ACS Publications. Most Trusted. Most Cited. Most Read
Slow Passivation and Inverted Hysteresis for Hybrid Tin Perovskite Solar Cells Attaining 13.5% via Sequential Deposition
My Activity

Figure 1Loading Img
    Physical Insights into Energy Science

    Slow Passivation and Inverted Hysteresis for Hybrid Tin Perovskite Solar Cells Attaining 13.5% via Sequential Deposition
    Click to copy article linkArticle link copied!

    • Efat Jokar
      Efat Jokar
      Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
      Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
      More by Efat Jokar
    • He-Shiang Chuang
      He-Shiang Chuang
      Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
    • Chun-Hsiao Kuan
      Chun-Hsiao Kuan
      Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
    • Hui-Ping Wu
      Hui-Ping Wu
      Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
      More by Hui-Ping Wu
    • Cheng-Hung Hou
      Cheng-Hung Hou
      Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
    • Jing-Jong Shyue
      Jing-Jong Shyue
      Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
      Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
    • Eric Wei-Guang Diau*
      Eric Wei-Guang Diau
      Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
      Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2021, 12, 41, 10106–10111
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.1c03107
    Published October 11, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Herein, we report a sequential deposition procedure to passivate the surface of a hybrid mixed cationic tin perovskite (E1G20) with phenylhydrazinium thiocyanate (PHSCN) dissolved in trifluoroethanol solvent. The photoluminescence lifetime of the PHSCN film was enhanced by a factor of 6, while the charge-extraction rate from perovskite to C60 layer was enhanced by a factor of 2.5, in comparison to those of the E1G20 film. A slow surface passivation was observed; the performance of the PHSCN device improved upon increasing the storage period to attain an efficiency of 13.5% for a current–voltage scan in the forward bias direction. An inverted effect of hysteresis was observed in that the efficiency of the forward scan was greater than that of the reverse scan. An ion-migration model as a result of the effect of the phenylhydrazinium surface passivation is proposed to account for the observed phenomena. The device was stable upon shelf storage in a glovebox for 3000 h.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpclett.1c03107.

    • Experimental methods, supplementary figures and tables for SEM, GIWAX, XPS, UPS, ultraviolet–visible (UV–vis)/PL, AFM, c-AFM, performance statistics, JV curves, incident photon-to-current efficiency (IPCE), and summary of reported device performance (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 71 publications.

    1. Arulmozhi Velusamy, Chun-Hsiao Kuan, Tsung-Chun Lin, Yun-Sheng Shih, Cheng-Liang Liu, De-You Zeng, Yu-Gi Li, Yu-Hao Wang, Xianyuan Jiang, Ming-Chou Chen, Eric Wei-Guang Diau. Bithiophene Imide-Based Self-Assembled Monolayers (SAMs) on NiOx for High-Performance Tin Perovskite Solar Cells Fabricated Using a Two-Step Approach. ACS Applied Materials & Interfaces 2025, 17 (1) , 952-962. https://doi.org/10.1021/acsami.4c15688
    2. Li Li, Jiaying Xu, Jing Liu. Optimizing the Hole-Transport Layer with Ammonium Thiocyanate for Enhanced Performance in Lead-Free Perovskite Light-Emitting Diodes. ACS Applied Electronic Materials 2025, Article ASAP.
    3. Chien-Yu Chen, Fuyuki Harata, Richard Murdey, Atsushi Wakamiya. Enhanced Power Conversion Efficiency in Tin Halide Perovskite Solar Cells with Zinc Iodide Interlayers. ACS Energy Letters 2024, 9 (12) , 6039-6046. https://doi.org/10.1021/acsenergylett.4c02700
    4. Wiktor Żuraw, Dominik Kubicki, Robert Kudrawiec, Łukasz Przypis. Carboxylic Acid-Assisted Synthesis of Tin(II) Iodide: Key for Stable Large-Area Lead-Free Perovskite Solar Cells. ACS Energy Letters 2024, 9 (9) , 4509-4515. https://doi.org/10.1021/acsenergylett.4c02027
    5. C. Elizabeth Adams, Sabrina K. Spicer, Jennifer A. Gaddy, Steven D. Townsend. Synthesis of a Phosphoethanolamine Cellulose Mimetic and Evaluation of Its Unanticipated Biofilm Modulating Properties. ACS Infectious Diseases 2024, 10 (9) , 3245-3255. https://doi.org/10.1021/acsinfecdis.4c00267
    6. Chun-Hsiao Kuan, Tzu-Shen Liao, Sudhakar Narra, Yi-Wei Tsai, Jhih-Min Lin, Guan-Ruei Chen, Eric Wei-Guang Diau. Co-Cation Engineering via Mixing of Acetamidinium and Rubidium in FASnI3 for Tin Perovskite Solar Cells to Attain 14.5% Efficiency. The Journal of Physical Chemistry Letters 2024, 15 (30) , 7763-7769. https://doi.org/10.1021/acs.jpclett.4c01695
    7. Xiaomeng Li, Yang Tang, Bo Song, Fanwen Meng, Chang Gao, Liang Qin, Yufeng Hu, Zhidong Lou, Feng Teng, Yanbing Hou. Efficient Tin-Based Perovskite Solar Cell with a Cesium Acetate Pre-buried PEDOT:PSS Hole Transport Layer. The Journal of Physical Chemistry Letters 2024, 15 (5) , 1355-1362. https://doi.org/10.1021/acs.jpclett.3c03557
    8. Ece Aktas, Isabella Poli, Corinna Ponti, Guixiang Li, Andrea Olivati, Diego Di Girolamo, Fahad Ahmed Alharthi, Meng Li, Emilio Palomares, Annamaria Petrozza, Antonio Abate. One-Step Solution Deposition of Tin-Perovskite onto a Self-Assembled Monolayer with a DMSO-Free Solvent System. ACS Energy Letters 2023, 8 (12) , 5170-5174. https://doi.org/10.1021/acsenergylett.3c02098
    9. Parameswaran Rajamanickam, Sudhakar Narra, Ashank Seetharaman, Eric Wei-Guang Diau. Highly Efficient HTM-Free Tin Perovskite Solar Cells with Outstanding Stability Exceeding 10000 h. ACS Applied Materials & Interfaces 2023, 15 (34) , 40700-40708. https://doi.org/10.1021/acsami.3c10268
    10. Jingyi Ran, Bipeng Wang, Yifan Wu, Dongyu Liu, Carlos Mora Perez, Andrey S. Vasenko, Oleg V. Prezhdo. Halide Vacancies Create No Charge Traps on Lead Halide Perovskite Surfaces but Can Generate Deep Traps in the Bulk. The Journal of Physical Chemistry Letters 2023, 14 (26) , 6028-6036. https://doi.org/10.1021/acs.jpclett.3c01231
    11. Dhruba B. Khadka, Yasuhiro Shirai, Masatoshi Yanagida, Terumasa Tadano, Kenjiro Miyano. Alleviating Defect and Oxidation in Tin Perovskite Solar Cells Using a Bidentate Ligand. Chemistry of Materials 2023, 35 (11) , 4250-4258. https://doi.org/10.1021/acs.chemmater.3c00243
    12. Chun-Hsiao Kuan, Yu-An Ko, Eric Wei-Guang Diau. Surface and Interfacial Passivations for FASnI3 Solar Cells with Co-Cations. ACS Energy Letters 2023, 8 (5) , 2423-2425. https://doi.org/10.1021/acsenergylett.3c00742
    13. Efat Jokar, Liang Cai, Jiye Han, Edric John Cruz Nacpil, Il Jeon. Emerging Opportunities in Lead-Free and Lead–Tin Perovskites for Environmentally Viable Photodetector Applications. Chemistry of Materials 2023, 35 (9) , 3404-3426. https://doi.org/10.1021/acs.chemmater.3c00345
    14. Chun-Hsiao Kuan, Juin-Min Chih, Yu-Cheng Chen, Bo-Hong Liu, Chia-Hsin Wang, Cheng-Hung Hou, Jing-Jong Shyue, Eric Wei-Guang Diau. Additive Engineering with Triple Cations and Bifunctional Sulfamic Acid for Tin Perovskite Solar Cells Attaining a PCE Value of 12.5% without Hysteresis. ACS Energy Letters 2022, 7 (12) , 4436-4442. https://doi.org/10.1021/acsenergylett.2c02148
    15. Liang Wang, Mengmeng Chen, Shuzhang Yang, Namiki Uezono, Qingqing Miao, Gaurav Kapil, Ajay Kumar Baranwal, Yoshitaka Sanehira, Dandan Wang, Dong Liu, Tingli Ma, Kenichi Ozawa, Takeaki Sakurai, Zheng Zhang, Qing Shen, Shuzi Hayase. SnOx as Bottom Hole Extraction Layer and Top In Situ Protection Layer Yields over 14% Efficiency in Sn-Based Perovskite Solar Cells. ACS Energy Letters 2022, 7 (10) , 3703-3708. https://doi.org/10.1021/acsenergylett.2c01659
    16. Yali Chen, Kun Wang, Heng Qi, Youqian Zhang, Ting Wang, Yu Tong, Hongqiang Wang. Mitigating Voc Loss in Tin Perovskite Solar Cells via Simultaneous Suppression of Bulk and Interface Nonradiative Recombination. ACS Applied Materials & Interfaces 2022, 14 (36) , 41086-41094. https://doi.org/10.1021/acsami.2c12129
    17. Muhammad Akmal Kamarudin, Shahrir Razey Sahamir, Kohei Nishimura, Satoshi Iikubo, Kenji Yoshino, Takashi Minemoto, Qing Shen, Shuzi Hayase. Suppression of Defect and Trap Density through Dimethylammonium-Substituted Tin Perovskite Solar Cells. ACS Materials Letters 2022, 4 (9) , 1855-1862. https://doi.org/10.1021/acsmaterialslett.2c00275
    18. Zheng Zhang, Muhammad Akmal Kamarudin, Ajay Kumar Baranwal, Liang Wang, Gaurav Kapil, Shahrir Razey Sahamir, Yoshitaka Sanehira, Mengmeng Chen, Qing Shen, Shuzi Hayase. Indent-Free Vapor-Assisted Surface Passivation Strategy toward Tin Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (31) , 36200-36208. https://doi.org/10.1021/acsami.2c06046
    19. Chisato Nishikawa, Ryosuke Nishikubo, Fumitaka Ishiwari, Akinori Saeki. Combinatorial Exploration of Monovalent Metals (M, M′) in Alkali, 11th-, and 13th-Group Elements toward (M/M′)–(Bi/Sb)–I Solar Cells. ACS Applied Energy Materials 2022, 5 (5) , 6291-6301. https://doi.org/10.1021/acsaem.2c00651
    20. Yuxi Zhang, Yanqing Zhu, Min Hu, Narendra Pai, Tianshi Qin, Yi-Bing Cheng, Udo Bach, Alexandr N. Simonov, Jianfeng Lu. Self-Enhancement of Efficiency and Self-Attenuation of Hysteretic Behavior of Perovskite Solar Cells with Aging. The Journal of Physical Chemistry Letters 2022, 13 (12) , 2792-2799. https://doi.org/10.1021/acs.jpclett.2c00278
    21. Sudhakar Narra, Chia-Yi Lin, Ashank Seetharaman, Efat Jokar, Eric Wei-Guang Diau. Femtosecond Exciton and Carrier Relaxation Dynamics of Two-Dimensional (2D) and Quasi-2D Tin Perovskites. The Journal of Physical Chemistry Letters 2021, 12 (51) , 12292-12299. https://doi.org/10.1021/acs.jpclett.1c03427
    22. Donghoon Song, Sudhakar Narra, Meng-Yu Li, Jian-Sing Lin, Eric Wei-Guang Diau. Interfacial Engineering with a Hole-Selective Self-Assembled Monolayer for Tin Perovskite Solar Cells via a Two-Step Fabrication. ACS Energy Letters 2021, 6 (12) , 4179-4186. https://doi.org/10.1021/acsenergylett.1c02124
    23. Dhruba B. Khadka, Yasuhiro Shirai, Masatoshi Yanagida, Kenjiro Miyano. Pseudohalide Functional Additives in Tin Halide Perovskite for Efficient and Stable Pb-Free Perovskite Solar Cells. ACS Applied Energy Materials 2021, 4 (11) , 12819-12826. https://doi.org/10.1021/acsaem.1c02496
    24. Weiyin Gao, Rui Huang, He Dong, Wangyue Li, Zhongbin Wu, Yonghua Chen, Chenxin Ran. Heteroatomic molecules for coordination engineering towards advanced Pb-free Sn-based perovskite photovoltaics. Chemical Society Reviews 2025, 2 https://doi.org/10.1039/D4CS00838C
    25. Dhruba B. Khadka, Yasuhiro Shirai, Ryoji Sahara, Masatoshi Yanagida, Kenjiro Miyano. Ameliorating Defects in Wide Bandgap Tin Perovskite Solar Cells Using Fluorinated Solvent and Hydrazide. Small 2024, https://doi.org/10.1002/smll.202410048
    26. Jorge Pascual, Teresa S. Ripolles, Silver-Hamill Turren-Cruz, Juan Luis Delgado. The rise and potential of top interface modification in tin halide perovskite solar cells. Current Opinion in Colloid & Interface Science 2024, 74 , 101863. https://doi.org/10.1016/j.cocis.2024.101863
    27. I‐Hua Tsai, Chun‐Wei Huang, Chun‐Fu Chang, Eric Wei‐Guang Diau. Solvent‐Free Ball Milling Synthesis of Water‐Stable Tin‐Based Pseudohalide Perovskites for Photocatalytic CO 2 Reduction. Small 2024, 575 https://doi.org/10.1002/smll.202409023
    28. Shakil N. Afraj, Chun‐Hsiao Kuan, Hsu‐Lung Cheng, Yun‐Xin Wang, Cheng‐Liang Liu, Yun‐Sheng Shih, Jhih‐Min Lin, Yi‐Wei Tsai, Ming‐Chou Chen, Eric Wei‐Guang Diau. Triphenylamine‐Based Y‐Shaped Self‐Assembled Monolayers for Efficient Tin Perovskite Solar Cells. Small 2024, https://doi.org/10.1002/smll.202408638
    29. Wei-Yin Gao, Chen-Xin Ran, Liang Zhao, He Dong, Wang-Yue Li, Zhao-Qi Gao, Ying-Dong Xia, Hai Huang, Yong-Hua Chen. Machine learning guided efficiency improvement for Sn-based perovskite solar cells with efficiency exceeding 20%. Rare Metals 2024, 43 (11) , 5720-5733. https://doi.org/10.1007/s12598-024-02775-w
    30. Chun‐Hsiao Kuan, Shakil N. Afraj, Yu‐Ling Huang, Arulmozhi Velusamy, Cheng‐Liang Liu, Ting‐Yu Su, Xianyuan Jiang, Jhih‐Min Lin, Ming‐Chou Chen, Eric Wei‐Guang Diau. Functionalized Thienopyrazines on NiOx Film as Self‐Assembled Monolayer for Efficient Tin‐Perovskite Solar Cells Using a Two‐Step Method. Angewandte Chemie 2024, 136 (39) https://doi.org/10.1002/ange.202407228
    31. Chun‐Hsiao Kuan, Shakil N. Afraj, Yu‐Ling Huang, Arulmozhi Velusamy, Cheng‐Liang Liu, Ting‐Yu Su, Xianyuan Jiang, Jhih‐Min Lin, Ming‐Chou Chen, Eric Wei‐Guang Diau. Functionalized Thienopyrazines on NiOx Film as Self‐Assembled Monolayer for Efficient Tin‐Perovskite Solar Cells Using a Two‐Step Method. Angewandte Chemie International Edition 2024, 624 https://doi.org/10.1002/anie.202407228
    32. Mingbian Li, Weijun Li, Haotong Wei. Unique Optoelectronic Properties and Applications of Lead‐Free Perovskites and Derivatives. Advanced Photonics Research 2024, https://doi.org/10.1002/adpr.202400095
    33. Qiuxiang Wang, Jiaxing Xiong, Yanjun Xing, Xinlei Gan, Wendong Zhu, Rong Xuan, Xiaohui Liu, Like Huang, Yuejin Zhu, Jing Zhang. Reductive Sn 2+ Compensator for Efficient and Stable Sn‐Pb Mixed Perovskite Solar Cells. Advanced Science 2024, 11 (25) https://doi.org/10.1002/advs.202400962
    34. Sikandar Aftab, Muhammad Ahsan Saeed, Sajjad Hussain, Fahmid Kabir, Muhammad Aslam, Altaf Hussain Rajpar, Abdullah G. Al-Sehemi. Perovskite Photovoltaics: Navigating Stability Challenges for Enhanced Efficiency. Solar RRL 2024, 8 (2) https://doi.org/10.1002/solr.202300803
    35. Peizhou Li, Xiangrong Cao, Jingrui Li, Bo Jiao, Xun Hou, Feng Hao, Zhijun Ning, Zuqiang Bian, Jun Xi, Liming Ding, Zhaoxin Wu, Hua Dong. Ligand Engineering in Tin-Based Perovskite Solar Cells. Nano-Micro Letters 2023, 15 (1) https://doi.org/10.1007/s40820-023-01143-0
    36. Zhihao Zhang, Yuanfang Huang, Jialun Jin, Yiting Jiang, Yuliang Xu, Jingwei Zhu, Dewei Zhao. Mechanistic Understanding of Oxidation of Tin‐based Perovskite Solar Cells and Mitigation Strategies. Angewandte Chemie 2023, 135 (45) https://doi.org/10.1002/ange.202308093
    37. Zhihao Zhang, Yuanfang Huang, Jialun Jin, Yiting Jiang, Yuliang Xu, Jingwei Zhu, Dewei Zhao. Mechanistic Understanding of Oxidation of Tin‐based Perovskite Solar Cells and Mitigation Strategies. Angewandte Chemie International Edition 2023, 62 (45) https://doi.org/10.1002/anie.202308093
    38. Yanghua Liu, Weiyin Gao, Gang Xing, Shaoshen Lv, Xiaojia Zhao, Jianxiong Yang, Lingfeng Chao, Zhongbin Wu, Yingdong Xia, Chenxin Ran. Tailoring Tensile Strain in Pb–Sn Perovskite Film for Efficient and Stable Narrow‐Bandgap Perovskite Solar Cells. Solar RRL 2023, 7 (21) https://doi.org/10.1002/solr.202300575
    39. Ashank Seetharaman, Sudhakar Narra, Parameswaran Rajamanickam, Raghunath Putikam, Ming-Chang Lin, Eric Wei-Guang Diau. Diffusion of bulky organic cations in the 3D/2D heterostructures to form interfacial quasi-2D (N2) phase for tin perovskite solar cells. Journal of Materials Chemistry A 2023, 11 (39) , 21089-21098. https://doi.org/10.1039/D3TA03539E
    40. Xiaomeng Li, Pengcheng Jia, Fanwen Meng, Xingyu Zhang, Yang Tang, Bo Song, Chang Gao, Liang Qin, Feng Teng, Yanbing Hou. Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells. International Journal of Minerals, Metallurgy and Materials 2023, 30 (10) , 1965-1972. https://doi.org/10.1007/s12613-023-2604-y
    41. Gengling Liu, Xianyuan Jiang, Wenhuai Feng, Guo Yang, Xi Chen, Zhijun Ning, Wu‐Qiang Wu. Synergic Electron and Defect Compensation Minimizes Voltage Loss in Lead‐Free Perovskite Solar Cells. Angewandte Chemie 2023, 135 (39) https://doi.org/10.1002/ange.202305551
    42. Gengling Liu, Xianyuan Jiang, Wenhuai Feng, Guo Yang, Xi Chen, Zhijun Ning, Wu‐Qiang Wu. Synergic Electron and Defect Compensation Minimizes Voltage Loss in Lead‐Free Perovskite Solar Cells. Angewandte Chemie International Edition 2023, 62 (39) https://doi.org/10.1002/anie.202305551
    43. Liang Wang, Qingqing Miao, Dandan Wang, Mengmeng Chen, Huan Bi, Jiaqi Liu, Ajay Kumar Baranwal, Gaurav Kapil, Yoshitaka Sanehira, Takeshi Kitamura, Tingli Ma, Zheng Zhang, Qing Shen, Shuzi Hayase. 14.31 % Power Conversion Efficiency of Sn‐Based Perovskite Solar Cells via Efficient Reduction of Sn 4+. Angewandte Chemie 2023, 135 (33) https://doi.org/10.1002/ange.202307228
    44. Liang Wang, Qingqing Miao, Dandan Wang, Mengmeng Chen, Huan Bi, Jiaqi Liu, Ajay Kumar Baranwal, Gaurav Kapil, Yoshitaka Sanehira, Takeshi Kitamura, Tingli Ma, Zheng Zhang, Qing Shen, Shuzi Hayase. 14.31 % Power Conversion Efficiency of Sn‐Based Perovskite Solar Cells via Efficient Reduction of Sn 4+. Angewandte Chemie International Edition 2023, 62 (33) https://doi.org/10.1002/anie.202307228
    45. Zhihao Zhang, Yuanfang Huang, Can Wang, Yiting Jiang, Jialun Jin, Jianbin Xu, Zicheng Li, Zhenhuang Su, Qin Zhou, Jingwei Zhu, Rui He, Da Hou, Huagui Lai, Shengqiang Ren, Cong Chen, Xingyu Gao, Tingting Shi, Walter Hu, Fan Fu, Peng Gao, Dewei Zhao. Green-antisolvent-regulated distribution of p-type self-doping enables tin perovskite solar cells with an efficiency of over 14%. Energy & Environmental Science 2023, 16 (8) , 3430-3440. https://doi.org/10.1039/D3EE00601H
    46. Negin Sabahi, Hashem Shahroosvand. Mechanistic insights into the key role of methylammonium iodide in the stability of perovskite materials. RSC Advances 2023, 13 (30) , 20408-20416. https://doi.org/10.1039/D3RA01304A
    47. Chun‐Hsiao Kuan, Rajendiran Balasaravanan, Shih‐Min Hsu, Jen‐Shyang Ni, Yi‐Tai Tsai, Zhong‐Xiang Zhang, Ming‐Chou Chen, Eric Wei‐Guang Diau. Dopant‐Free Pyrrolopyrrole‐Based (PPr) Polymeric Hole‐Transporting Materials for Efficient Tin‐Based Perovskite Solar Cells with Stability Over 6000 h. Advanced Materials 2023, 35 (23) https://doi.org/10.1002/adma.202300681
    48. Donghoon Song, Hung-Yu Tseng, Sudhakar Narra, I-Hua Tsai, Eric Wei-Guang Diau. Solvent engineering for triple cationic ITO-based mesoscopic tin perovskite solar cells. Chemical Engineering Journal 2023, 464 , 142635. https://doi.org/10.1016/j.cej.2023.142635
    49. Shakil N. Afraj, Chun‐Hsiao Kuan, Jian‐Sing Lin, Jen‐Shyang Ni, Arulmozhi Velusamy, Ming‐Chou Chen, Eric Wei‐Guang Diau. Quinoxaline‐Based X‐Shaped Sensitizers as Self‐Assembled Monolayer for Tin Perovskite Solar cells. Advanced Functional Materials 2023, 33 (17) https://doi.org/10.1002/adfm.202213939
    50. Shurong Wang, Huanhuan Yao, Weike Zhu, Cheng Wu, Zhiyue Tang, Junke Liu, Liming Ding, Feng Hao. Stabilization of Perovskite Lattice and Suppression of Sn 2+ /Sn 4+ Oxidation via Formamidine Acetate for High Efficiency Tin Perovskite Solar Cells. Advanced Functional Materials 2023, 33 (17) https://doi.org/10.1002/adfm.202215041
    51. Ga‐Yeong Kim, Kyusun Kim, Hee Jung Kim, Hyun Suk Jung, Il Jeon, Jin‐Wook Lee. Sustainable and environmentally viable perovskite solar cells. EcoMat 2023, 5 (4) https://doi.org/10.1002/eom2.12319
    52. Will Clarke, Matthew V. Cowley, Matthew J. Wolf, Petra Cameron, Alison Walker, Giles Richardson. Inverted hysteresis as a diagnostic tool for perovskite solar cells: Insights from the drift-diffusion model. Journal of Applied Physics 2023, 133 (9) https://doi.org/10.1063/5.0136683
    53. Tian-Yu Teng, Fan Hu, Yan-Hui Lou, Jun-Jie Cao, Chun-Hao Chen, Yi-Ran Shi, Kai-Li Wang, Jing Chen, Zhao-Kui Wang, Liang-Sheng Liao. Repaired surface structural imperfection of tin Wide-Bandgap perovskite films for photovoltaic application. Chemical Engineering Journal 2023, 457 , 141292. https://doi.org/10.1016/j.cej.2023.141292
    54. Xiaomeng Li, Yanbing Hou, Yang Tang, Bo Song, Fanwen Meng, Chang Gao, Liang Qin, Yufeng Hu, Zhidong Lou, Feng Teng. Efficient Tin-Based Perovskite Solar Cell with Cesium Acetate Pre-Buried Pedot:Pss Hole Transport Layer. 2023https://doi.org/10.2139/ssrn.4580554
    55. Xiaomeng Li, Yanbing Hou, Yang Tang, Bo Song, Fanwen Meng, Chang Gao, Liang Qin, Yufeng Hu, Zhidong Lou, Feng Teng. Efficient Tin-Based Perovskite Solar Cell with Cesium Acetate Pre-Buried Pedot:Pss Hole Transport Layer. 2023https://doi.org/10.2139/ssrn.4598830
    56. Chun-Hsiao Kuan, Guo-Shao Luo, Sudhakar Narra, Surajit Maity, Hirotsugu Hiramatsu, Yi-Wei Tsai, Jhih-Min Lin, Cheng-Hung Hou, Jing-Jong Shyue, Eric Wei-Guang Diau. How can a hydrophobic polymer PTAA serve as a hole- transport layer for an inverted tin perovskite solar cell?. Chemical Engineering Journal 2022, 450 , 138037. https://doi.org/10.1016/j.cej.2022.138037
    57. Ece Aktas, Nagalingam Rajamanickam, Jorge Pascual, Shuaifeng Hu, Mahmoud H. Aldamasy, Diego Di Girolamo, Wenhui Li, Giuseppe Nasti, Eugenia Martínez-Ferrero, Atsushi Wakamiya, Emilio Palomares, Antonio Abate. Challenges and strategies toward long-term stability of lead-free tin-based perovskite solar cells. Communications Materials 2022, 3 (1) https://doi.org/10.1038/s43246-022-00327-2
    58. Padmini Pandey, SungWon Cho, Shuzi Hayase, Jung Sang Cho, Dong-Won Kang. New strategies to develop High-Efficiency Lead-Free wide bandgap perovskite solar cells. Chemical Engineering Journal 2022, 448 , 137622. https://doi.org/10.1016/j.cej.2022.137622
    59. Murat Kaleli, Esra Şen, Havva Elif Lapa, Durmuş Ali Aldemir. The production route of the MASnBr3 based perovskite solar cells with fully ultrasonic spray pyrolysis method. Physica B: Condensed Matter 2022, 645 , 414293. https://doi.org/10.1016/j.physb.2022.414293
    60. Ajay Kumar Baranwal, Shuzi Hayase. Recent Advancements in Tin Halide Perovskite-Based Solar Cells and Thermoelectric Devices. Nanomaterials 2022, 12 (22) , 4055. https://doi.org/10.3390/nano12224055
    61. Zheng Zhang, Muhammad Akmal Kamarudin, Ajay Kumar Baranwal, Gaurav Kapil, Shahrir Razey Sahamir, Yoshitaka Sanehira, Mengmeng Chen, Liang Wang, Qing Shen, Shuzi Hayase. Sequential Passivation for Lead‐Free Tin Perovskite Solar Cells with High Efficiency. Angewandte Chemie 2022, 134 (42) https://doi.org/10.1002/ange.202210101
    62. Zheng Zhang, Muhammad Akmal Kamarudin, Ajay Kumar Baranwal, Gaurav Kapil, Shahrir Razey Sahamir, Yoshitaka Sanehira, Mengmeng Chen, Liang Wang, Qing Shen, Shuzi Hayase. Sequential Passivation for Lead‐Free Tin Perovskite Solar Cells with High Efficiency. Angewandte Chemie International Edition 2022, 61 (42) https://doi.org/10.1002/anie.202210101
    63. Gengling Liu, Yang Zhong, Wenhuai Feng, Meifang Yang, Guo Yang, Jun‐Xing Zhong, Tian Tian, Jian‐Bin Luo, Junlei Tao, Shaopeng Yang, Xu‐Dong Wang, Licheng Tan, Yiwang Chen, Wu‐Qiang Wu. Multidentate Chelation Heals Structural Imperfections for Minimized Recombination Loss in Lead‐Free Perovskite Solar Cells. Angewandte Chemie 2022, 134 (40) https://doi.org/10.1002/ange.202209464
    64. Gengling Liu, Yang Zhong, Wenhuai Feng, Meifang Yang, Guo Yang, Jun‐Xing Zhong, Tian Tian, Jian‐Bin Luo, Junlei Tao, Shaopeng Yang, Xu‐Dong Wang, Licheng Tan, Yiwang Chen, Wu‐Qiang Wu. Multidentate Chelation Heals Structural Imperfections for Minimized Recombination Loss in Lead‐Free Perovskite Solar Cells. Angewandte Chemie International Edition 2022, 61 (40) https://doi.org/10.1002/anie.202209464
    65. SungWon Cho, Padmini Pandey, Jinwoo Park, Tae-Woo Lee, Hyungju Ahn, Hyosung Choi, Dong-Won Kang. Phenylethylammonium-formamidinium-methylammonium quasi-2D/3D tin wide-bandgap perovskite solar cell with improved efficiency and stability. Chemical Engineering Journal 2022, 446 , 137388. https://doi.org/10.1016/j.cej.2022.137388
    66. Lei Zhang, Wenguang Hu. Molecular design for perovskite solar cells. International Journal of Energy Research 2022, 46 (11) , 14740-14765. https://doi.org/10.1002/er.8277
    67. Zheng Zhang, Liang Wang, Ajay Kumar Baranwal, Shahrir Razey Sahamir, Gaurav Kapil, Yoshitaka Sanehira, Muhammad Akmal Kamarudin, Kohei Nishimura, Chao Ding, Dong Liu, Yusheng Li, Hua Li, Mengmeng Chen, Qing Shen, Teresa S. Ripolles, Juan Bisquert, Shuzi Hayase. Enhanced efficiency and stability in Sn-based perovskite solar cells by trimethylsilyl halide surface passivation. Journal of Energy Chemistry 2022, 71 , 604-611. https://doi.org/10.1016/j.jechem.2022.03.028
    68. Danni Yu, Qi Wei, Hansheng Li, Junhan Xie, Xianyuan Jiang, Ting Pan, Hao Wang, Mengling Pan, Wenjia Zhou, Weimin Liu, Philip C. Y. Chow, Zhijun Ning. Quasi‐2D Bilayer Surface Passivation for High Efficiency Narrow Bandgap Perovskite Solar Cells. Angewandte Chemie 2022, 134 (20) https://doi.org/10.1002/ange.202202346
    69. Danni Yu, Qi Wei, Hansheng Li, Junhan Xie, Xianyuan Jiang, Ting Pan, Hao Wang, Mengling Pan, Wenjia Zhou, Weimin Liu, Philip C. Y. Chow, Zhijun Ning. Quasi‐2D Bilayer Surface Passivation for High Efficiency Narrow Bandgap Perovskite Solar Cells. Angewandte Chemie International Edition 2022, 61 (20) https://doi.org/10.1002/anie.202202346
    70. Mengmeng Chen, Gaurav Kapil, Liang Wang, Shahrir Razey Sahamir, Ajay K. Baranwal, Kohei Nishimura, Yoshitaka Sanehira, Zheng Zhang, Muhammad Akmal Kamarudin, Qing Shen, Shuzi Hayase. High performance wide bandgap Lead-free perovskite solar cells by monolayer engineering. Chemical Engineering Journal 2022, 436 , 135196. https://doi.org/10.1016/j.cej.2022.135196
    71. Yang Su, Jia Yang, Gengling Liu, Wangping Sheng, Jiaqi Zhang, Yang Zhong, Licheng Tan, Yiwang Chen. Acetic Acid‐Assisted Synergistic Modulation of Crystallization Kinetics and Inhibition of Sn 2+ Oxidation in Tin‐Based Perovskite Solar Cells. Advanced Functional Materials 2022, 32 (12) https://doi.org/10.1002/adfm.202109631
    72. Chun-Hsiao Kuan, Guo-Shao Luo, Sudhakar Narra, Surajit Maity, Hirotsugu Hiramatsu, Yi-Wei Tsai, Jhih-Min Lin, Cheng-Hung Hou, Jing-Jong Shyue, Eric Wei-Guang Diau. How Can a Hydrophobic Polymer Ptaa Serve as a Hole- Transport Layer for an Inverted Tin Perovskite Solar Cell?. SSRN Electronic Journal 2022, 598 https://doi.org/10.2139/ssrn.4110650
    73. Cheng-Lin Wang, Zuo-Lin Zhang, Yun-Fei Zhu, Xue-Fan Zhao, Hong-Wei Song, Cong Chen, , . Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica 2022, 71 (16) , 166801. https://doi.org/10.7498/aps.71.20220359

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2021, 12, 41, 10106–10111
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.1c03107
    Published October 11, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    2477

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.