidly degrades in air due to surface oxidation; (12,13) GaSe is affected by both environmental and laser-induced degradation; (14,15) and PdSe2 (16) has a limited commercial potential, due to the constantly growing price of Pd ($2000–2400/oz), which nearly doubled from 2019 to 2020.
Tin diselenide (SnSe2) is a van der Waals semiconductor with a CdI2-type crystal structure, (17) belonging to the Pm1 space group, with tin (Sn) atoms interweaved between two hexagonally packed atomic layers of selenium (Se) (see the atomic structure in Figure S1a,b). (18,19) SnSe2 shows its high intrinsic electron mobility (462.6 cm2 V–1 s–1 at 300 K (20)) and ultralow thermal conductivity (3.82 W m–1 K–1 (20)). It displays pressure-induced periodic lattice distortion, and moreover, it enables novel device functionalities being a phase change memory material; i.e., its atomic structure can reversibly switch from amorphous to crystalline upon laser heating, with consequent remarkable variations in optical reflectivity. Because of these peculiarities, SnSe2 has high application capabilities in numerous fields, including photocatalysis, (21,22) superconductivity, (23,24) Li-ion (18,25,26) and Na-ion (18,26,27) batteries, photodetection, (28) saturable absorbers for eye-safe lasers, (29) and thermoelectricity. (30−32) Furthermore, SnSe2 was used as a co-catalyst for hydrogen evolution reaction. (33)
However, all Sn-based chalcogenides are usually affected by rapid surface degradation with the emergence of tin oxide phases. (34,35) Additionally, the oxidation of starting element Sn during the synthesis can also influence the transport properties of the resulting crystal. Therefore, technological exploitation of Sn-based chalcogenides remains particularly challenging. Especially, the stability of SnSe2-based devices in the ambient atmosphere is related to the chemical reactivity of its surface.
Recently, it has been shown that, though stoichiometric SnSe2 shows outstanding chemical stability under ambient conditions, the presence of Se vacancies drastically affects surface chemical reactivity. (36) The SnSe2–x surface is transformed into SnO2 skin-terminated SnSe2, with the thickness of the SnO2 skin estimated to be subnanometric. (36) Unexpectedly, the self-assembled heterostructure formed by exploiting the natural interaction with air is particularly appropriate for ultrasensitive gas sensing, as demonstrated for NO2 and H2 with sensitivities of (1.06 ± 0.03) and (0.43 ± 0.02) ppm–1. (36) Remarkably, such sensors are effective under dry air conditions, while previously devised SnSe2 sensors used N2 as the carrier gas. (37,38) Moreover, the NO2 sensitivity of the SnO2–SnSe2 heterostructure is significantly higher compared to those of sensors based on other van der Waals semiconductors and their heterostructures. (39,40)
Remarkably, the oxide skin plays a pivotal role in NO2 and H2 sensing, congruently with the abundant literature on SnO2-based sensors. (41−50) The modulation of resistivity upon gas adsorption is strictly connected to charge distribution in the sensing material, ultimately related to the formation of surface dipoles at the SnO2–SnSe2 heterojunction arising from local charge redistribution. Thus, to understand the conduction mechanism ruling chemical sensing, it is crucial to shed light on charge redistribution at the SnO2–SnSe2 heterostructure by measuring work-function changes. Furthermore, sensing experiments in ref (36) were carried out in dry air; thus, stability in a humid environment remains unexplored, although real conditions mandatorily require sensors to work in a changing humidity background (51,52) (not only humidity sensors (53,54)). Despite the relevance of the influence of the humid environment for practical applications, surprisingly it has been scarcely investigated, although previous reports indicated a decrease in resistance under exposure to a humid atmosphere, (51,52) which represents an unambiguous fingerprint that H2O behaves as a reducing gas in the interaction with the SnO2 surface.
In addition, the interaction with water is relevant also for understanding the stability of any other SnSe2-based (opto)electronic device (55) working in ambient humidity, as well as the eventual environmental doping effects in transport properties. (56) Actually, recently different groups have reported that SnSe2 is extremely sensitive to humid environments, (37,38,57) with the possibility of using it in humidity-sensing devices.
Here, we unveil the surface properties of SnSe2 single crystals and their modifications in oxidative and humid environments by means of surface-science experiments and density functional theory (DFT). Definitely, surface oxidation induces an increase in the work function of 0.4 eV, owing to the charge transfer between the substrate and the SnO2 skin of 0.56 e per SnO2 unit. As opposed to previous reports, (37,38,57) the pristine SnSe2 surface is inert to water at room temperature, while the SnO2–SnSe2 heterostructure displays notable sensitivity to humidity.
The presence of the SnO2 skin in the SnSe2 surface exposed to oxidative environments was ensured by both microscopic evidence from low-energy electron microscopy (LEEM) (Figure S5) and vibrational experiments from high-resolution electron energy loss spectroscopy (HREELS) (Figure S6).
The analysis of the variation of work function ΔΦ probed by LEEM could provide important insights into charge redistribution arising from surface oxidation (Figure 1a), as the total reflectivity threshold in electron backscattering (the MEM–LEEM transition, where MEM stands for mirror electron microscopy) represents a direct measurement of the variation of the surface potential. (58) Explicitly, we find ΔΦ to be 0.23 eV for the SnSe2 surface modified by exposure to 700 L of O2 at room temperature, while air exposure for 15 min induces a further shift in the work function, resulting in a total increase of 0.40 eV. The observed value of ΔΦ can be explained by considering the activation of surface dipoles, due to charge transfer at the interface from substrate to adsorbed oxygen atoms. The electronegativity of oxygen makes its adsorption generally associated with a charge transfer from the substrate to the adsorbate layer, with a subsequent increase in the work function. (59) Considering that the work function of the pristine SnSe2 single crystal is ∼4.6 eV, (60) while that of SnO2 is known to be ∼4.9 eV (61) (although its value can be tuned by reduction reactions (62)), both the sign and the magnitude of the experimental value of ΔΦ are consistent with surface oxidation, involving the formation of a subnanometric SnO2 skin. We can infer that previous experimental studies reporting a work function of SnSe2 of (5.0 ± 0.1) eV (63,64) could be affected by surface oxidation, which generates a self-assembled SnO2–SnSe2 heterostructure with an increased work function. To verify this statement, we calculated ΔΦ for the oxidation of the pristine SnSe2 surface, finding a value of 0.52 eV in qualitative agreement with experimental measurements. We also note that, in the air-exposed sample, variations in the IV curve associated with electron diffraction from a surface with crystalline order (65) are suppressed, due to the formation of a disordered surface oxide phase.

Figure 1

Figure 1. (a) LEEM IV curves at the MEM–LEEM transition for the as-cleaved sample (black), after a dose of 700 L of O2 (blue), and after air exposure for 15 min (pink). The shift of the MEM–LEEM transition, characterized by the sharp decrease in intensity, indicates an oxidation-induced modification of the surface potential. (b) Changes in charge density after the formation of the interface between the SnSe2 substrate and SnO2 skin. Sn, Se, and O atoms are represented as dark blue, light green, and red balls, respectively.

Complementary information about the electronic properties of the SnO2–SnSe2 heterostructure was achieved by comparing the surface excitation spectrum probed by electron energy loss spectroscopy (EELS) with the theoretical density of states (DOS) (section S4 of the Supporting Information). The impact of defects on the DOS is assessed in section S5.
To estimate the amount of charge transfer between the SnSe2 substrate and the SnO2 skin, we calculated the charge density distribution of (i) one SnO2 layer over two layers of SnSe2 (to model the SnO2–SnSe2 heterostructure), (ii) a free-standing SnO2 single unit, and (ii) a bilayer of SnSe2. Then, we calculated the difference between the charge densities of the whole SnO2–SnSe2 interface and those one of its components (single SnO2 unit and bilayer SnSe2). The obtained charge density difference (Figure 1b) illustrates charge redistribution following the formation of the SnO2–SnSe2 interface. The integration of the charge density difference along the c axis provides information regarding the charge transfer between the SnSe2 substrate and the SnO2 skin. Note that the formation of the SnO2–SnSe2 interface provides changes in the charge density difference in not only the outermost SnSe2 layer but also the subsurface area, namely the second SnSe2 layer. Definitely, the charge transfer is estimated to be 0.56 e per SnO2 unit.
While the adsorption of O2 with further decomposition is energetically favorable on SnSe2 (negative values of ΔG and ΔHdec), as well as on SnSe1.88 and SnSe (Table 1), our theoretical model indicates that water does not adsorb on SnSe2. The energy cost for water adsorption is decreased in the presence of Se vacancies (SnSe1.88) down to ∼3 kJ/mol, although water adsorption (as well as decomposition) remains energetically unfavorable. Similarly, SnSe also shows outstanding chemical inertness toward water.
Table 1. Differential Enthalpies (ΔHads), Differential Gibbs Free Energies of Physisorption (ΔG), and Differential Enthalpies of Decomposition (ΔHdec) for Molecular Oxygen and Water on Pristine SnSe2, SnSe1.88, and SnSe Surfacesa
  physisorptiondecomposition
surfaceadsorbantΔHads (kJ/mol)ΔG (kJ/mol)ΔHdec (kJ/mol)
SnSe2O2–17.46–3.16–42.28 (−161.58/∼−40.2)
 H2O–13.2718.03220.91
SnSe1.88O2–37.58–26.28–135.67 (−99.05/–406.65)
 H2O–27.933.37175.61
SnSeO2–11.53–0.23–236.03 (−323.10/95.4)
 H2O–8.1223.1882.22
SnO2 skinH2O–119.70–106.67–121.31
a

For oxygen decomposition, the table also displays the differential enthalpy of the oxidation of the whole surface with formation of SnO and SnO2-like layers (in parentheses).

Considering that the yield of chemical reactions also depends on the probability of the interactions between reactants, we calculated Langmuir adsorption isotherms (Figure S12). Specifically, the combination of thermodynamic and kinetic calculations evidences that the largest part of the SnSex surface will be oxidized under experimental conditions (72% and 75% for SnSe2 and SnSe1.88, respectively).
On the contrary, the saturation coverage for water at room temperature is just 0.01 ML (with ML being monolayer) for SnSe2 and SnSe1.88, while the full coverage (1 ML) is reached upon exposing the SnO2 skin to only 5 × 10–3 L of H2O below 500 °C, thus evidencing the aptness of the SnO2–SnSe2 interface for ultrasensitive humidity sensing. The increase in temperature corresponds to a decrease in the sticking coefficient, with monolayer saturation reached at 0.05 and 10 L at 500 and 800 °C, respectively. Thus, the SnO2–SnSe2 heterostructure remains rather sensitive even at high operational temperatures.
Therefore, the SnO2–SnSe2 heterostructure shows superior chemical reactivity toward ambient species with respect to SnSe2. On the pristine SnSe2 surface, the local rearrangement of chemical bonds around each adsorbed water molecule is the origin of a redistribution of the charge density in the surface layer of SnSe2 with a charge transfer of 0.17 e per water molecule (Figure 2a). Correspondingly, water adsorption on SnSe2 and SnSe1.88 surfaces is energetically unfavorable for temperatures above 124 and 264 K, respectively (Figure S11). Hence, we conclude that pristine SnSe2 is stable in a humid environment and, consequently, is unsuitable for humidity sensing, contrarily to conclusions in refs (37), (38), and (57) On the contrary, adsorption of H2O on the SnO2–SnSe2 heterostructure (Figure 2b) is energetically favorable even above room temperature (Figure S11). The values of charge transferred from H2O to the SnO2 skin are 0.43 and 0.30 e for one and two H2O molecules per supercell, respectively. Correspondingly, DOS (Figure 2c) is modified with a direct correlation with the coverage of the adsorbate, hence proving the appropriateness for humidity sensing also at low concentrations of H2O.

Figure 2

Figure 2. Changes in charge density after adsorption of one water molecule on (a) SnSe2 and (b) SnO2 skin-terminated SnSe2. Panel c represents the DOS of SnO2 skin-terminated SnSe2 (black) and of the same system modified by the adsorption of one (red) and two (blue) water molecules. The Fermi level is set at 0. Panel d shows the response of the SnSe2–SnO2 heterostructure to 20% relative humidity (RH) at an operational temperature (OT) of 150 °C (note that the average residence time of the gas in the cell is approximately 10 min).

Note that decomposition of a water molecule on the SnO2 skin-terminated SnSe2 is an exothermic process (see Table 1), although the energy gain from this process is moderate (−121.31 kJ/mol) and further water splitting is unfavorable, supporting the possible reversibility of the process.
The SnO2–SnSe2 heterostructure was tested as a humidity sensor (Figure 2d) at an operational temperature of 150 °C. Our devised humidity sensor exhibited (i) full recovery of the baseline resistance after water desorption and (ii) high sensitivity to water molecules, measured as the relative response (RR, the ratio between the resistance in dry air, Ra, and RH2O, the resistance in a humid environment), and an experimental limit of detection (LOD) in terms of relative humidity (RH) as low as 20% (Figure 2d).
Recently, different authors (37,38,57) have reported the outstanding performances of SnSe2 in humidity-sensing devices. Our findings elucidate the key role of the surface oxide skin in the interaction with a humid environment. On the contrary, in refs (37), (38), and (57), surface oxidation was not assessed; thus, the mechanism ruling humidity sensing discussed therein should be reinterpreted.
Theoretical results were validated by surface-science techniques. In particular, HREELS experiments on water-dosed Sn-based selenides (SnSe, SnSe1.4, SnSe1.7, and SnSe2) indicate the absence of chemisorbed water-derived species, as indicated by the lack of O–H stretching at 408–425 meV (molecular water) and 445–460 meV (hydroxyl groups) in spectra in Figure 3 (see ref (66) for more details). These findings are consistent with the positive differential Gibbs free energy of adsorption (corresponding to energetically unfavorable water adsorption) in Table 1. For the sake of comparison, we report in Figure 3 also vibrational data obtained after exposure to the same dose of H2O (105 L, with 1 L = 1 × 10–6 Torr s) at room temperature the surface of other metal chalcogenides, which instead enable the stable adsorption of water molecules (PtTe1.6) and hydroxyl groups (InSe).

Figure 3

Figure 3. HREELS spectra in the region of the O–H band acquired after exposure to 105 L of H2O at room temperature the surfaces of different Sn-based chalcogenides: SnSe2 (orange curve), SnSe1.7 (black), SnSe1.4 (green), and SnSe (blue). To provide a straightforward comparison, the figure also displays data for H2O-dosed InSe (red) and PtTe1.6 (brown) surfaces (105 L at room temperature). The impinging energy is 4 eV.

The absence of reactivity toward water of Sn-based chalcogenides makes them suitable for catalysis (especially, photocatalytic water splitting (22) and hydrogen evolution reaction (67)) and drug delivery (68) (also considering that neither Sn nor Se is toxic). Congruently, SnSe2 was used as a co-catalyst in combination with TiO2 for hydrogen evolution reaction. (33)
Further information about the surface chemical bonds is gained by the inspection of core levels via X-ray photoelectron spectroscopy (XPS) experiments. Figure 4 shows the Sn-3d and Se-3d core levels of the SnSe2 single-crystal surface cleaved in ultrahigh vacuum and for the same surface modified by O2 and H2O dosage with a total dose of 105 L. The Sn-3d5/2 core level in the as-cleaved surface displayed a binding energy (BE) of 486.8 eV (Figure 4b). Congruently, the Se-3d5/2 core level had a single component at a BE of 54.1 eV, in agreement with previous results for SnSe2 (69) and with a shift of +0.4 eV compared to the case of SnSe. Surface treatments, i.e., 105 L of O2 and H2O exposure, induce only slight changes in Se-3d core levels. A novel doublet appeared in Se-3d (BE = 53.7 eV for 3d5/2), whose total spectral area is 5.4% (for O2 dosage) and 2.6% (for air exposure), arising from Se(0) segregation. (70) In particular, from the analysis of Se-3d core-level spectra (Figure 4c), we can infer the absence of O–Se–O bonds, which would have a BE of ∼59–60 eV. (71−73) Congruently, the intensity of the O-1s peak is especially small in SnSe2 exposed to both an oxidative and humid environment (Figure 4a); thus, we can evaluate the amount of oxygen to be <0.04 ML, due to a particularly weak sticking coefficient for oxygen adsorption at 300 K on SnSe2, with the O2 sticking coefficient being <10–5.

Figure 4

Figure 4. (a) O-1s, (b) Sn-3d, and (c) Se-3d core levels for the pristine surface of SnSe2 cleaved in situ under ultra-high-vacuum conditions and its alteration after exposure to oxidative (105 L of O2) and humid (105 L of H2O) environments at room temperature. The photon energy is 800 eV. We also report in each panel the corresponding spectrum for SnO2–SnSe2–x exposed to a humid environment at room temperature, with x estimated to be 0.29.

On the contrary, we observed quite distinct peaks in SnO2–SnSe2–x exposed to a humid environment (outermost spectra in the various panels of Figure 4), and a Sn-3d doublet with a J = 5/2 component is present at a BE of 487.8 eV, due to SnO2 (relative amplitude of 54%), which is consistent with previous reports for this system. (74,75) Remarkably, no trace of O–Se–O bonds is present, as suggested by the lack of Se-3d components at 59–60 eV. (72) This result confirms theoretical expectations that Se is involved in only a metastable oxide phase, which represents a precursor for SnO2 formation. Nevertheless, a broad spectral component in Se-3d suggests a different oxidation state for Se. In particular, the peak at 55.0 eV is ascribed to Se2–, while that one at a higher BE should be attributed to Se–2+α (0 < α < 1). (76) The analysis of survey XPS spectra enables us to evaluate α as ∼0.145, corresponding to substoichiometric SnSe1.71. Congruently with the results in ref (36), oxidation is feasible only in substoichiometric SnSe2–x, while perfectly stoichiometric SnSe2 is robust in oxidative environments, thus evidencing the pivotal role of Se vacancies in surface oxidation.
The O-1s spectrum for the SnSe2 surface exposed to a humid environment shows new components arising from −OH groups (relative amplitude of 45%) and H2O (relative amplitude of 9%) at BEs of 531.6 and 533.6 eV, respectively. (77−79) We also exposed the SnO2–SnSe2 heterostructure to the humid environment, with the corresponding O-1s spectrum displaying the SnO2 component (relative amplitude of 50%) at a BE of 531.5 eV, (80,81) overlapped with the −OH component.
In conclusion, we investigated (i) the modifications of surface properties once pristine SnSe2 assumes a subnanometric SnO2 skin upon interaction with oxidative environments and (ii) the subsequent implications for chemical sensors. Definitely, the oxidation process has a direct effect on the work function, which is increased by 0.4 eV, owing to the charge transfer between the substrate and the SnO2 skin of 0.56 e per SnO2 unit. Though the SnSe2 surface is inert to water at room temperature, upon surface oxidation the SnO2–SnSe2 interface shows a remarkable sensitivity to humidity. The charge transfer from H2O to the SnO2 skin is estimated to be 0.43 and 0.30 e for one and two H2O molecules per supercell, respectively. Correspondingly, the DOS is correlated with water coverage, hence proving the aptness for humidity sensing also at low concentrations of H2O. Definitely, our findings prove the significant influence of humid environments on the electrical response of the SnO2–SnSe2 heterostructure. Moreover, recent reports regarding the use of SnSe2 in humidity sensors should be reconsidered with regard to the physicochemical mechanism.

Methods

Click to copy section linkSection link copied!

Theoretical methods are described in section S8.
The single crystals were grown by the Bridgman–Stockbarger method, according to the procedure described in refs (36) and (82) (see also section S1). Their crystalline quality was secured by X-ray diffraction (XRD) (Figures S1c and S2). The analysis of the XPS survey spectrum proves the absence of contaminants in bulk crystals (Figure S3). Samples were exfoliated in situ for surface-science investigations, by using scotch tape. Gas dosage was carried out at a partial pressure of 10–4 mbar.
XPS experiments were carried out at the APE-HE beamline at the Elettra-Trieste synchrotron. Core-level measurements were performed with an Omicron EA125 hemispherical electron energy analyzer, with the sample at room temperature and in normal emission. Linearly polarized light formed an angle of 45° with respect to the perpendicular direction of the surface. After the subtraction of a Shirley background, Sn-3d core-level spectra were analyzed by using a Gaussian line shape convoluted with a Doniach–Sunjic function, (83) while Se-3d and O-1s were fitted by Voigt line shapes.
HREELS experiments were performed with an Ibach-type spectrometer. The primary electron beam energy was 3.5 eV. HREELS spectra were recorded under specular conditions.
Measurements of LEEM images (Figure S4), EELS (Figure S6), and work-function changes ΔΦ (Figure 1a) were carried out at the soft X-ray beamline Nanospectroscopy at Elettra-Trieste synchrotron, using an energy-filtered LEEM–PEEM microscope with a spatial resolution of 10 nm. Specifically, measurements of ΔΦ were carried out by varying the electron beam energy across the total electron reflectivity threshold. This threshold is commonly termed the MEM–LEEM transition, which is characterized by a steep decrease in intensity as a function of a bias voltage applied to the sample (start voltage) as a decelerating potential. The ΔΦ value is identified by the shifts in the bias potential corresponding to the MEM–LEEM transition.
The gas sensing response to humidity at an operating temperature of 150 °C was determined by a volt–amperometric technique, as reported in ref (36). The RH air stream at 20% RH was obtained by mixing dry with saturated water-vapor air. In the analysis of the gas response, the relative response (RR) is defined as the ratio between the measured electrical resistance in dry air (Ra) and that under 20% RH (RH2O).

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02616.

  • Single-crystal growth (section S1), LEEM images (section S2), vibrational spectroscopy (section S3), electronic properties (section S4), density of states in pristine and defective SnSe2 (section S5), temperature dependence of the differential Gibbs free energy for adsorption of ambient gases (section S6), Langmuir isotherm calculations (section S7), and methods (section S8) (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • Carlo Cantalini - Department of Industrial and Information Engineering and Economics, University of L’Aquila, Via G. Gronchi 18, I-67100 L’Aquila, Italy Email: [email protected]
    • Antonio Politano - Department of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, 67100 L’Aquila, AQ, ItalyCNR-IMM Istituto per la Microelettronica e Microsistemi, VIII strada 5, I-95121 Catania, ItalyOrcidhttp://orcid.org/0000-0002-4254-2102 Email: [email protected]
  • Authors
    • Gianluca D’Olimpio - Department of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, 67100 L’Aquila, AQ, Italy
    • Francesca Genuzio - Elettra-Sincrotrone S.C.p.A., S.S. 14-km 163.5 in AREA Science Park, 34149 Trieste, ItalyOrcidhttp://orcid.org/0000-0003-0699-2525
    • Tevfik Onur Menteş - Elettra-Sincrotrone S.C.p.A., S.S. 14-km 163.5 in AREA Science Park, 34149 Trieste, Italy
    • Valentina Paolucci - Department of Industrial and Information Engineering and Economics, University of L’Aquila, Via G. Gronchi 18, I-67100 L’Aquila, ItalyOrcidhttp://orcid.org/0000-0003-0641-7926
    • Chia-Nung Kuo - Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
    • Amjad Al Taleb - Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
    • Chin Shan Lue - Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
    • Piero Torelli - Elettra-Sincrotrone S.C.p.A., S.S. 14-km 163.5 in AREA Science Park, 34149 Trieste, ItalyConsiglio Nazionale delle Ricerche (CNR)-Istituto Officina dei Materiali (IOM), Laboratorio TASC in Area Science Park S.S. 14 km 163.5, 34149 Trieste, Italy
    • Daniel Farías - Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, SpainInstituto ‘Nicolás Cabrera’, Universidad Autónoma de Madrid, 28049 Madrid, SpainCondensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, SpainOrcidhttp://orcid.org/0000-0002-8537-8074
    • Andrea Locatelli - Elettra-Sincrotrone S.C.p.A., S.S. 14-km 163.5 in AREA Science Park, 34149 Trieste, ItalyOrcidhttp://orcid.org/0000-0002-8072-7343
    • Danil W. Boukhvalov - College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. ChinaTheoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, RussiaOrcidhttp://orcid.org/0000-0002-2286-3443
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación under Project PID2019-109525RB-I00. D.F. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the “María de Maeztu” Programme for Units of Excellence in R&D (CEX2018-000805-M). D.F. and A.A.T. acknowledge the project CALIPSOplus under Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. A.P. and G.D. acknowledge the CERIC–ERIC Consortium for the access to the Nanospectroscopy facility and financial support. G.D. acknowledges funding of a Ph.D. fellowship from PON Ricerca e Innovazione 2014–2020 (Project E12H1800010001) by the Italian Ministry of University and Research (MIUR). D.W.B. acknowledges the support by the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, Project No. FEUZ-2020-0060).

References

Click to copy section linkSection link copied!

This article references 83 other publications.

  1. 1
    Geim, A. K. Nobel Lecture: Random Walk to Graphene. Rev. Mod. Phys. 2011, 83, 851862,  DOI: 10.1103/RevModPhys.83.851
  2. 2
    Novoselov, K. S. Nobel Lecture: Graphene: Materials in the Flatland. Rev. Mod. Phys. 2011, 83, 837849,  DOI: 10.1103/RevModPhys.83.837
  3. 3
    Ambrosetti, A.; Silvestrelli, P. L. Trends in the Change in Graphene Conductivity Upon Gas Adsorption: The Relevance of Orbital Distortion. J. Phys. Chem. Lett. 2020, 11, 27372741,  DOI: 10.1021/acs.jpclett.0c00379
  4. 4
    Deng, W.; Chen, X.; Li, Y.; You, C.; Chu, F.; Li, S.; An, B.; Ma, Y.; Liao, L.; Zhang, Y. Strain Effect Enhanced Ultrasensitive MoS2 Nanoscroll Avalanche Photodetector. J. Phys. Chem. Lett. 2020, 11, 44904497,  DOI: 10.1021/acs.jpclett.0c00861
  5. 5
    Geng, W. T.; Wang, V.; Liu, Y. C.; Ohno, T.; Nara, J. Moiré Potential, Lattice Corrugation, and Band Gap Spatial Variation in a Twist-Free MoTe2/MoS2 Heterobilayer. J. Phys. Chem. Lett. 2020, 11, 26372646,  DOI: 10.1021/acs.jpclett.0c00605
  6. 6
    Zou, X.; Zhang, Z.; Chen, X.; Yakobson, B. I. Structure and Dynamics of the Electronic Heterointerfaces in MoS2 by First-Principles Simulations. J. Phys. Chem. Lett. 2020, 11, 16441649,  DOI: 10.1021/acs.jpclett.0c00147
  7. 7
    Guo, B. Y.; Jiang, S. D.; Tang, M. J.; Li, K.; Sun, S.; Chen, P. Y.; Zhang, S. Mos2 Membranes for Organic Solvent Nanofiltration: Stability and Structural Control. J. Phys. Chem. Lett. 2019, 10, 46094617,  DOI: 10.1021/acs.jpclett.9b01780
  8. 8
    Hu, C.; Jiang, Z.; Zhou, W.; Guo, M.; Yu, T.; Luo, X.; Yuan, C. Wafer-Scale Sulfur Vacancy-Rich Monolayer MoS2 for Massive Hydrogen Production. J. Phys. Chem. Lett. 2019, 10, 47634768,  DOI: 10.1021/acs.jpclett.9b01399
  9. 9
    Yi, M.; Shen, Z. A Review on Mechanical Exfoliation for the Scalable Production of Graphene. J. Mater. Chem. A 2015, 3, 1170011715,  DOI: 10.1039/C5TA00252D
  10. 10
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3, 563568,  DOI: 10.1038/nnano.2008.215
  11. 11
    Jin, Z.; Li, X.; Mullen, J. T.; Kim, K. W. Intrinsic Transport Properties of Electrons and Holes in Monolayer Transition-Metal Dichalcogenides. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 045422,  DOI: 10.1103/PhysRevB.90.045422
  12. 12
    Edmonds, M. T.; Tadich, A.; Carvalho, A.; Ziletti, A.; O’Donnell, K. M.; Koenig, S. P.; Coker, D. F.; Özyilmaz, B.; Neto, A. H. C.; Fuhrer, M. S. Creating a Stable Oxide at the Surface of Black Phosphorus. ACS Appl. Mater. Interfaces 2015, 7, 1455714562,  DOI: 10.1021/acsami.5b01297
  13. 13
    Kumar, A.; Telesio, F.; Forti, S.; Al-Temimy, A.; Coletti, C.; Serrano-Ruiz, M.; Caporali, M.; Peruzzini, M.; Beltram, F.; Heun, S. STM Study of Exfoliated Few Layer Black Phosphorus Annealed in Ultrahigh Vacuum. 2D Mater. 2019, 6, 015005,  DOI: 10.1088/2053-1583/aadd20
  14. 14
    Bergeron, A.; Ibrahim, J.; Leonelli, R.; Francoeur, S. Oxidation Dynamics of Ultrathin GaSe Probed through Raman Spectroscopy. Appl. Phys. Lett. 2017, 110, 241901,  DOI: 10.1063/1.4986189
  15. 15
    Shi, L.; Li, Q.; Ouyang, Y.; Wang, J. Effect of Illumination and Se Vacancies on Fast Oxidation of Ultrathin Gallium Selenide. Nanoscale 2018, 10, 1218012186,  DOI: 10.1039/C8NR01533C
  16. 16
    Fu, M.; Liang, L.; Zou, Q.; Nguyen, G. D.; Xiao, K.; Li, A. P.; Kang, J.; Wu, Z.; Gai, Z. Defects in Highly Anisotropic Transition-Metal Dichalcogenide PdSe2. J. Phys. Chem. Lett. 2020, 11, 740746,  DOI: 10.1021/acs.jpclett.9b03312
  17. 17
    Li, X.; Luo, N.; Chen, Y.; Zou, X.; Zhu, H. Real-Time Observing Ultrafast Carrier and Phonon Dynamics in Colloidal Tin Chalcogenide Van Der Waals Nanosheets. J. Phys. Chem. Lett. 2019, 10, 37503755,  DOI: 10.1021/acs.jpclett.9b01470
  18. 18
    Wei, Z.; Wang, L.; Zhuo, M.; Ni, W.; Wang, H.; Ma, J. Layered Tin Sulfide and Selenide Anode Materials for Li- and Na-Ion Batteries. J. Mater. Chem. A 2018, 6, 1218512214,  DOI: 10.1039/C8TA02695E
  19. 19
    Huang, Y.; Ling, C.; Liu, H.; Wang, S. Tuning Electronic and Magnetic Properties of SnSe2 Armchair Nanoribbons Via Edge Hydrogenation. J. Mater. Chem. C 2014, 2, 1017510183,  DOI: 10.1039/C4TC01919A
  20. 20
    Shafique, A.; Samad, A.; Shin, Y.-H. Ultra Low Lattice Thermal Conductivity and High Carrier Mobility of Monolayer SnS2 and SnSe2: A First Principles Study. Phys. Chem. Chem. Phys. 2017, 19, 2067720683,  DOI: 10.1039/C7CP03748A
  21. 21
    Tan, P.; Chen, X.; Wu, L.; Shang, Y. Y.; Liu, W.; Pan, J.; Xiong, X. Hierarchical Flower-Like Snse2 Supported Ag3PO4 Nanoparticles: Towards Visible Light Driven Photocatalyst with Enhanced Performance. Appl. Catal., B 2017, 202, 326334,  DOI: 10.1016/j.apcatb.2016.09.033
  22. 22
    Fan, Y.; Wang, J.; Zhao, M. Spontaneous Full Photocatalytic Water Splitting on 2D MoSe2/SnSe2 and WSe2/SnSe2 Vdw Heterostructures. Nanoscale 2019, 11, 1483614843,  DOI: 10.1039/C9NR03469B
  23. 23
    Zeng, J.; Liu, E.; Fu, Y.; Chen, Z.; Pan, C.; Wang, C.; Wang, M.; Wang, Y.; Xu, K.; Cai, S.; Yan, X.; Wang, Y.; Liu, X.; Wang, P.; Liang, S. J.; Cui, Y.; Hwang, H. Y.; Yuan, H.; Miao, F. Gate-Induced Interfacial Superconductivity in 1T-SnSe2. Nano Lett. 2018, 18, 14101415,  DOI: 10.1021/acs.nanolett.7b05157
  24. 24
    Shao, Z.; Fu, Z.-G.; Li, S.; Cao, Y.; Bian, Q.; Sun, H.; Zhang, Z.; Gedeon, H.; Zhang, X.; Liu, L.; Cheng, Z.; Zheng, F.; Zhang, P.; Pan, M. Strongly Compressed Few-Layered SnSe2 Films Grown on a SrTiO3 Substrate: The Coexistence of Charge Ordering and Enhanced Interfacial Superconductivity. Nano Lett. 2019, 19, 53045312,  DOI: 10.1021/acs.nanolett.9b01766
  25. 25
    Kim, S.; Yao, Z.; Lim, J.-M.; Hersam, M. C.; Wolverton, C.; Dravid, V. P.; He, K. Lithium-Ion Batteries: Atomic-Scale Observation of Electrochemically Reversible Phase Transformations in SnSe2 Single Crystals. Adv. Mater. 2018, 30, 1870393,  DOI: 10.1002/adma.201870393
  26. 26
    Bai, J.; Wu, H.; Wang, S.; Zhang, G.; Feng, C.; Liu, H. Synthesis of CoSe2-SnSe2 Nanocube-Coated Nitrogen-Doped Carbon (NC) as Anode for Lithium and Sodium Ion Batteries. Appl. Surf. Sci. 2019, 488, 512521,  DOI: 10.1016/j.apsusc.2019.05.096
  27. 27
    Zhang, F.; Xia, C.; Zhu, J.; Ahmed, B.; Liang, H.; Velusamy, D. B.; Schwingenschlögl, U.; Alshareef, H. N. SnSe2 2D Anodes for Advanced Sodium Ion Batteries. Adv. Energy Mater. 2016, 6, 1601188,  DOI: 10.1002/aenm.201601188
  28. 28
    Zhou, X.; Zhou, N.; Li, C.; Song, H.; Zhang, Q.; Hu, X.; Gan, L.; Li, H.; Lü, J.; Luo, J.; Xiong, J.; Zhai, T. Vertical Heterostructures Based on SnSe2/MoS2 for High Performance Photodetectors. 2D Mater. 2017, 4, 025048,  DOI: 10.1088/2053-1583/aa6422
  29. 29
    Wang, M.; Wang, Z.; Xu, X.; Duan, S.; Du, C. Tin Diselenide-Based Saturable Absorbers for Eye-Safe Pulse Lasers. Nanotechnology 2019, 30, 265703,  DOI: 10.1088/1361-6528/ab1115
  30. 30
    Zhang, Y.; Liu, Y.; Lim, K. H.; Xing, C.; Li, M.; Zhang, T.; Tang, P.; Arbiol, J.; Llorca, J.; Ng, K. M.; Ibáñez, M.; Guardia, P.; Prato, M.; Cadavid, D.; Cabot, A. Tin Diselenide Molecular Precursor for Solution-Processable Thermoelectric Materials. Angew. Chem., Int. Ed. 2018, 57, 1706317068,  DOI: 10.1002/anie.201809847
  31. 31
    Luo, Y.; Zheng, Y.; Luo, Z.; Hao, S.; Du, C.; Liang, Q.; Li, Z.; Khor, K. A.; Hippalgaonkar, K.; Xu, J.; Yan, Q.; Wolverton, C.; Kanatzidis, M. G. N-Type SnSe2 Oriented-Nanoplate-Based Pellets for High Thermoelectric Performance. Adv. Energy Mater. 2018, 8, 1702167,  DOI: 10.1002/aenm.201702167
  32. 32
    Sun, J.; Liu, S.; Wang, C.; Bai, Y.; Chen, G.; Luo, Q.; Ma, F. Interface Tuning Charge Transport and Enhanced Thermoelectric Properties in Flower-Like SnSe2 Hierarchical Nanostructures. Appl. Surf. Sci. 2020, 510, 145478,  DOI: 10.1016/j.apsusc.2020.145478
  33. 33
    Nasir, M. S.; Yang, G.; Ayub, I.; Wang, X.; Wang, S.; Nasir, A.; Yan, W. Tin Diselenide Nanoflakes Decorated Hierarchical 1D TiO2 Fiber: A Robust and Highly Efficient Co-Catalyst for Hydrogen Evolution Reaction. Appl. Surf. Sci. 2020, 521, 146333,  DOI: 10.1016/j.apsusc.2020.146333
  34. 34
    Lee, Y. K.; Luo, Z.; Cho, S. P.; Kanatzidis, M. G.; Chung, I. Surface Oxide Removal for Polycrystalline Snse Reveals near-Single-Crystal Thermoelectric Performance. Joule 2019, 3, 719731,  DOI: 10.1016/j.joule.2019.01.001
  35. 35
    Lamuta, C.; Campi, D.; Pagnotta, L.; Dasadia, A.; Cupolillo, A.; Politano, A. Determination of the Mechanical Properties of SnSe, a Novel Layered Semiconductor. J. Phys. Chem. Solids 2018, 116, 306312,  DOI: 10.1016/j.jpcs.2018.01.045
  36. 36
    Paolucci, V.; D’Olimpio, G.; Kuo, C.-N.; Lue, C. S.; Boukhvalov, D. W.; Cantalini, C.; Politano, A. Self-Assembled SnO2/SnSe2 Heterostructures: A Suitable Platform for Ultrasensitive NO2 and H2 Sensing. ACS Appl. Mater. Interfaces 2020, 12, 3436234369,  DOI: 10.1021/acsami.0c07901
  37. 37
    Pawar, M.; Kadam, S.; Late, D. J. High-Performance Sensing Behavior Using Electronic Ink of 2D SnSe2 Nanosheets. Chemistry Select 2017, 2, 40684075,  DOI: 10.1002/slct.201700261
  38. 38
    Pawbake, A. S.; Date, A.; Jadkar, S. R.; Late, D. J. Temperature Dependent Raman Spectroscopy and Sensing Behavior of Few Layer SnSe2 Nanosheets. Chemistry Select 2016, 1, 53805387,  DOI: 10.1002/slct.201601347
  39. 39
    Chen, X.; Chen, X.; Han, Y.; Su, C.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; Yang, Z. Two-Dimensional MoSe2 Nanosheets Via Liquid-Phase Exfoliation for High-Performance Room Temperature NO2 Gas Sensors. Nanotechnology 2019, 30, 445503,  DOI: 10.1088/1361-6528/ab35ec
  40. 40
    Guo, R.; Han, Y.; Su, C.; Chen, X.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; Yang, Z. Ultrasensitive Room Temperature NO2 Sensors Based on Liquid Phase Exfoliated WSe2 Nanosheets. Sens. Actuators, B 2019, 300, 127013,  DOI: 10.1016/j.snb.2019.127013
  41. 41
    Zhong, Y.; Li, W.; Zhao, X.; Jiang, X.; Lin, S.; Zhen, Z.; Chen, W.; Xie, D.; Zhu, H. High-Response Room-Temperature NO2 Sensor and Ultrafast Humidity Sensor Based on SnO2 with Rich Oxygen Vacancy. ACS Appl. Mater. Interfaces 2019, 11, 1344113449,  DOI: 10.1021/acsami.9b01737
  42. 42
    Vorokhta, M.; Khalakhan, I.; Vondráček, M.; Tomeček, D.; Vorokhta, M.; Marešová, E.; Nováková, J.; Vlček, J.; Fitl, P.; Novotný, M.; Hozák, P.; Lančok, J.; Vrňata, M.; Matolínová, I.; Matolín, V. Investigation of Gas Sensing Mechanism of SnO2 Based Chemiresistor Using near Ambient Pressure Xps. Surf. Sci. 2018, 677, 284290,  DOI: 10.1016/j.susc.2018.08.003
  43. 43
    Das, S.; Jayaraman, V. SnO2: A Comprehensive Review on Structures and Gas Sensors. Prog. Mater. Sci. 2014, 66, 112255,  DOI: 10.1016/j.pmatsci.2014.06.003
  44. 44
    Li, G.-J.; Kawi, S. High-Surface-Area SnO2: A Novel Semiconductor-Oxide Gas Sensor. Mater. Lett. 1998, 34, 99102,  DOI: 10.1016/S0167-577X(97)00142-0
  45. 45
    Di Giulio, M.; Micocci, G.; Serra, A.; Tepore, A.; Rella, R.; Siciliano, P. SnO2 Thin Films for Gas Sensor Prepared by Rf Reactive Sputtering. Sens. Actuators, B 1995, 25, 465468,  DOI: 10.1016/0925-4005(94)01397-7
  46. 46
    Li, W.; Kan, K.; He, L.; Ma, L.; Zhang, X.; Si, J.; Ikram, M.; Ullah, M.; Khan, M.; Shi, K. Biomorphic Synthesis of 3D Mesoporous SnO2 with Substantially Increased Gas-Sensing Performance at Room Temperature Using a Simple One-Pot Hydrothermal Method. Appl. Surf. Sci. 2020, 512, 145657,  DOI: 10.1016/j.apsusc.2020.145657
  47. 47
    Li, W.; Ding, C.; Li, J.; Ren, Q.; Bai, G.; Xu, J. Sensing Mechanism of Sb, S Doped SnO2(110) Surface for CO. Appl. Surf. Sci. 2020, 502, 144140,  DOI: 10.1016/j.apsusc.2019.144140
  48. 48
    Ko, W. C.; Kim, K. M.; Kwon, Y. J.; Choi, H.; Park, J. K.; Jeong, Y. K. ALD-Assisted Synthesis of V2O5 Nanoislands on SnO2 Nanowires for Improving NO2 Sensing Performance. Appl. Surf. Sci. 2020, 509, 144821,  DOI: 10.1016/j.apsusc.2019.144821
  49. 49
    Tombak, A.; Ocak, Y. S.; Bayansal, F. Cu/SnO2 Gas Sensor Fabricated by Ultrasonic Spray Pyrolysis for Effective Detection of Carbon Monoxide. Appl. Surf. Sci. 2019, 493, 10751082,  DOI: 10.1016/j.apsusc.2019.07.087
  50. 50
    Han, Y.; Ma, Y.; Liu, Y.; Xu, S.; Chen, X.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Yang, Z. Construction of MoS2/SnO2 Heterostructures for Sensitive NO2 Detection at Room Temperature. Appl. Surf. Sci. 2019, 493, 613619,  DOI: 10.1016/j.apsusc.2019.07.052
  51. 51
    Barsan, N.; Weimar, U. Understanding the Fundamental Principles of Metal Oxide Based Gas Sensors; the Example of CO Sensing with SnO2 Sensors in the Presence of Humidity. J. Phys.: Condens. Matter 2003, 15, R813,  DOI: 10.1088/0953-8984/15/20/201
  52. 52
    Choi, K.-I.; Hübner, M.; Haensch, A.; Kim, H.-J.; Weimar, U.; Barsan, N.; Lee, J.-H. Ambivalent Effect of Ni Loading on Gas Sensing Performance in SnO2 Based Gas Sensor. Sens. Actuators, B 2013, 183, 401410,  DOI: 10.1016/j.snb.2013.04.007
  53. 53
    Shelke, N. T.; Late, D. J. Hydrothermal Growth of MoSe2 Nanoflowers for Photo- and Humidity Sensor Applications. Sens. Actuators, A 2019, 295, 160168,  DOI: 10.1016/j.sna.2019.05.045
  54. 54
    Gupta, S. P.; Pawbake, A. S.; Sathe, B. R.; Late, D. J.; Walke, P. S. Superior Humidity Sensor and Photodetector of Mesoporous ZnO Nanosheets at Room Temperature. Sens. Actuators, B 2019, 293, 8392,  DOI: 10.1016/j.snb.2019.04.086
  55. 55
    Theillet, P.-O.; Pierron, O. Quantifying Adsorbed Water Monolayers on Silicon Mems Resonators Exposed to Humid Environments. Sens. Actuators, A 2011, 171, 375380,  DOI: 10.1016/j.sna.2011.09.002
  56. 56
    Panchal, V.; Giusca, C. E.; Lartsev, A.; Martin, N. A.; Cassidy, N.; Myers-Ward, R. L.; Gaskill, D. K.; Kazakova, O. Atmospheric Doping Effects in Epitaxial Graphene: Correlation of Local and Global Electrical Studies. 2D Mater. 2016, 3, 015006,  DOI: 10.1088/2053-1583/3/1/015006
  57. 57
    Tannarana, M.; Pataniya, P. M.; Bhakhar, S. A.; Solanki, G. K.; Valand, J.; Narayan, S.; Patel, K. D.; Jha, P. K.; Pathak, V. M. Humidity Sensor Based on Two-Dimensional SnSe2/MWCNTs Nanohybrid for the Online Monitoring of Human Respiration and Touchless Positioning Interface. ACS Sustainable Chem. Eng. 2020, 8, 1259512602,  DOI: 10.1021/acssuschemeng.0c04027
  58. 58
    Nataf, G. F.; Grysan, P.; Guennou, M.; Kreisel, J.; Martinotti, D.; Rountree, C. L.; Mathieu, C.; Barrett, N. Low Energy Electron Imaging of Domains and Domain Walls in Magnesium-Doped Lithium Niobate. Sci. Rep. 2016, 6, 33098,  DOI: 10.1038/srep33098
  59. 59
    Leung, T.; Kao, C.; Su, W.; Feng, Y.; Chan, C. Relationship between Surface Dipole, Work Function and Charge Transfer: Some Exceptions to an Established Rule. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 195408,  DOI: 10.1103/PhysRevB.68.195408
  60. 60
    Roy, T.; Tosun, M.; Hettick, M.; Ahn, G. H.; Hu, C.; Javey, A. 2D-2D Tunneling Field-Effect Transistors Using WSe2/SnSe2 Heterostructures. Appl. Phys. Lett. 2016, 108, 083111,  DOI: 10.1063/1.4942647
  61. 61
    Li, F.; Gao, X.; Wang, R.; Zhang, T.; Lu, G. Study on TiO2-SnO2 Core-Shell Heterostructure Nanofibers with Different Work Function and Its Application in Gas Sensor. Sens. Actuators, B 2017, 248, 812819,  DOI: 10.1016/j.snb.2016.12.009
  62. 62
    Batzill, M.; Katsiev, K.; Burst, J. M.; Losovyj, Y.; Bergermayer, W.; Tanaka, I.; Diebold, U. Tuning Surface Properties of SnO2(101) by Reduction. J. Phys. Chem. Solids 2006, 67, 19231929,  DOI: 10.1016/j.jpcs.2006.05.042
  63. 63
    Serna, M. I.; Hasan, S. M.; Nam, S.; El Bouanani, L.; Moreno, S.; Choi, H.; Alshareef, H. N.; Minary-Jolandan, M.; Quevedo-Lopez, M. A. Low-Temperature Deposition of Layered SnSe2 for Heterojunction Diodes. Adv. Mater. Interfaces 2018, 5, 1800128,  DOI: 10.1002/admi.201800128
  64. 64
    Zhang, Q.; Li, M.; Lochocki, E. B.; Vishwanath, S.; Liu, X.; Yan, R.; Lien, H.-H.; Dobrowolska, M.; Furdyna, J.; Shen, K. M. Band Offset and Electron Affinity of Mbe-Grown SnSe2. Appl. Phys. Lett. 2018, 112, 042108,  DOI: 10.1063/1.5016183
  65. 65
    Bauer, E. Surface Microscopy with Low Energy Electrons; Springer, 2014; Vol. 23.
  66. 66
    Henderson, M. A. The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited. Surf. Sci. Rep. 2002, 46, 1308,  DOI: 10.1016/S0167-5729(01)00020-6
  67. 67
    Inamdar, A. N.; Som, N. N.; Pratap, A.; Jha, P. K. Hydrogen Evolution and Oxygen Evolution Reactions of Pristine and Alkali Metal Doped Snse2 Monolayer. Int. J. Hydrogen Energy 2020, 45, 1865718665,  DOI: 10.1016/j.ijhydene.2019.07.093
  68. 68
    Deng, J.; Mo, Y.; Liu, J.; Guo, R.; Zhang, Y.; Xue, W.; Zhang, Y. In Vitro Study of SnS2, BiOCl and SnS2-Incorporated BiOCl Inorganic Nanoparticles Used as Doxorubicin Carrier. J. Nanosci. Nanotechnol. 2016, 16, 57405745,  DOI: 10.1166/jnn.2016.11745
  69. 69
    Wu, S.; Liu, C.; Wu, Z.; Miao, L.; Gao, J.; Hu, X.; Chen, J.; Zheng, Y.; Wang, X.; Shen, C. Realizing Tremendous Electrical Transport Properties of Polycrystalline SnSe2 by Cl-Doped and Anisotropy. Ceram. Int. 2019, 45, 8289,  DOI: 10.1016/j.ceramint.2018.09.136
  70. 70
    Nagaraju, G.; Cha, S. M.; Sekhar, S. C.; Yu, J. S. Metallic Layered Polyester Fabric Enabled Nickel Selenide Nanostructures as Highly Conductive and Binderless Electrode with Superior Energy Storage Performance. Adv. Energy Mater. 2017, 7, 1601362,  DOI: 10.1002/aenm.201601362
  71. 71
    Dimitriev, Y.; Yordanov, St.; Lakov, L. The Structure of Oxide Glasses Containing SeO2. J. Non-Cryst. Solids 2001, 293–295, 410415,  DOI: 10.1016/S0022-3093(01)00836-5
  72. 72
    Bachvarova-Nedelcheva, A.; Iordanova, R.; Kostov, K. L.; Yordanov, S.; Ganev, V. Structure and Properties of a Non-Traditional Glass Containing TeO2, SeO2 and MoO3. Opt. Mater. 2012, 34, 17811787,  DOI: 10.1016/j.optmat.2012.05.002
  73. 73
    Fan, Y.; Zhuo, Y.; Li, L. Seo2 Adsorption on Cao Surface: Dft and Experimental Study on the Adsorption of Multiple SeO2 Molecules. Appl. Surf. Sci. 2017, 420, 465471,  DOI: 10.1016/j.apsusc.2017.04.233
  74. 74
    Al-Hada, N. M.; Kamari, H. M.; Baqer, A. A.; Shaari, A. H.; Saion, E. Thermal Calcination-Based Production of SnO2 Nanopowder: An Analysis of Sno2 Nanoparticle Characteristics and Antibacterial Activities. Nanomaterials 2018, 8, 250,  DOI: 10.3390/nano8040250
  75. 75
    Zhang, W.; Li, M.; Xiao, X.; Huang, X.; Jiang, Y.; Fan, X.; Chen, L. In Situ Synthesis of Ultrasmall Sno2 Quantum Dots on Nitrogen-Doped Reduced Graphene Oxide Composite as High Performance Anode Material for Lithium-Ion Batteries. J. Alloys Compd. 2017, 727, 17,  DOI: 10.1016/j.jallcom.2017.04.316
  76. 76
    Wakita, T.; Paris, E.; Kobayashi, K.; Terashima, K.; Hacisalihoǧlu, M. Y.; Ueno, T.; Bondino, F.; Magnano, E.; Píš, I.; Olivi, L.; Akimitsu, J.; Muraoka, Y.; Yokoya, T.; Saini, N. L. The Electronic Structure of Ag1-XSn1+XSe2 (X = 0.0, 0.1, 0.2, 0.25 and 1.0). Phys. Chem. Chem. Phys. 2017, 19, 2667226678,  DOI: 10.1039/C7CP05369J
  77. 77
    Hoch, L. B.; Wood, T. E.; O’Brien, P. G.; Liao, K.; Reyes, L. M.; Mims, C. A.; Ozin, G. A. The Rational Design of a Single-Component Photocatalyst for Gas-Phase Co2 Reduction Using Both Uv and Visible Light. Adv. Sci. 2014, 1, 1400013,  DOI: 10.1002/advs.201400013
  78. 78
    Detweiler, Z. M.; Wulfsberg, S. M.; Frith, M. G.; Bocarsly, A. B.; Bernasek, S. L. The Oxidation and Surface Speciation of Indium and Indium Oxides Exposed to Atmospheric Oxidants. Surf. Sci. 2016, 648, 188195,  DOI: 10.1016/j.susc.2015.10.026
  79. 79
    Nappini, S.; Matruglio, A.; Naumenko, D.; Dal Zilio, S.; Bondino, F.; Lazzarino, M.; Magnano, E. Graphene Nanobubbles on TiO2 for in-Operando Electron Spectroscopy of Liquid-Phase Chemistry. Nanoscale 2017, 9, 44564466,  DOI: 10.1039/C6NR09061C
  80. 80
    Hong, X.; Li, S.; Wang, R.; Fu, J. Hierarchical SnO2 Nanoclusters Wrapped Functionalized Carbonized Cotton Cloth for Symmetrical Supercapacitor. J. Alloys Compd. 2019, 775, 1521,  DOI: 10.1016/j.jallcom.2018.10.099
  81. 81
    Xu, H.; Ju, J.; Li, W.; Zhang, J.; Wang, J.; Cao, B. Superior Triethylamine-Sensing Properties Based on TiO2/SnO2 N–N Heterojunction Nanosheets Directly Grown on Ceramic Tubes. Sens. Actuators, B 2016, 228, 634642,  DOI: 10.1016/j.snb.2016.01.059
  82. 82
    Guo, C.; Guo, W.; Xu, H.; Zhang, L.; Chen, G.; D'Olimpio, G.; Kuo, C.-N.; Lue, C. S.; Wang, L.; Politano, A.; Chen, X.; Lu, W. Ultrasensitive Ambient-Stable SnSe2-Based Broadband Photodetectors for Room-Temperature IR/THz Energy Conversion and Imaging. 2D Mater. 2020, 7, 035026,  DOI: 10.1088/2053-1583/ab8ec0
  83. 83
    Doniach, S.; Sunjic, M. Many-Electron Singularity in X-Ray Photoemission and X-Ray Line Spectra from Metals. J. Phys. C: Solid State Phys. 1970, 3, 285,  DOI: 10.1088/0022-3719/3/2/010

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 27 publications.

  1. Imtej Singh Saggu, Lovepreet Singh, Sunil Singh Kushvaha, Mandeep Singh, Sandeep Sharma. Dual Discrimination of Xylene and NO2 with UV-Boosted Recovery at Room Temperature Using SnSe2/MWCNT Composite-Based Sensors. ACS Applied Electronic Materials 2025, 7 (4) , 1645-1660. https://doi.org/10.1021/acsaelm.4c02272
  2. Li-Hsin Cheng, Utkarsh Kumar, Zu-Yin Deng, Chiu-Hsien Wu. Improved Charge Transfer for NO2 Gas Sensors by Using 0D SnS Quantum Dot/2D WSe2 Heterostructures. ACS Applied Nano Materials 2023, 6 (11) , 9506-9514. https://doi.org/10.1021/acsanm.3c01181
  3. Sudakhina Saikia, Rasna Devi, Pranjal Gogoi, Lakshi Saikia, Boyapati M. Choudary, Thirumalaiswamy Raja, Pangkita Deka, Ramesh C. Deka. Regioselective Friedel–Crafts Acylation Reaction Using Single Crystalline and Ultrathin Nanosheet Assembly of Scrutinyite-SnO2. ACS Omega 2022, 7 (36) , 32225-32237. https://doi.org/10.1021/acsomega.2c03555
  4. Valentina Paolucci, Jessica De Santis, Vittorio Ricci, Luca Lozzi, Giacomo Giorgi, Carlo Cantalini. Bidimensional Engineered Amorphous a-SnO2 Interfaces: Synthesis and Gas Sensing Response to H2S and Humidity. ACS Sensors 2022, 7 (7) , 2058-2068. https://doi.org/10.1021/acssensors.2c00887
  5. Yan Wang, Yang Sun, Jing Liu. Catalytic effect of nano-thick gold electrodes on p-doping of diselenides during annealing process. Nanotechnology and Precision Engineering 2025, 8 (3) https://doi.org/10.1063/10.0034716
  6. Baoqi Wu, Zhihao Wang, Zhanshou Wang, Jianyuan Yu, Hongli Zhao. Optimization of growth conditions for direct synthesis of SnSe2 thin films via improved atmospheric pressure chemical vapor deposition. Optical Materials 2025, 158 , 116467. https://doi.org/10.1016/j.optmat.2024.116467
  7. Danil W. Boukhvalov, Grazia Giuseppina Politano, Gianluca D'Olimpio, Antonio Politano. 2D Semiconductor Nanostructures for Solar‐Driven Photocatalysis: Unveiling Challenges and Prospects in Air Purification, Sustainable Energy Harvesting, and Water Treatment. Advanced Sustainable Systems 2024, 8 (9) https://doi.org/10.1002/adsu.202400018
  8. Shaoting Liu, Yang Hao, Mengxue Sun, Jingkun Ren, Shiqi Li, Yukun Wu, Qinjun Sun, Yuying Hao. SnSe 2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non‐radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells. Small 2024, https://doi.org/10.1002/smll.202402385
  9. Divyanshu Rathore, Arnab Hazra. Surface trapping induced negative photoconductivity in Au nanoparticles functionalized SnO2/SnSe2 nanosheets under visible and NIR light. FlatChem 2024, 45 , 100650. https://doi.org/10.1016/j.flatc.2024.100650
  10. Kuangye Wang, Tzu‐Wen Kuo, Tzu‐Yi Yang, Ruei‐Hong Cyu, Chen‐Wei Hsu, Yu‐Chieh Hsu, Yi‐Jen Yu, Yu‐Ze Chen, Yu‐Lun Chueh. Controllable Oxygen‐Incorporated 2D‐SnSe 2 Layered Thin Film by Plasma‐Assisted Selenization Process with Enhanced NO 2 Gas Sensitivity and Improved Humidity Stability. Advanced Materials Technologies 2024, 9 (2) https://doi.org/10.1002/admt.202301507
  11. Mélanie De Vos, Alexandre Zimmer, Milan Toledo, Jaafar Ghanbaja, Emile Haye, Gilles Pernot, David Lacroix, Nicolas Stein. Tuning the physico-chemical properties of SnSe films by pulse electrodeposition. Applied Surface Science 2023, 621 , 156845. https://doi.org/10.1016/j.apsusc.2023.156845
  12. Jinzhou Bai, Yanbai Shen, Sikai Zhao, Ang Li, Zhangke Kang, Baoyu Cui, Dezhou Wei, Zhenyu Yuan, Fanli Meng. Room‐Temperature NH 3 Sensor Based on SnO 2 Quantum Dots Functionalized SnS 2 Nanosheets. Advanced Materials Technologies 2023, 8 (8) https://doi.org/10.1002/admt.202201671
  13. Myung Sik Choi, Geukchan Bang, Jeongmin Lee, Inseo Kim, Joonho Bang, Seung Yong Lee, Kimoon Lee, Kyu Hyoung Lee. Acceleration of NO 2 gas sensitivity in two-dimensional SnSe 2 by Br doping. Dalton Transactions 2023, 52 (11) , 3386-3390. https://doi.org/10.1039/D2DT03784J
  14. Yeongsik Hwa, Boeun Seok, Sang-Soo Chee. Correlating Morphology and NO2 Gas Detection at Room Temperature in Layered Tin Diselenide. Electronic Materials Letters 2023, 19 (2) , 212-217. https://doi.org/10.1007/s13391-022-00389-x
  15. Juanyuan Hao, Wen Lu, Dongmin Yin, Weixun Hao, You Wang. A humidity-tolerant NO 2 sensor based on Ag 3 PO 4 –SnSe 2 heterostructures. New Journal of Chemistry 2023, 47 (7) , 3242-3248. https://doi.org/10.1039/D2NJ06076K
  16. Gowtham Polumati, Aditya Tiwari, Chandra Sekhar Reddy Kolli, Sayan Kanungo, Andres De Luna Bugallo, Parikshit Sahatiya. CVD-Grown MoS 2 -Monolayer-Based Ultrasensitive Human Breath Sensor: Experimental and Theoretical Study. IEEE Sensors Letters 2023, 7 (2) , 1-10. https://doi.org/10.1109/LSENS.2023.3241329
  17. Manoj Kumar, Sanju Rani, Pargam Vashishtha, Govind Gupta, Xu Wang, V. N. Singh. Exploring the optoelectronic properties of SnSe: a new insight. Journal of Materials Chemistry C 2022, 10 (44) , 16714-16722. https://doi.org/10.1039/D2TC03799H
  18. Chuansong Chen, Wenjie Zhang, Pengyi Duan, Wenying Liu, Muhammad Shafi, Xiaoxuan Hu, Can Zhang, Chao Zhang, Baoyuan Man, Mei Liu. SERS enhancement induced by the Se vacancy defects in ultra-thin hybrid phase SnSe x nanosheets. Optics Express 2022, 30 (21) , 37795. https://doi.org/10.1364/OE.473965
  19. Shicheng Jin, Di Wu, Weinan Song, Hongshun Hao, Wenyuan Gao, Shuang Yan. Superior acetone sensor based on hetero-interface of SnSe2/SnO2 quasi core shell nanoparticles for previewing diabetes. Journal of Colloid and Interface Science 2022, 621 , 119-130. https://doi.org/10.1016/j.jcis.2022.04.057
  20. Weiqi Gao, Hui Gao, Ye Chai, Guoliang Zhou, Dou Du, Guolin Hao. Controlled vapor phase growth of germanium selenide and germanium microflakes. Journal of Applied Physics 2022, 132 (8) https://doi.org/10.1063/5.0102277
  21. Guoliang Zhang, Chengyan Liu, Liang Guo, Ruowei Liu, Lei Miao, Feng Dang. Electronic “Bridge” Construction via Ag Intercalation to Diminish Catalytic Anisotropy for 2D Tin Diselenide Cathode Catalyst in Lithium–Oxygen Batteries. Advanced Energy Materials 2022, 12 (27) https://doi.org/10.1002/aenm.202200791
  22. Xuezheng Guo, Yanqiao Ding, Chengyao Liang, Bingsheng Du, Chengjiu Zhao, Yiling Tan, Yijie Shi, Pinglei Zhang, Xi Yang, Yong He. Humidity-activated H2S sensor based on SnSe2/WO3 composite for evaluating the spoilage of eggs at room temperature. Sensors and Actuators B: Chemical 2022, 357 , 131424. https://doi.org/10.1016/j.snb.2022.131424
  23. Sharadrao A. Vanalakar, Shamkumar P. Deshmukh, Satish M. Patil. Gas Sensors Based on Chalcogenides. 2022, 201-223. https://doi.org/10.1007/978-981-19-2685-3_10
  24. V. Paolucci, J. De Santis, L. Lozzi, G. Giorgi, C. Cantalini. Layered amorphous a-SnO2 gas sensors by controlled oxidation of 2D-SnSe2. Sensors and Actuators B: Chemical 2022, 350 , 130890. https://doi.org/10.1016/j.snb.2021.130890
  25. Ayrton Sierra-Castillo, Emile Haye, Selene Acosta, Raul Arenal, Carla Bittencourt, Jean-François Colomer. Atmospheric pressure chemical vapor deposition growth of vertically aligned SnS 2 and SnSe 2 nanosheets. RSC Advances 2021, 11 (58) , 36483-36493. https://doi.org/10.1039/D1RA05672G
  26. Xiantong Yu, Xin Wang, Feifan Zhou, Junle Qu, Jun Song. 2D van der Waals Heterojunction Nanophotonic Devices: From Fabrication to Performance. Advanced Functional Materials 2021, 31 (42) https://doi.org/10.1002/adfm.202104260
  27. Tingting Wang, You Wang, Shengliang Zheng, Quan Sun, Ruozhen Wu, Juanyuan Hao. Design of hierarchical SnSe 2 for efficient detection of trace NO 2 at room temperature. CrystEngComm 2021, 23 (35) , 6045-6052. https://doi.org/10.1039/D1CE00804H

The Journal of Physical Chemistry Letters

Cite this: J. Phys. Chem. Lett. 2020, 11, 21, 9003–9011
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jpclett.0c02616
Published October 9, 2020

Copyright © 2020 American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

2478

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. (a) LEEM IV curves at the MEM–LEEM transition for the as-cleaved sample (black), after a dose of 700 L of O2 (blue), and after air exposure for 15 min (pink). The shift of the MEM–LEEM transition, characterized by the sharp decrease in intensity, indicates an oxidation-induced modification of the surface potential. (b) Changes in charge density after the formation of the interface between the SnSe2 substrate and SnO2 skin. Sn, Se, and O atoms are represented as dark blue, light green, and red balls, respectively.

    Figure 2

    Figure 2. Changes in charge density after adsorption of one water molecule on (a) SnSe2 and (b) SnO2 skin-terminated SnSe2. Panel c represents the DOS of SnO2 skin-terminated SnSe2 (black) and of the same system modified by the adsorption of one (red) and two (blue) water molecules. The Fermi level is set at 0. Panel d shows the response of the SnSe2–SnO2 heterostructure to 20% relative humidity (RH) at an operational temperature (OT) of 150 °C (note that the average residence time of the gas in the cell is approximately 10 min).

    Figure 3

    Figure 3. HREELS spectra in the region of the O–H band acquired after exposure to 105 L of H2O at room temperature the surfaces of different Sn-based chalcogenides: SnSe2 (orange curve), SnSe1.7 (black), SnSe1.4 (green), and SnSe (blue). To provide a straightforward comparison, the figure also displays data for H2O-dosed InSe (red) and PtTe1.6 (brown) surfaces (105 L at room temperature). The impinging energy is 4 eV.

    Figure 4

    Figure 4. (a) O-1s, (b) Sn-3d, and (c) Se-3d core levels for the pristine surface of SnSe2 cleaved in situ under ultra-high-vacuum conditions and its alteration after exposure to oxidative (105 L of O2) and humid (105 L of H2O) environments at room temperature. The photon energy is 800 eV. We also report in each panel the corresponding spectrum for SnO2–SnSe2–x exposed to a humid environment at room temperature, with x estimated to be 0.29.

  • References


    This article references 83 other publications.

    1. 1
      Geim, A. K. Nobel Lecture: Random Walk to Graphene. Rev. Mod. Phys. 2011, 83, 851862,  DOI: 10.1103/RevModPhys.83.851
    2. 2
      Novoselov, K. S. Nobel Lecture: Graphene: Materials in the Flatland. Rev. Mod. Phys. 2011, 83, 837849,  DOI: 10.1103/RevModPhys.83.837
    3. 3
      Ambrosetti, A.; Silvestrelli, P. L. Trends in the Change in Graphene Conductivity Upon Gas Adsorption: The Relevance of Orbital Distortion. J. Phys. Chem. Lett. 2020, 11, 27372741,  DOI: 10.1021/acs.jpclett.0c00379
    4. 4
      Deng, W.; Chen, X.; Li, Y.; You, C.; Chu, F.; Li, S.; An, B.; Ma, Y.; Liao, L.; Zhang, Y. Strain Effect Enhanced Ultrasensitive MoS2 Nanoscroll Avalanche Photodetector. J. Phys. Chem. Lett. 2020, 11, 44904497,  DOI: 10.1021/acs.jpclett.0c00861
    5. 5
      Geng, W. T.; Wang, V.; Liu, Y. C.; Ohno, T.; Nara, J. Moiré Potential, Lattice Corrugation, and Band Gap Spatial Variation in a Twist-Free MoTe2/MoS2 Heterobilayer. J. Phys. Chem. Lett. 2020, 11, 26372646,  DOI: 10.1021/acs.jpclett.0c00605
    6. 6
      Zou, X.; Zhang, Z.; Chen, X.; Yakobson, B. I. Structure and Dynamics of the Electronic Heterointerfaces in MoS2 by First-Principles Simulations. J. Phys. Chem. Lett. 2020, 11, 16441649,  DOI: 10.1021/acs.jpclett.0c00147
    7. 7
      Guo, B. Y.; Jiang, S. D.; Tang, M. J.; Li, K.; Sun, S.; Chen, P. Y.; Zhang, S. Mos2 Membranes for Organic Solvent Nanofiltration: Stability and Structural Control. J. Phys. Chem. Lett. 2019, 10, 46094617,  DOI: 10.1021/acs.jpclett.9b01780
    8. 8
      Hu, C.; Jiang, Z.; Zhou, W.; Guo, M.; Yu, T.; Luo, X.; Yuan, C. Wafer-Scale Sulfur Vacancy-Rich Monolayer MoS2 for Massive Hydrogen Production. J. Phys. Chem. Lett. 2019, 10, 47634768,  DOI: 10.1021/acs.jpclett.9b01399
    9. 9
      Yi, M.; Shen, Z. A Review on Mechanical Exfoliation for the Scalable Production of Graphene. J. Mater. Chem. A 2015, 3, 1170011715,  DOI: 10.1039/C5TA00252D
    10. 10
      Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3, 563568,  DOI: 10.1038/nnano.2008.215
    11. 11
      Jin, Z.; Li, X.; Mullen, J. T.; Kim, K. W. Intrinsic Transport Properties of Electrons and Holes in Monolayer Transition-Metal Dichalcogenides. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 045422,  DOI: 10.1103/PhysRevB.90.045422
    12. 12
      Edmonds, M. T.; Tadich, A.; Carvalho, A.; Ziletti, A.; O’Donnell, K. M.; Koenig, S. P.; Coker, D. F.; Özyilmaz, B.; Neto, A. H. C.; Fuhrer, M. S. Creating a Stable Oxide at the Surface of Black Phosphorus. ACS Appl. Mater. Interfaces 2015, 7, 1455714562,  DOI: 10.1021/acsami.5b01297
    13. 13
      Kumar, A.; Telesio, F.; Forti, S.; Al-Temimy, A.; Coletti, C.; Serrano-Ruiz, M.; Caporali, M.; Peruzzini, M.; Beltram, F.; Heun, S. STM Study of Exfoliated Few Layer Black Phosphorus Annealed in Ultrahigh Vacuum. 2D Mater. 2019, 6, 015005,  DOI: 10.1088/2053-1583/aadd20
    14. 14
      Bergeron, A.; Ibrahim, J.; Leonelli, R.; Francoeur, S. Oxidation Dynamics of Ultrathin GaSe Probed through Raman Spectroscopy. Appl. Phys. Lett. 2017, 110, 241901,  DOI: 10.1063/1.4986189
    15. 15
      Shi, L.; Li, Q.; Ouyang, Y.; Wang, J. Effect of Illumination and Se Vacancies on Fast Oxidation of Ultrathin Gallium Selenide. Nanoscale 2018, 10, 1218012186,  DOI: 10.1039/C8NR01533C
    16. 16
      Fu, M.; Liang, L.; Zou, Q.; Nguyen, G. D.; Xiao, K.; Li, A. P.; Kang, J.; Wu, Z.; Gai, Z. Defects in Highly Anisotropic Transition-Metal Dichalcogenide PdSe2. J. Phys. Chem. Lett. 2020, 11, 740746,  DOI: 10.1021/acs.jpclett.9b03312
    17. 17
      Li, X.; Luo, N.; Chen, Y.; Zou, X.; Zhu, H. Real-Time Observing Ultrafast Carrier and Phonon Dynamics in Colloidal Tin Chalcogenide Van Der Waals Nanosheets. J. Phys. Chem. Lett. 2019, 10, 37503755,  DOI: 10.1021/acs.jpclett.9b01470
    18. 18
      Wei, Z.; Wang, L.; Zhuo, M.; Ni, W.; Wang, H.; Ma, J. Layered Tin Sulfide and Selenide Anode Materials for Li- and Na-Ion Batteries. J. Mater. Chem. A 2018, 6, 1218512214,  DOI: 10.1039/C8TA02695E
    19. 19
      Huang, Y.; Ling, C.; Liu, H.; Wang, S. Tuning Electronic and Magnetic Properties of SnSe2 Armchair Nanoribbons Via Edge Hydrogenation. J. Mater. Chem. C 2014, 2, 1017510183,  DOI: 10.1039/C4TC01919A
    20. 20
      Shafique, A.; Samad, A.; Shin, Y.-H. Ultra Low Lattice Thermal Conductivity and High Carrier Mobility of Monolayer SnS2 and SnSe2: A First Principles Study. Phys. Chem. Chem. Phys. 2017, 19, 2067720683,  DOI: 10.1039/C7CP03748A
    21. 21
      Tan, P.; Chen, X.; Wu, L.; Shang, Y. Y.; Liu, W.; Pan, J.; Xiong, X. Hierarchical Flower-Like Snse2 Supported Ag3PO4 Nanoparticles: Towards Visible Light Driven Photocatalyst with Enhanced Performance. Appl. Catal., B 2017, 202, 326334,  DOI: 10.1016/j.apcatb.2016.09.033
    22. 22
      Fan, Y.; Wang, J.; Zhao, M. Spontaneous Full Photocatalytic Water Splitting on 2D MoSe2/SnSe2 and WSe2/SnSe2 Vdw Heterostructures. Nanoscale 2019, 11, 1483614843,  DOI: 10.1039/C9NR03469B
    23. 23
      Zeng, J.; Liu, E.; Fu, Y.; Chen, Z.; Pan, C.; Wang, C.; Wang, M.; Wang, Y.; Xu, K.; Cai, S.; Yan, X.; Wang, Y.; Liu, X.; Wang, P.; Liang, S. J.; Cui, Y.; Hwang, H. Y.; Yuan, H.; Miao, F. Gate-Induced Interfacial Superconductivity in 1T-SnSe2. Nano Lett. 2018, 18, 14101415,  DOI: 10.1021/acs.nanolett.7b05157
    24. 24
      Shao, Z.; Fu, Z.-G.; Li, S.; Cao, Y.; Bian, Q.; Sun, H.; Zhang, Z.; Gedeon, H.; Zhang, X.; Liu, L.; Cheng, Z.; Zheng, F.; Zhang, P.; Pan, M. Strongly Compressed Few-Layered SnSe2 Films Grown on a SrTiO3 Substrate: The Coexistence of Charge Ordering and Enhanced Interfacial Superconductivity. Nano Lett. 2019, 19, 53045312,  DOI: 10.1021/acs.nanolett.9b01766
    25. 25
      Kim, S.; Yao, Z.; Lim, J.-M.; Hersam, M. C.; Wolverton, C.; Dravid, V. P.; He, K. Lithium-Ion Batteries: Atomic-Scale Observation of Electrochemically Reversible Phase Transformations in SnSe2 Single Crystals. Adv. Mater. 2018, 30, 1870393,  DOI: 10.1002/adma.201870393
    26. 26
      Bai, J.; Wu, H.; Wang, S.; Zhang, G.; Feng, C.; Liu, H. Synthesis of CoSe2-SnSe2 Nanocube-Coated Nitrogen-Doped Carbon (NC) as Anode for Lithium and Sodium Ion Batteries. Appl. Surf. Sci. 2019, 488, 512521,  DOI: 10.1016/j.apsusc.2019.05.096
    27. 27
      Zhang, F.; Xia, C.; Zhu, J.; Ahmed, B.; Liang, H.; Velusamy, D. B.; Schwingenschlögl, U.; Alshareef, H. N. SnSe2 2D Anodes for Advanced Sodium Ion Batteries. Adv. Energy Mater. 2016, 6, 1601188,  DOI: 10.1002/aenm.201601188
    28. 28
      Zhou, X.; Zhou, N.; Li, C.; Song, H.; Zhang, Q.; Hu, X.; Gan, L.; Li, H.; Lü, J.; Luo, J.; Xiong, J.; Zhai, T. Vertical Heterostructures Based on SnSe2/MoS2 for High Performance Photodetectors. 2D Mater. 2017, 4, 025048,  DOI: 10.1088/2053-1583/aa6422
    29. 29
      Wang, M.; Wang, Z.; Xu, X.; Duan, S.; Du, C. Tin Diselenide-Based Saturable Absorbers for Eye-Safe Pulse Lasers. Nanotechnology 2019, 30, 265703,  DOI: 10.1088/1361-6528/ab1115
    30. 30
      Zhang, Y.; Liu, Y.; Lim, K. H.; Xing, C.; Li, M.; Zhang, T.; Tang, P.; Arbiol, J.; Llorca, J.; Ng, K. M.; Ibáñez, M.; Guardia, P.; Prato, M.; Cadavid, D.; Cabot, A. Tin Diselenide Molecular Precursor for Solution-Processable Thermoelectric Materials. Angew. Chem., Int. Ed. 2018, 57, 1706317068,  DOI: 10.1002/anie.201809847
    31. 31
      Luo, Y.; Zheng, Y.; Luo, Z.; Hao, S.; Du, C.; Liang, Q.; Li, Z.; Khor, K. A.; Hippalgaonkar, K.; Xu, J.; Yan, Q.; Wolverton, C.; Kanatzidis, M. G. N-Type SnSe2 Oriented-Nanoplate-Based Pellets for High Thermoelectric Performance. Adv. Energy Mater. 2018, 8, 1702167,  DOI: 10.1002/aenm.201702167
    32. 32
      Sun, J.; Liu, S.; Wang, C.; Bai, Y.; Chen, G.; Luo, Q.; Ma, F. Interface Tuning Charge Transport and Enhanced Thermoelectric Properties in Flower-Like SnSe2 Hierarchical Nanostructures. Appl. Surf. Sci. 2020, 510, 145478,  DOI: 10.1016/j.apsusc.2020.145478
    33. 33
      Nasir, M. S.; Yang, G.; Ayub, I.; Wang, X.; Wang, S.; Nasir, A.; Yan, W. Tin Diselenide Nanoflakes Decorated Hierarchical 1D TiO2 Fiber: A Robust and Highly Efficient Co-Catalyst for Hydrogen Evolution Reaction. Appl. Surf. Sci. 2020, 521, 146333,  DOI: 10.1016/j.apsusc.2020.146333
    34. 34
      Lee, Y. K.; Luo, Z.; Cho, S. P.; Kanatzidis, M. G.; Chung, I. Surface Oxide Removal for Polycrystalline Snse Reveals near-Single-Crystal Thermoelectric Performance. Joule 2019, 3, 719731,  DOI: 10.1016/j.joule.2019.01.001
    35. 35
      Lamuta, C.; Campi, D.; Pagnotta, L.; Dasadia, A.; Cupolillo, A.; Politano, A. Determination of the Mechanical Properties of SnSe, a Novel Layered Semiconductor. J. Phys. Chem. Solids 2018, 116, 306312,  DOI: 10.1016/j.jpcs.2018.01.045
    36. 36
      Paolucci, V.; D’Olimpio, G.; Kuo, C.-N.; Lue, C. S.; Boukhvalov, D. W.; Cantalini, C.; Politano, A. Self-Assembled SnO2/SnSe2 Heterostructures: A Suitable Platform for Ultrasensitive NO2 and H2 Sensing. ACS Appl. Mater. Interfaces 2020, 12, 3436234369,  DOI: 10.1021/acsami.0c07901
    37. 37
      Pawar, M.; Kadam, S.; Late, D. J. High-Performance Sensing Behavior Using Electronic Ink of 2D SnSe2 Nanosheets. Chemistry Select 2017, 2, 40684075,  DOI: 10.1002/slct.201700261
    38. 38
      Pawbake, A. S.; Date, A.; Jadkar, S. R.; Late, D. J. Temperature Dependent Raman Spectroscopy and Sensing Behavior of Few Layer SnSe2 Nanosheets. Chemistry Select 2016, 1, 53805387,  DOI: 10.1002/slct.201601347
    39. 39
      Chen, X.; Chen, X.; Han, Y.; Su, C.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; Yang, Z. Two-Dimensional MoSe2 Nanosheets Via Liquid-Phase Exfoliation for High-Performance Room Temperature NO2 Gas Sensors. Nanotechnology 2019, 30, 445503,  DOI: 10.1088/1361-6528/ab35ec
    40. 40
      Guo, R.; Han, Y.; Su, C.; Chen, X.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; Yang, Z. Ultrasensitive Room Temperature NO2 Sensors Based on Liquid Phase Exfoliated WSe2 Nanosheets. Sens. Actuators, B 2019, 300, 127013,  DOI: 10.1016/j.snb.2019.127013
    41. 41
      Zhong, Y.; Li, W.; Zhao, X.; Jiang, X.; Lin, S.; Zhen, Z.; Chen, W.; Xie, D.; Zhu, H. High-Response Room-Temperature NO2 Sensor and Ultrafast Humidity Sensor Based on SnO2 with Rich Oxygen Vacancy. ACS Appl. Mater. Interfaces 2019, 11, 1344113449,  DOI: 10.1021/acsami.9b01737
    42. 42
      Vorokhta, M.; Khalakhan, I.; Vondráček, M.; Tomeček, D.; Vorokhta, M.; Marešová, E.; Nováková, J.; Vlček, J.; Fitl, P.; Novotný, M.; Hozák, P.; Lančok, J.; Vrňata, M.; Matolínová, I.; Matolín, V. Investigation of Gas Sensing Mechanism of SnO2 Based Chemiresistor Using near Ambient Pressure Xps. Surf. Sci. 2018, 677, 284290,  DOI: 10.1016/j.susc.2018.08.003
    43. 43
      Das, S.; Jayaraman, V. SnO2: A Comprehensive Review on Structures and Gas Sensors. Prog. Mater. Sci. 2014, 66, 112255,  DOI: 10.1016/j.pmatsci.2014.06.003
    44. 44
      Li, G.-J.; Kawi, S. High-Surface-Area SnO2: A Novel Semiconductor-Oxide Gas Sensor. Mater. Lett. 1998, 34, 99102,  DOI: 10.1016/S0167-577X(97)00142-0
    45. 45
      Di Giulio, M.; Micocci, G.; Serra, A.; Tepore, A.; Rella, R.; Siciliano, P. SnO2 Thin Films for Gas Sensor Prepared by Rf Reactive Sputtering. Sens. Actuators, B 1995, 25, 465468,  DOI: 10.1016/0925-4005(94)01397-7
    46. 46
      Li, W.; Kan, K.; He, L.; Ma, L.; Zhang, X.; Si, J.; Ikram, M.; Ullah, M.; Khan, M.; Shi, K. Biomorphic Synthesis of 3D Mesoporous SnO2 with Substantially Increased Gas-Sensing Performance at Room Temperature Using a Simple One-Pot Hydrothermal Method. Appl. Surf. Sci. 2020, 512, 145657,  DOI: 10.1016/j.apsusc.2020.145657
    47. 47
      Li, W.; Ding, C.; Li, J.; Ren, Q.; Bai, G.; Xu, J. Sensing Mechanism of Sb, S Doped SnO2(110) Surface for CO. Appl. Surf. Sci. 2020, 502, 144140,  DOI: 10.1016/j.apsusc.2019.144140
    48. 48
      Ko, W. C.; Kim, K. M.; Kwon, Y. J.; Choi, H.; Park, J. K.; Jeong, Y. K. ALD-Assisted Synthesis of V2O5 Nanoislands on SnO2 Nanowires for Improving NO2 Sensing Performance. Appl. Surf. Sci. 2020, 509, 144821,  DOI: 10.1016/j.apsusc.2019.144821
    49. 49
      Tombak, A.; Ocak, Y. S.; Bayansal, F. Cu/SnO2 Gas Sensor Fabricated by Ultrasonic Spray Pyrolysis for Effective Detection of Carbon Monoxide. Appl. Surf. Sci. 2019, 493, 10751082,  DOI: 10.1016/j.apsusc.2019.07.087
    50. 50
      Han, Y.; Ma, Y.; Liu, Y.; Xu, S.; Chen, X.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Yang, Z. Construction of MoS2/SnO2 Heterostructures for Sensitive NO2 Detection at Room Temperature. Appl. Surf. Sci. 2019, 493, 613619,  DOI: 10.1016/j.apsusc.2019.07.052
    51. 51
      Barsan, N.; Weimar, U. Understanding the Fundamental Principles of Metal Oxide Based Gas Sensors; the Example of CO Sensing with SnO2 Sensors in the Presence of Humidity. J. Phys.: Condens. Matter 2003, 15, R813,  DOI: 10.1088/0953-8984/15/20/201
    52. 52
      Choi, K.-I.; Hübner, M.; Haensch, A.; Kim, H.-J.; Weimar, U.; Barsan, N.; Lee, J.-H. Ambivalent Effect of Ni Loading on Gas Sensing Performance in SnO2 Based Gas Sensor. Sens. Actuators, B 2013, 183, 401410,  DOI: 10.1016/j.snb.2013.04.007
    53. 53
      Shelke, N. T.; Late, D. J. Hydrothermal Growth of MoSe2 Nanoflowers for Photo- and Humidity Sensor Applications. Sens. Actuators, A 2019, 295, 160168,  DOI: 10.1016/j.sna.2019.05.045
    54. 54
      Gupta, S. P.; Pawbake, A. S.; Sathe, B. R.; Late, D. J.; Walke, P. S. Superior Humidity Sensor and Photodetector of Mesoporous ZnO Nanosheets at Room Temperature. Sens. Actuators, B 2019, 293, 8392,  DOI: 10.1016/j.snb.2019.04.086
    55. 55
      Theillet, P.-O.; Pierron, O. Quantifying Adsorbed Water Monolayers on Silicon Mems Resonators Exposed to Humid Environments. Sens. Actuators, A 2011, 171, 375380,  DOI: 10.1016/j.sna.2011.09.002
    56. 56
      Panchal, V.; Giusca, C. E.; Lartsev, A.; Martin, N. A.; Cassidy, N.; Myers-Ward, R. L.; Gaskill, D. K.; Kazakova, O. Atmospheric Doping Effects in Epitaxial Graphene: Correlation of Local and Global Electrical Studies. 2D Mater. 2016, 3, 015006,  DOI: 10.1088/2053-1583/3/1/015006
    57. 57
      Tannarana, M.; Pataniya, P. M.; Bhakhar, S. A.; Solanki, G. K.; Valand, J.; Narayan, S.; Patel, K. D.; Jha, P. K.; Pathak, V. M. Humidity Sensor Based on Two-Dimensional SnSe2/MWCNTs Nanohybrid for the Online Monitoring of Human Respiration and Touchless Positioning Interface. ACS Sustainable Chem. Eng. 2020, 8, 1259512602,  DOI: 10.1021/acssuschemeng.0c04027
    58. 58
      Nataf, G. F.; Grysan, P.; Guennou, M.; Kreisel, J.; Martinotti, D.; Rountree, C. L.; Mathieu, C.; Barrett, N. Low Energy Electron Imaging of Domains and Domain Walls in Magnesium-Doped Lithium Niobate. Sci. Rep. 2016, 6, 33098,  DOI: 10.1038/srep33098
    59. 59
      Leung, T.; Kao, C.; Su, W.; Feng, Y.; Chan, C. Relationship between Surface Dipole, Work Function and Charge Transfer: Some Exceptions to an Established Rule. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 195408,  DOI: 10.1103/PhysRevB.68.195408
    60. 60
      Roy, T.; Tosun, M.; Hettick, M.; Ahn, G. H.; Hu, C.; Javey, A. 2D-2D Tunneling Field-Effect Transistors Using WSe2/SnSe2 Heterostructures. Appl. Phys. Lett. 2016, 108, 083111,  DOI: 10.1063/1.4942647
    61. 61
      Li, F.; Gao, X.; Wang, R.; Zhang, T.; Lu, G. Study on TiO2-SnO2 Core-Shell Heterostructure Nanofibers with Different Work Function and Its Application in Gas Sensor. Sens. Actuators, B 2017, 248, 812819,  DOI: 10.1016/j.snb.2016.12.009
    62. 62
      Batzill, M.; Katsiev, K.; Burst, J. M.; Losovyj, Y.; Bergermayer, W.; Tanaka, I.; Diebold, U. Tuning Surface Properties of SnO2(101) by Reduction. J. Phys. Chem. Solids 2006, 67, 19231929,  DOI: 10.1016/j.jpcs.2006.05.042
    63. 63
      Serna, M. I.; Hasan, S. M.; Nam, S.; El Bouanani, L.; Moreno, S.; Choi, H.; Alshareef, H. N.; Minary-Jolandan, M.; Quevedo-Lopez, M. A. Low-Temperature Deposition of Layered SnSe2 for Heterojunction Diodes. Adv. Mater. Interfaces 2018, 5, 1800128,  DOI: 10.1002/admi.201800128
    64. 64
      Zhang, Q.; Li, M.; Lochocki, E. B.; Vishwanath, S.; Liu, X.; Yan, R.; Lien, H.-H.; Dobrowolska, M.; Furdyna, J.; Shen, K. M. Band Offset and Electron Affinity of Mbe-Grown SnSe2. Appl. Phys. Lett. 2018, 112, 042108,  DOI: 10.1063/1.5016183
    65. 65
      Bauer, E. Surface Microscopy with Low Energy Electrons; Springer, 2014; Vol. 23.
    66. 66
      Henderson, M. A. The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited. Surf. Sci. Rep. 2002, 46, 1308,  DOI: 10.1016/S0167-5729(01)00020-6
    67. 67
      Inamdar, A. N.; Som, N. N.; Pratap, A.; Jha, P. K. Hydrogen Evolution and Oxygen Evolution Reactions of Pristine and Alkali Metal Doped Snse2 Monolayer. Int. J. Hydrogen Energy 2020, 45, 1865718665,  DOI: 10.1016/j.ijhydene.2019.07.093
    68. 68
      Deng, J.; Mo, Y.; Liu, J.; Guo, R.; Zhang, Y.; Xue, W.; Zhang, Y. In Vitro Study of SnS2, BiOCl and SnS2-Incorporated BiOCl Inorganic Nanoparticles Used as Doxorubicin Carrier. J. Nanosci. Nanotechnol. 2016, 16, 57405745,  DOI: 10.1166/jnn.2016.11745
    69. 69
      Wu, S.; Liu, C.; Wu, Z.; Miao, L.; Gao, J.; Hu, X.; Chen, J.; Zheng, Y.; Wang, X.; Shen, C. Realizing Tremendous Electrical Transport Properties of Polycrystalline SnSe2 by Cl-Doped and Anisotropy. Ceram. Int. 2019, 45, 8289,  DOI: 10.1016/j.ceramint.2018.09.136
    70. 70
      Nagaraju, G.; Cha, S. M.; Sekhar, S. C.; Yu, J. S. Metallic Layered Polyester Fabric Enabled Nickel Selenide Nanostructures as Highly Conductive and Binderless Electrode with Superior Energy Storage Performance. Adv. Energy Mater. 2017, 7, 1601362,  DOI: 10.1002/aenm.201601362
    71. 71
      Dimitriev, Y.; Yordanov, St.; Lakov, L. The Structure of Oxide Glasses Containing SeO2. J. Non-Cryst. Solids 2001, 293–295, 410415,  DOI: 10.1016/S0022-3093(01)00836-5
    72. 72
      Bachvarova-Nedelcheva, A.; Iordanova, R.; Kostov, K. L.; Yordanov, S.; Ganev, V. Structure and Properties of a Non-Traditional Glass Containing TeO2, SeO2 and MoO3. Opt. Mater. 2012, 34, 17811787,  DOI: 10.1016/j.optmat.2012.05.002
    73. 73
      Fan, Y.; Zhuo, Y.; Li, L. Seo2 Adsorption on Cao Surface: Dft and Experimental Study on the Adsorption of Multiple SeO2 Molecules. Appl. Surf. Sci. 2017, 420, 465471,  DOI: 10.1016/j.apsusc.2017.04.233
    74. 74
      Al-Hada, N. M.; Kamari, H. M.; Baqer, A. A.; Shaari, A. H.; Saion, E. Thermal Calcination-Based Production of SnO2 Nanopowder: An Analysis of Sno2 Nanoparticle Characteristics and Antibacterial Activities. Nanomaterials 2018, 8, 250,  DOI: 10.3390/nano8040250
    75. 75
      Zhang, W.; Li, M.; Xiao, X.; Huang, X.; Jiang, Y.; Fan, X.; Chen, L. In Situ Synthesis of Ultrasmall Sno2 Quantum Dots on Nitrogen-Doped Reduced Graphene Oxide Composite as High Performance Anode Material for Lithium-Ion Batteries. J. Alloys Compd. 2017, 727, 17,  DOI: 10.1016/j.jallcom.2017.04.316
    76. 76
      Wakita, T.; Paris, E.; Kobayashi, K.; Terashima, K.; Hacisalihoǧlu, M. Y.; Ueno, T.; Bondino, F.; Magnano, E.; Píš, I.; Olivi, L.; Akimitsu, J.; Muraoka, Y.; Yokoya, T.; Saini, N. L. The Electronic Structure of Ag1-XSn1+XSe2 (X = 0.0, 0.1, 0.2, 0.25 and 1.0). Phys. Chem. Chem. Phys. 2017, 19, 2667226678,  DOI: 10.1039/C7CP05369J
    77. 77
      Hoch, L. B.; Wood, T. E.; O’Brien, P. G.; Liao, K.; Reyes, L. M.; Mims, C. A.; Ozin, G. A. The Rational Design of a Single-Component Photocatalyst for Gas-Phase Co2 Reduction Using Both Uv and Visible Light. Adv. Sci. 2014, 1, 1400013,  DOI: 10.1002/advs.201400013
    78. 78
      Detweiler, Z. M.; Wulfsberg, S. M.; Frith, M. G.; Bocarsly, A. B.; Bernasek, S. L. The Oxidation and Surface Speciation of Indium and Indium Oxides Exposed to Atmospheric Oxidants. Surf. Sci. 2016, 648, 188195,  DOI: 10.1016/j.susc.2015.10.026
    79. 79
      Nappini, S.; Matruglio, A.; Naumenko, D.; Dal Zilio, S.; Bondino, F.; Lazzarino, M.; Magnano, E. Graphene Nanobubbles on TiO2 for in-Operando Electron Spectroscopy of Liquid-Phase Chemistry. Nanoscale 2017, 9, 44564466,  DOI: 10.1039/C6NR09061C
    80. 80
      Hong, X.; Li, S.; Wang, R.; Fu, J. Hierarchical SnO2 Nanoclusters Wrapped Functionalized Carbonized Cotton Cloth for Symmetrical Supercapacitor. J. Alloys Compd. 2019, 775, 1521,  DOI: 10.1016/j.jallcom.2018.10.099
    81. 81
      Xu, H.; Ju, J.; Li, W.; Zhang, J.; Wang, J.; Cao, B. Superior Triethylamine-Sensing Properties Based on TiO2/SnO2 N–N Heterojunction Nanosheets Directly Grown on Ceramic Tubes. Sens. Actuators, B 2016, 228, 634642,  DOI: 10.1016/j.snb.2016.01.059
    82. 82
      Guo, C.; Guo, W.; Xu, H.; Zhang, L.; Chen, G.; D'Olimpio, G.; Kuo, C.-N.; Lue, C. S.; Wang, L.; Politano, A.; Chen, X.; Lu, W. Ultrasensitive Ambient-Stable SnSe2-Based Broadband Photodetectors for Room-Temperature IR/THz Energy Conversion and Imaging. 2D Mater. 2020, 7, 035026,  DOI: 10.1088/2053-1583/ab8ec0
    83. 83
      Doniach, S.; Sunjic, M. Many-Electron Singularity in X-Ray Photoemission and X-Ray Line Spectra from Metals. J. Phys. C: Solid State Phys. 1970, 3, 285,  DOI: 10.1088/0022-3719/3/2/010
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02616.

    • Single-crystal growth (section S1), LEEM images (section S2), vibrational spectroscopy (section S3), electronic properties (section S4), density of states in pristine and defective SnSe2 (section S5), temperature dependence of the differential Gibbs free energy for adsorption of ambient gases (section S6), Langmuir isotherm calculations (section S7), and methods (section S8) (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.