ACS Publications. Most Trusted. Most Cited. Most Read
Light-Induced Nonthermal Phase Transition to the Topological Crystalline Insulator State in SnSe
My Activity

Figure 1Loading Img
  • Open Access
Physical Insights into Materials and Molecular Properties

Light-Induced Nonthermal Phase Transition to the Topological Crystalline Insulator State in SnSe
Click to copy article linkArticle link copied!

Open PDFSupporting Information (1)

The Journal of Physical Chemistry Letters

Cite this: J. Phys. Chem. Lett. 2023, 14, 41, 9329–9334
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jpclett.3c02450
Published October 11, 2023

Copyright © 2023 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

Femtosecond pulses have been used to reveal hidden broken symmetry states and induce transitions to metastable states. However, these states are mostly transient and disappear after laser removal. Photoinduced phase transitions toward crystalline metastable states with a change of topological order are rare and difficult to predict and realize experimentally. Here, by using constrained density functional perturbation theory and accounting for light-induced quantum anharmonicity, we show that ultrafast lasers can permanently transform the topologically trivial orthorhombic structure of SnSe into the topological crystalline insulating rocksalt phase via a first-order nonthermal phase transition. We describe the reaction path and evaluate the critical fluence and possible decay channels after photoexcitation. Our simulations of the photoexcited structural and vibrational properties are in excellent agreement with recent pump–probe data in the intermediate fluence regime below the transition with an error on the curvature of the quantum free energy of the photoexcited state that is smaller than 2%.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2023 The Authors. Published by American Chemical Society

The development of ultrafast laser light with femtosecond (fs) pulses has led to the possibility of inducing a substantial electron–hole population unbalance in semiconductors. (1) After some tens of femtoseconds, this electron–hole plasma is well described by a two-chemical potential model, where both electrons and holes are characterized by a thermal distribution. Thus, the ions feel an out-of-equilibrium electronic population with a substantial occupation of conduction or antibonding states that can lead to structural phase transitions before electron–hole recombination takes place. In this scenario, ultrafast pulses can be used to overcome free-energy barriers and synthesize crystal structures that cannot be reached by conventional thermodynamical paths. This kind of structural transformation is labeled nonthermal, to distinguish it from the much slower ones involved in conventional (thermal) material synthesis. Experimental demonstrations of nonthermal phenomena induced by fs pulses are order–disorder phase transitions, (2) charge density waves, (3) nonthermal melting of solids, (4) transient topological phase transitions (5) and light-induced suppression of incipient ferroelectricity. (6) In all of these cases, ultrafast light induces short-lived transient states. Much less common are light-induced nonthermal permanent structural modifications. In this work, we show that nonthermal processes can be used to permanently stabilize topological crystalline insulating (TCI) phases. (7−11) In this work, we will focus our attention on tin selenide (SnSe), a IV–VI p-type narrow gap semiconductor that has become popular due to its attractive thermoelectric properties (12−15) (zT = 2.6 at T = 923 K). At ambient conditions, tin selenide crystallizes in the orthorhombic Pnma structure, as sketched in Figure 1. At T ≈ 813 K (16) or finite pressure, (17) it undergoes a second-order phase transition to an orthorhombic Cmcm structure. (17−20) In SnSe the topological nontrivial state occurs neither in the Pnma phase, nor in the Cmcm phase, but in a metastable rocksalt structure, which cannot be reached via a thermal transition, but it can only be synthesized in thin films via epitaxial growth techniques on a cubic substrate. (21)

Figure 1

Figure 1. Pictorial representation of the nonthermal pathway connecting the topologically trivial Pnma structure with the TCI Fmm structure. For each phase, sketched crystal structures and band structures are represented. Fs pulses induce a first-order transformation toward a transient phase with Immm symmetry. This phase spontaneously decays into the Fmm structure after electron–hole recombination.

Here we design a different approach to obtain the topological crystalline phase of SnSe (see Figure 1), namely we consider the effect of ultrafast pulses on the topologically trivial Pnma phase, which is close to a band inversion. (22) By laser pumping with a near-infrared pulse (1.55 eV) and monitoring the time evolution with time-resolved Raman and X-ray diffraction, it was recently shown that structural modifications occur in SnSe, signaled by Ag modes softening and fluence-dependent atomic displacements, (23) interpreted as the precursor of a symmetrization toward a different orthorhombic structure with Immm symmetry. However, no transition to this new crystal phase was detected, and first-principles simulations were unable to reproduce the observed structural distortion.

In this Letter, we investigate the nonthermal structural transformations of the Pnma structure after irradiation with fs pulses by combining constrained density functional perturbation theory (c-DFPT) (24) and stochastic self-consistent harmonic approximation (SSCHA), (25) accounting for quantum anharmonicity in the presence of an electron–hole plasma for the first time. Further technical details are provided in the Supporting Information, which includes refs (26−43). We identify the nonthermal pathway (see Figure 1) and the critical fluence for the structural transition from the ground-state Pnma to the transient Immm phase. Our calculated structural distortions and softenings of the Ag modes along the reaction path are in excellent agreement with experimental data. (23) Most importantly, we show that the transient Immm phase spontaneously decays into the TCI rocksalt Fmm SnSe structure after electron–hole recombination and that the structural transformation is permanent by virtue of the free-energy barrier between the rocksalt and the Pnma phase.

In Figure 2a,b we display the optimized tin Wyckoff x and z coordinates as functions of the photocarrier concentration (PC), ne, expressed as the number of photoexcited electrons per unit cell (u.c.). Our results are compared with time-resolved diffraction data from ref (23) (see also Supporting Information, Section S3) measured in the first 5 ps after illumination. After photoexcitation, both the internal equilibrium positions and lattice parameters can change. However, the time scale for the two phenomena is generally different. (44) To unambiguously disentangle cell deformation and internal displacements at a fixed cell, we perform structural optimization at a fixed cell, Figure 2a, and at a variable cell, Figure 2b, in the presence of an electron–hole plasma (the procedure regarding fluence/PC mapping is reported in the Supporting Information).

Figure 2

Figure 2. Tin Wyckoff positions x and z as functions of the photocarrier concentration for fixed (a) and variable (b) volume crystal structure optimization. The red and blue dots are labeled with the z and x coordinates of tin, respectively. (c) Normalized phonon frequencies at Γ for the three relevant Ag modes versus PC. The red, blue, and orange dots stand for the Ag,1, Ag,2, and Ag,4 modes, respectively. The theoretical harmonic, anharmonic, and experimental values of ω0 are reported in the Supporting Information. The experimental data are from ref (23).

Our calculation at a fixed cell is in excellent agreement with time-resolved X-ray diffraction data in the first 5 ps, while that at a variable cell substantially deviates. This confirms that in the first picoseconds after irradiation the atoms are displaced at a fixed cell. Previous calculations from ref (23) (see Figure S5) obtained Sn displacements 1 order of magnitude larger than the experimental ones. Conversely, we report an excellent agreement between our c-DFT calculations and experimental data within our framework. (24) The stark disagreement among the calculation of ref (23) and experiments arises because in ref (23) the electron and hole occupations are not self-consistently relaxed. This procedure does not lead to a correctly thermalized quasi-equilibrium Fermi–Dirac distribution. An explanation of the main differences between the approach of ref (23) and the c-DFT approach of refs (45and24) used in this work is reported in Section S3.1 in the Supporting Information.

The discontinuity in the zSn and xSn in Figure 2a,b at nec ≈ 0.6e/ u.c. signals the occurrence of a first-order phase transition. The phase transition can be easily identified by noting that for ne ≥ 0.6 e/u.c. the Wyckoff positions of tin correspond to that of the Immm structure, where they are fixed by symmetry. Thus, we predict the phase transition from Pnma to Immm to occur at a value of ne that is approximately a factor of 2 larger than the highest photocarrier concentration measured in ref (23).

Additional validation of our findings arises from the Ag harmonic and anharmonic phonon frequency calculation at a fixed cell. The results are shown in Figure 2c where they are compared with the measured frequencies of oscillation of the Bragg peaks in the first ps after pumping as a function of ne. (23) We plot the value of the harmonic Ag phonon frequencies (full circles) at a given photocarrier concentration (i.e., ω(ne)) divided by the harmonic phonon frequency in the ground state (i.e., ω0 = ω(ne = 0)). The softening of harmonic modes Ag,1 and Ag,4 induced by the photoexcitation is in excellent agreement with the experimental data. Concerning the Ag,2 mode, c-DFPT overestimates the softening induced by the electron–hole plasma within the harmonic approximation. A possible reason for this discrepancy is the presence of strong anharmonic renormalization for the Ag,2 mode. Thus, we calculated the anharmonic phonon frequencies in the absence of photocarriers and for ne = 0.2 e/u.c. at T = 0 K. Our results are depicted in Figure 2c, where the values of the normalized anharmonic phonon frequencies (ω(ne)/ω0) are represented as filled squares. The anharmonic corrections to the phonon frequencies of the Ag,1 and Ag,4 modes are mild and do not change the overall trend obtained at the harmonic level. On the contrary, the Ag,2 mode is substantially affected by anharmonicity, resulting in an improved agreement with the experimental data. The maximum relative error in the predicted quantum phonon frequency softening is roughly 2%.

The Ag,2 mode plays a crucial role in the PnmaImmm phase transition. The observed strong anharmonic renormalization of the Ag,2 mode indicates that the Born–Oppenheimer free-energy surface surrounding the minimum energy state corresponding to the Pnma phase becomes progressively more anharmonic along the path of the transition.

The crucial role of quantum anharmonicity becomes even more evident if the electronic structures together with the harmonic and quantum anharmonic dispersions of the Pnma and Immm phase are considered (in Figure 3). The insulating ground state (Figure 3a) displays a finite electronic gap (∼0.52 eV) and dynamically stable harmonic phonons (Figure 3c). The quantum anharmonic corrections on the phonon spectrum are essentially negligible. On the contrary, the light-induced Immm phase in the presence of an electron–hole plasma at ne = 0.6 e/u.c. has a metallic electronic structure with electron and hole Fermi surfaces located close to the high-symmetry Y and Z points (Figure 3b). These Fermi surfaces are nested (see the Supporting Information, Section S3) and trigger the emergence of a Peierls instability at the harmonic level signaled by imaginary phonons along the Γ–X direction at a wave-vector compatible with the nesting condition (Figure 3d). Structural minimization shows the emergence of a 2 × 1 × 1 one-dimensional chain-like charge density wave with an energy gain of ∼1.5 meV/atom with respect to the undistorted structure (see the Supporting Information). When quantum-anharmonic corrections are included within the SSCHA at ne = 0.6 e/u.c., we find that the instability is removed and a sharp one-dimensional Kohn-anomaly appears (Figure 3d). Thus, light-induced quantum anharmonicity stabilizes the Immm phase in the transient state at ne = 0.6 e/u.c.

Figure 3

Figure 3. Ground-state electronic structure of the Pnma phase (a) and of the Immm transient phase at ne = 0.6 e/u.c. (b). The Fermi level in panel a and the holes and electron Fermi levels in panel b are depicted as dashed lines. Harmonic and anharmonic phonon spectra for the Pnma phase at ne = 0.0 e/u.c. (c) and for the transient Immm phase at ne = 0.6 e/u.c. (d). Both plots are at T = 0 K. The inset shows the removal of the dynamic instability by quantum anharmonic effects.

The critical PC of ne = 0.6 e/u.c., corresponding to ∼4.8 mJ/cm2, is achievable in ultrafast experiments; similar or larger values have already been achieved in narrow gap semiconductors without inducing significant damage to the sample. (46−48)

Having demonstrated the accuracy of our approach to describe the structural evolution after photoexcitation, we now try to understand more in detail the reaction path and the nature of this transition. In Figure 4, we display the energy along the paths relative to the (a) PnmaImmm and (b) PnmaCmcm transitions, for a few values of ne. The path is parametrized by the reaction coordinate η, where η = 0 stands for the Pnma structure while η = 1 represents either the Immm or Cmcm structure.

Figure 4

Figure 4. Total energy curves along the PnmaImmm (a) and PnmaCmcm (b) reaction paths: η = 0 corresponds to the Pnma phase while η = 1 to the Immm (a) or Cmcm (b) phase. (c) Possible decay channels for the Immm phase: ImmmPnma, ImmmCmcm, and ImmmFmm. We recall that 1 mRy/u.c. corresponds to 40 K while 1 meV/u.c. corresponds to 3 K.

Considering the ne = 0.0 e/u.c. case, both the reactions toward Immm and Cmcm present a large kinetic barrier. As the PC is increased, the PnmaImmm barrier is gradually suppressed and becomes zero for nenec. Since the lowest-energy configuration corresponds to the Immm phase for ne > nec, the PnmaImmm reaction becomes spontaneous. Conversely, the PnmaCmcm barrier remains finite for every value of PC.

The question arises if the structural transformation toward the Immm is permanent, i.e. if the Immm phase remains stable at longer times after carrier recombination has taken place. To correctly describe the slow structural dynamics, one must also include volume relaxation effects.

To this aim, we consider variable-volume reaction paths in the absence of photoexcitation starting from the Immm structure, namely, ImmmPnma, ImmmCmcm, and ImmmFmm. The initial Immm structure corresponds to the photoinduced transient phase, while the final structures are obtained through variable volume optimization with zero PC. Along the reactions, both the internal coordinates and the structural parameters vary. The results of our calculations are listed in Figure 4c. Both the transformations ImmmPnma and ImmmCmcm present large energy barriers and thus are not spontaneous. Conversely, the ImmmFmm reaction does not have a barrier and can occur spontaneously. Hence, once the transient Immm phase has been stabilized, electron–hole recombination takes place, and the system decays into the TCI Fmm phase.

In addition, we stress that a large free-energy barrier, amounting to 15 mRy/u.c., exists between the Fmm and the Pnma (see Figure S6). Hence, the topological rocksalt phase can survive thermal fluctuations corresponding to ∼600 K before decaying into the Pnma phase. This finding demonstrates the occurrence of a nonthermal path stabilizing the SnSe rocksalt structure and provides a nonthermal synthesis mechanism for the rocksalt TCI phase.

We stress the fundamental role played by light-induced symmetrization. The TCI phase of rocksalt-SnSe is protected by a combination of time-reversal and C4 symmetry, the latter being absent in both the Pnma and Immm phases. Crucially, we showed that laser irradiation favors the PnmaImmm symmetrization, allowing the crystal to access a metastable region of the phase diagram, in close proximity to the Fmm structure, which is successively stabilized after the laser removal, finally restoring the cubic C4 symmetry necessary to protect the topological crystalline order. (7)

In conclusion, we have shown that ultrafast pulses can permanently transform the topologically trivial Pnma phase of SnSe into the TCI rocksalt phase. The mechanism is nonthermal and does not require epitaxial growth on particular substrates. This is one of the rare cases when ultrafast pulses change the topological properties of the material. We identified the transition path and evaluated its critical fluence. A strong validation for the accuracy and predictivity of our theoretical framework is the excellent agreement of our quantum anharmonic calculations in the photoexcited regime with recent pump–probe X-ray free electron-laser measurements in the low fluence regime below the transition.

Finally, we point out that our findings demonstrate that light can be used to reshape the free-energy landscape, allowing access to otherwise unreachable regions of the phase diagram. This general result is relevant for the exploration of new phases in a broad class of materials, including monochalcogenides, (49) which are highly relevant for energy applications, insulating/semiconducting 2D materials with strong spin–orbit coupling, and, in general, all semiconducting materials in the proximity of structural instability.

Data Availability

Click to copy section linkSection link copied!

The data underlying this study are openly available in Zenodo at https://doi.org/10.5281/zenodo.8413390.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02450.

  • Description of the computational methods, crystal structures, and comparison of the two different cDFT approaches (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

Acknowledgments

Click to copy section linkSection link copied!

Funded by the European Union (ERC, DELIGHT, 101052708). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. We acknowledge the CINECA award under the ISCRA initiative for the availability of high-performance computing resources and support. We acknowledge PRACE for awarding us access to Joliot-Curie at GENCI@CEA, France (project file number 2021240020).

References

Click to copy section linkSection link copied!

This article references 49 other publications.

  1. 1
    Maiuri, M.; Garavelli, M.; Cerullo, G. Ultrafast Spectroscopy: State of the Art and Open Challenges. J. Am. Chem. Soc. 2020, 142, 315,  DOI: 10.1021/jacs.9b10533
  2. 2
    Wall, S.; Yang, S.; Vidas, L.; Chollet, M.; Glownia, J. M.; Kozina, M.; Katayama, T.; Henighan, T.; Jiang, M.; Miller, T. A. Ultrafast disordering of vanadium dimers in photoexcited VO2. Science 2018, 362, 572576,  DOI: 10.1126/science.aau3873
  3. 3
    Kogar, A.; Zong, A.; Dolgirev, P. E.; Shen, X.; Straquadine, J.; Bie, Y.-Q.; Wang, X.; Rohwer, T.; Tung, I.-C.; Yang, Y. Light-induced charge density wave in late3. Nat. Phys. 2020, 16, 159163,  DOI: 10.1038/s41567-019-0705-3
  4. 4
    Sokolowski-Tinten, K.; Bialkowski, J.; von der Linde, D. Ultrafast laser-induced order-disorder transitions in semiconductors. Phys. Rev. B 1995, 51, 1418614198,  DOI: 10.1103/PhysRevB.51.14186
  5. 5
    Sie, E. J.; Nyby, C. M.; Pemmaraju, C. D.; Park, S. J.; Shen, X.; Yang, J.; Hoffmann, M. C.; Ofori-Okai, B. K.; Li, R.; Reid, A. H. An ultrafast symmetry switch in a Weyl semimetal. Nature 2019, 565, 6166,  DOI: 10.1038/s41586-018-0809-4
  6. 6
    Jiang, M. P.; Trigo, M.; Savić, I.; Fahy, S.; Murray, E. D.; Bray, C.; Clark, J.; Henighan, T.; Kozina, M.; Chollet, M. The origin of incipient ferroelectricity in lead Telluride. Nat. Commun. 2016, 7, 12291,  DOI: 10.1038/ncomms12291
  7. 7
    Fu, L. Topological Crystalline Insulators. Phys. Rev. Lett. 2011, 106, 106802,  DOI: 10.1103/PhysRevLett.106.106802
  8. 8
    Hsieh, T. H.; Lin, H.; Liu, J.; Duan, W.; Bansil, A.; Fu, L. Topological crystalline insulators in the snte material class. Nat. Commun. 2012, 3, 982,  DOI: 10.1038/ncomms1969
  9. 9
    Sun, Y.; Zhong, Z.; Shirakawa, T.; Franchini, C.; Li, D.; Li, Y.; Yunoki, S.; Chen, X.-Q. Rocksalt SnS and SnSe: Native topological crystalline insulators. Phys. Rev. B 2013, 88, 235122,  DOI: 10.1103/PhysRevB.88.235122
  10. 10
    Dziawa, P.; Kowalski, B. J.; Dybko, K.; Buczko, R.; Szczerbakow, A.; Szot, M.; Łusakowska, E.; Balasubramanian, T.; Wojek, B. M.; Berntsen, M. H. Topological crystalline insulator states in Pb1-xSnxSe. Nat. Mater. 2012, 11, 10231027,  DOI: 10.1038/nmat3449
  11. 11
    Ma, J.; Yi, C.; Lv, B.; Wang, Z.; Nie, S.; Wang, L.; Kong, L.; Huang, Y.; Richard, P.; Zhang, P. Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb. Science Advances 2017, 3, e1602415  DOI: 10.1126/sciadv.1602415
  12. 12
    Guo, R.; Wang, X.; Kuang, Y.; Huang, B. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Phys. Rev. B 2015, 92, 115202,  DOI: 10.1103/PhysRevB.92.115202
  13. 13
    Xie, L.; He, D.; He, J. SnSe, the rising star thermoelectric material: A new paradigm in atomic blocks, building intriguing physical properties. Materials Horizons 2021, 8, 18471865,  DOI: 10.1039/D1MH00091H
  14. 14
    Chandra, S.; Dutta, P.; Biswas, K. High-Performance Thermoelectrics Based on Solution-Grown SnSe Nanostructures. ACS Nano 2022, 16, 714,  DOI: 10.1021/acsnano.1c10584
  15. 15
    Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in snse crystals. Nature 2014, 508, 373377,  DOI: 10.1038/nature13184
  16. 16
    Chattopadhyay, T.; Pannetier, J.; Von Schnering, H. Neutron diffraction study of the structural phase transition in SnS and SnSe. J. Phys. Chem. Solids 1986, 47, 879885,  DOI: 10.1016/0022-3697(86)90059-4
  17. 17
    Loa, I.; Husband, R. J.; Downie, R. A.; Popuri, S. R.; Bos, J.-W. G. Structural changes in thermoelectric SnSe at high pressures. J. Phys.: Condens. Matter 2015, 27, 072202,  DOI: 10.1088/0953-8984/27/7/072202
  18. 18
    Ghosh, A.; Gusmão, M.; Chaudhuri, P.; Michielon de Souza, S.; Mota, C.; Trichês, D.; Frota, H. Electrical properties of SnSe under high-pressure. Computational Condensed Matter 2016, 9, 7781,  DOI: 10.1016/j.cocom.2016.11.001
  19. 19
    Adouby, K.; Perez-Vicente, C.; Jumas, J. C. Structure and temperature transformation of SnSe. Stabilization of a new cubic phase Sn4Bi2Se7. Zeitschrift für Kristallographie - Crystalline Materials 1998, 213, 343349,  DOI: 10.1524/zkri.1998.213.6.343
  20. 20
    Aseginolaza, U.; Bianco, R.; Monacelli, L.; Paulatto, L.; Calandra, M.; Mauri, F.; Bergara, A.; Errea, I. Phonon Collapse and Second-Order Phase Transition in Thermoelectric SnSe. Phys. Rev. Lett. 2019, 122, 075901,  DOI: 10.1103/PhysRevLett.122.075901
  21. 21
    Mariano, A. N.; Chopra, K. L. Polymorphism in Some IV-VI Compounds Induced by High Pressure and Thin-Film Epitaxial Growth. Appl. Phys. Lett. 1967, 10, 282284,  DOI: 10.1063/1.1754812
  22. 22
    Hong, J.; Delaire, O. Phase transition and anharmonicity in SnSe. Materials Today Physics 2019, 10, 100093,  DOI: 10.1016/j.mtphys.2019.100093
  23. 23
    Huang, Y.; Yang, S.; Teitelbaum, S.; De la Peña, G.; Sato, T.; Chollet, M.; Zhu, D.; Niedziela, J. L.; Bansal, D.; May, A. F. Observation of a Novel Lattice Instability in Ultrafast Photoexcited SnSe. Phys. Rev. X 2022, 12, 011029,  DOI: 10.1103/PhysRevX.12.011029
  24. 24
    Marini, G.; Calandra, M. Lattice dynamics of photoexcited insulators from constrained density-functional perturbation theory. Phys. Rev. B 2021, 104, 144103,  DOI: 10.1103/PhysRevB.104.144103
  25. 25
    Monacelli, L.; Bianco, R.; Cherubini, M.; Calandra, M.; Errea, I.; Mauri, F. The stochastic self-consistent harmonic approximation: calculating vibrational properties of materials with full quantum and anharmonic effects. J. Phys.: Condens. Matter 2021, 33, 363001,  DOI: 10.1088/1361-648X/ac066b
  26. 26
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502,  DOI: 10.1088/0953-8984/21/39/395502
  27. 27
    Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901,  DOI: 10.1088/1361-648X/aa8f79
  28. 28
    Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 2013, 88, 085117,  DOI: 10.1103/PhysRevB.88.085117
  29. 29
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 38653868,  DOI: 10.1103/PhysRevLett.77.3865
  30. 30
    Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104,  DOI: 10.1063/1.3382344
  31. 31
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 51885192,  DOI: 10.1103/PhysRevB.13.5188
  32. 32
    Sundaram, S. K.; Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 2002, 1, 217224,  DOI: 10.1038/nmat767
  33. 33
    Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. C. Thermal Contraction and Disordering of the Al(110) Surface. Phys. Rev. Lett. 1999, 82, 32963299,  DOI: 10.1103/PhysRevLett.82.3296
  34. 34
    Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515562,  DOI: 10.1103/RevModPhys.73.515
  35. 35
    Kokalj, A. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science. Proceedings of the Symposium on Software Development for Process and Materials Design 2003, 28, 155168,  DOI: 10.1016/S0927-0256(03)00104-6
  36. 36
    Momma, K.; Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 12721276,  DOI: 10.1107/S0021889811038970
  37. 37
    Bansal, D.; Hong, J.; Li, C. W.; May, A. F.; Porter, W.; Hu, M. Y.; Abernathy, D. L.; Delaire, O. Phonon anharmonicity and negative thermal expansion in SnSe. Phys. Rev. B 2016, 94, 054307,  DOI: 10.1103/PhysRevB.94.054307
  38. 38
    Li, C. W.; Hong, J.; May, A. F.; Bansal, D.; Chi, S.; Hong, T.; Ehlers, G.; Delaire, O. Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 2015, 11, 10631069,  DOI: 10.1038/nphys3492
  39. 39
    Gong, X.; Wu, H.; Yang, D.; Zhang, B.; Peng, K.; Zou, H.; Guo, L.; Lu, X.; Chai, Y.; Wang, G. Temperature dependence of Raman scattering in single crystal SnSe. Vib. Spectrosc. 2020, 107, 103034,  DOI: 10.1016/j.vibspec.2020.103034
  40. 40
    Shi, G.; Kioupakis, E. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe. J. Appl. Phys. 2015, 117, 065103,  DOI: 10.1063/1.4907805
  41. 41
    Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 1622316233,  DOI: 10.1103/PhysRevB.49.16223
  42. 42
    Nikolić, P. M.; Milković, L.; Mihajlović, P.; Lavrenčić, B. Raman scattering in snse. Czech. J. Phys. 1978, 28, 456459,  DOI: 10.1007/BF01594258
  43. 43
    Huang, Y.; Teitelbaum, S.; Yang, S.; na, G. D. l. P.; Chollet, T. S. M.; Zhu, D.; Niedziela, J. L.; Bansal, D.; May, A. F.; Lindenberg, A. M. Determination of nonthermal bonding origin of a novel photoexcited lattice instability in SnSe. arXiv 2023, 2301.08955,  DOI: 10.48550/arXiv.2301.08955
  44. 44
    Reis, D. A.; Lindenberg, A. M. Ultrafast X-ray scattering in solids. Topics in Applied Physics 2006, 108, 371422,  DOI: 10.1007/978-3-540-34436-0_6
  45. 45
    Tangney, P.; Fahy, S. Density-functional theory approach to ultrafast laser excitation of semiconductors: Application to the A1 phonon in tellurium. Phys. Rev. B 2002, 65, 054302,  DOI: 10.1103/PhysRevB.65.054302
  46. 46
    Hu, J.; Vanacore, G. M.; Yang, Z.; Miao, X.; Zewail, A. H. Transient Structures and Possible Limits of Data Recording in Phase-Change Materials. ACS Nano 2015, 9, 67286737,  DOI: 10.1021/acsnano.5b01965
  47. 47
    Cavalleri, A.; Tóth, C.; Siders, C. W.; Squier, J. A.; Ráksi, F.; Forget, P.; Kieffer, J. C. Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. Phys. Rev. Lett. 2001, 87, 237401,  DOI: 10.1103/PhysRevLett.87.237401
  48. 48
    Wall, S.; Yang, S.; Vidas, L.; Chollet, M.; Glownia, J. M.; Kozina, M.; Katayama, T.; Henighan, T.; Jiang, M.; Miller, T. A. Ultrafast disordering of vanadium dimers in photoexcited VO2. Science 2018, 362, 572576,  DOI: 10.1126/science.aau3873
  49. 49
    Behnia, K. Finding merit in dividing neighbors. Science 2016, 351, 124124,  DOI: 10.1126/science.aad8688

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 5 publications.

  1. Kris Holtgrewe, Giovanni Marini, Matteo Calandra. Light-Induced Polaronic Crystals in Single-Layer Transition Metal Dichalcogenides. Nano Letters 2024, 24 (42) , 13179-13184. https://doi.org/10.1021/acs.nanolett.4c03065
  2. Pooja D. Reddy, Leland J. Nordin, Lillian B. Hughes, Anna-Katharina Preidl, Kunal Mukherjee. Expanded Stability of Layered SnSe-PbSe Alloys and Evidence of Displacive Phase Transformation from Rocksalt in Heteroepitaxial Thin Films. ACS Nano 2024, 18 (20) , 13437-13449. https://doi.org/10.1021/acsnano.4c04128
  3. Lingyuan Gao, Laurent Bellaiche. Large Photoinduced Tuning of Ferroelectricity in Sliding Ferroelectrics. Physical Review Letters 2024, 133 (19) https://doi.org/10.1103/PhysRevLett.133.196801
  4. Benjamin J. Dringoli, Mark Sutton, Zhongzhen Luo, Mercouri G. Kanatzidis, David G. Cooke. Ultrafast Photoinduced Phase Change in SnSe. Physical Review Letters 2024, 132 (14) https://doi.org/10.1103/PhysRevLett.132.146901
  5. Bo Peng, Gunnar F. Lange, Daniel Bennett, Kang Wang, Robert-Jan Slager, Bartomeu Monserrat. Photoinduced Electronic and Spin Topological Phase Transitions in Monolayer Bismuth. Physical Review Letters 2024, 132 (11) https://doi.org/10.1103/PhysRevLett.132.116601

The Journal of Physical Chemistry Letters

Cite this: J. Phys. Chem. Lett. 2023, 14, 41, 9329–9334
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jpclett.3c02450
Published October 11, 2023

Copyright © 2023 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

2329

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Pictorial representation of the nonthermal pathway connecting the topologically trivial Pnma structure with the TCI Fmm structure. For each phase, sketched crystal structures and band structures are represented. Fs pulses induce a first-order transformation toward a transient phase with Immm symmetry. This phase spontaneously decays into the Fmm structure after electron–hole recombination.

    Figure 2

    Figure 2. Tin Wyckoff positions x and z as functions of the photocarrier concentration for fixed (a) and variable (b) volume crystal structure optimization. The red and blue dots are labeled with the z and x coordinates of tin, respectively. (c) Normalized phonon frequencies at Γ for the three relevant Ag modes versus PC. The red, blue, and orange dots stand for the Ag,1, Ag,2, and Ag,4 modes, respectively. The theoretical harmonic, anharmonic, and experimental values of ω0 are reported in the Supporting Information. The experimental data are from ref (23).

    Figure 3

    Figure 3. Ground-state electronic structure of the Pnma phase (a) and of the Immm transient phase at ne = 0.6 e/u.c. (b). The Fermi level in panel a and the holes and electron Fermi levels in panel b are depicted as dashed lines. Harmonic and anharmonic phonon spectra for the Pnma phase at ne = 0.0 e/u.c. (c) and for the transient Immm phase at ne = 0.6 e/u.c. (d). Both plots are at T = 0 K. The inset shows the removal of the dynamic instability by quantum anharmonic effects.

    Figure 4

    Figure 4. Total energy curves along the PnmaImmm (a) and PnmaCmcm (b) reaction paths: η = 0 corresponds to the Pnma phase while η = 1 to the Immm (a) or Cmcm (b) phase. (c) Possible decay channels for the Immm phase: ImmmPnma, ImmmCmcm, and ImmmFmm. We recall that 1 mRy/u.c. corresponds to 40 K while 1 meV/u.c. corresponds to 3 K.

  • References


    This article references 49 other publications.

    1. 1
      Maiuri, M.; Garavelli, M.; Cerullo, G. Ultrafast Spectroscopy: State of the Art and Open Challenges. J. Am. Chem. Soc. 2020, 142, 315,  DOI: 10.1021/jacs.9b10533
    2. 2
      Wall, S.; Yang, S.; Vidas, L.; Chollet, M.; Glownia, J. M.; Kozina, M.; Katayama, T.; Henighan, T.; Jiang, M.; Miller, T. A. Ultrafast disordering of vanadium dimers in photoexcited VO2. Science 2018, 362, 572576,  DOI: 10.1126/science.aau3873
    3. 3
      Kogar, A.; Zong, A.; Dolgirev, P. E.; Shen, X.; Straquadine, J.; Bie, Y.-Q.; Wang, X.; Rohwer, T.; Tung, I.-C.; Yang, Y. Light-induced charge density wave in late3. Nat. Phys. 2020, 16, 159163,  DOI: 10.1038/s41567-019-0705-3
    4. 4
      Sokolowski-Tinten, K.; Bialkowski, J.; von der Linde, D. Ultrafast laser-induced order-disorder transitions in semiconductors. Phys. Rev. B 1995, 51, 1418614198,  DOI: 10.1103/PhysRevB.51.14186
    5. 5
      Sie, E. J.; Nyby, C. M.; Pemmaraju, C. D.; Park, S. J.; Shen, X.; Yang, J.; Hoffmann, M. C.; Ofori-Okai, B. K.; Li, R.; Reid, A. H. An ultrafast symmetry switch in a Weyl semimetal. Nature 2019, 565, 6166,  DOI: 10.1038/s41586-018-0809-4
    6. 6
      Jiang, M. P.; Trigo, M.; Savić, I.; Fahy, S.; Murray, E. D.; Bray, C.; Clark, J.; Henighan, T.; Kozina, M.; Chollet, M. The origin of incipient ferroelectricity in lead Telluride. Nat. Commun. 2016, 7, 12291,  DOI: 10.1038/ncomms12291
    7. 7
      Fu, L. Topological Crystalline Insulators. Phys. Rev. Lett. 2011, 106, 106802,  DOI: 10.1103/PhysRevLett.106.106802
    8. 8
      Hsieh, T. H.; Lin, H.; Liu, J.; Duan, W.; Bansil, A.; Fu, L. Topological crystalline insulators in the snte material class. Nat. Commun. 2012, 3, 982,  DOI: 10.1038/ncomms1969
    9. 9
      Sun, Y.; Zhong, Z.; Shirakawa, T.; Franchini, C.; Li, D.; Li, Y.; Yunoki, S.; Chen, X.-Q. Rocksalt SnS and SnSe: Native topological crystalline insulators. Phys. Rev. B 2013, 88, 235122,  DOI: 10.1103/PhysRevB.88.235122
    10. 10
      Dziawa, P.; Kowalski, B. J.; Dybko, K.; Buczko, R.; Szczerbakow, A.; Szot, M.; Łusakowska, E.; Balasubramanian, T.; Wojek, B. M.; Berntsen, M. H. Topological crystalline insulator states in Pb1-xSnxSe. Nat. Mater. 2012, 11, 10231027,  DOI: 10.1038/nmat3449
    11. 11
      Ma, J.; Yi, C.; Lv, B.; Wang, Z.; Nie, S.; Wang, L.; Kong, L.; Huang, Y.; Richard, P.; Zhang, P. Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb. Science Advances 2017, 3, e1602415  DOI: 10.1126/sciadv.1602415
    12. 12
      Guo, R.; Wang, X.; Kuang, Y.; Huang, B. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Phys. Rev. B 2015, 92, 115202,  DOI: 10.1103/PhysRevB.92.115202
    13. 13
      Xie, L.; He, D.; He, J. SnSe, the rising star thermoelectric material: A new paradigm in atomic blocks, building intriguing physical properties. Materials Horizons 2021, 8, 18471865,  DOI: 10.1039/D1MH00091H
    14. 14
      Chandra, S.; Dutta, P.; Biswas, K. High-Performance Thermoelectrics Based on Solution-Grown SnSe Nanostructures. ACS Nano 2022, 16, 714,  DOI: 10.1021/acsnano.1c10584
    15. 15
      Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in snse crystals. Nature 2014, 508, 373377,  DOI: 10.1038/nature13184
    16. 16
      Chattopadhyay, T.; Pannetier, J.; Von Schnering, H. Neutron diffraction study of the structural phase transition in SnS and SnSe. J. Phys. Chem. Solids 1986, 47, 879885,  DOI: 10.1016/0022-3697(86)90059-4
    17. 17
      Loa, I.; Husband, R. J.; Downie, R. A.; Popuri, S. R.; Bos, J.-W. G. Structural changes in thermoelectric SnSe at high pressures. J. Phys.: Condens. Matter 2015, 27, 072202,  DOI: 10.1088/0953-8984/27/7/072202
    18. 18
      Ghosh, A.; Gusmão, M.; Chaudhuri, P.; Michielon de Souza, S.; Mota, C.; Trichês, D.; Frota, H. Electrical properties of SnSe under high-pressure. Computational Condensed Matter 2016, 9, 7781,  DOI: 10.1016/j.cocom.2016.11.001
    19. 19
      Adouby, K.; Perez-Vicente, C.; Jumas, J. C. Structure and temperature transformation of SnSe. Stabilization of a new cubic phase Sn4Bi2Se7. Zeitschrift für Kristallographie - Crystalline Materials 1998, 213, 343349,  DOI: 10.1524/zkri.1998.213.6.343
    20. 20
      Aseginolaza, U.; Bianco, R.; Monacelli, L.; Paulatto, L.; Calandra, M.; Mauri, F.; Bergara, A.; Errea, I. Phonon Collapse and Second-Order Phase Transition in Thermoelectric SnSe. Phys. Rev. Lett. 2019, 122, 075901,  DOI: 10.1103/PhysRevLett.122.075901
    21. 21
      Mariano, A. N.; Chopra, K. L. Polymorphism in Some IV-VI Compounds Induced by High Pressure and Thin-Film Epitaxial Growth. Appl. Phys. Lett. 1967, 10, 282284,  DOI: 10.1063/1.1754812
    22. 22
      Hong, J.; Delaire, O. Phase transition and anharmonicity in SnSe. Materials Today Physics 2019, 10, 100093,  DOI: 10.1016/j.mtphys.2019.100093
    23. 23
      Huang, Y.; Yang, S.; Teitelbaum, S.; De la Peña, G.; Sato, T.; Chollet, M.; Zhu, D.; Niedziela, J. L.; Bansal, D.; May, A. F. Observation of a Novel Lattice Instability in Ultrafast Photoexcited SnSe. Phys. Rev. X 2022, 12, 011029,  DOI: 10.1103/PhysRevX.12.011029
    24. 24
      Marini, G.; Calandra, M. Lattice dynamics of photoexcited insulators from constrained density-functional perturbation theory. Phys. Rev. B 2021, 104, 144103,  DOI: 10.1103/PhysRevB.104.144103
    25. 25
      Monacelli, L.; Bianco, R.; Cherubini, M.; Calandra, M.; Errea, I.; Mauri, F. The stochastic self-consistent harmonic approximation: calculating vibrational properties of materials with full quantum and anharmonic effects. J. Phys.: Condens. Matter 2021, 33, 363001,  DOI: 10.1088/1361-648X/ac066b
    26. 26
      Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502,  DOI: 10.1088/0953-8984/21/39/395502
    27. 27
      Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901,  DOI: 10.1088/1361-648X/aa8f79
    28. 28
      Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 2013, 88, 085117,  DOI: 10.1103/PhysRevB.88.085117
    29. 29
      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 38653868,  DOI: 10.1103/PhysRevLett.77.3865
    30. 30
      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104,  DOI: 10.1063/1.3382344
    31. 31
      Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 51885192,  DOI: 10.1103/PhysRevB.13.5188
    32. 32
      Sundaram, S. K.; Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 2002, 1, 217224,  DOI: 10.1038/nmat767
    33. 33
      Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. C. Thermal Contraction and Disordering of the Al(110) Surface. Phys. Rev. Lett. 1999, 82, 32963299,  DOI: 10.1103/PhysRevLett.82.3296
    34. 34
      Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515562,  DOI: 10.1103/RevModPhys.73.515
    35. 35
      Kokalj, A. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science. Proceedings of the Symposium on Software Development for Process and Materials Design 2003, 28, 155168,  DOI: 10.1016/S0927-0256(03)00104-6
    36. 36
      Momma, K.; Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 12721276,  DOI: 10.1107/S0021889811038970
    37. 37
      Bansal, D.; Hong, J.; Li, C. W.; May, A. F.; Porter, W.; Hu, M. Y.; Abernathy, D. L.; Delaire, O. Phonon anharmonicity and negative thermal expansion in SnSe. Phys. Rev. B 2016, 94, 054307,  DOI: 10.1103/PhysRevB.94.054307
    38. 38
      Li, C. W.; Hong, J.; May, A. F.; Bansal, D.; Chi, S.; Hong, T.; Ehlers, G.; Delaire, O. Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 2015, 11, 10631069,  DOI: 10.1038/nphys3492
    39. 39
      Gong, X.; Wu, H.; Yang, D.; Zhang, B.; Peng, K.; Zou, H.; Guo, L.; Lu, X.; Chai, Y.; Wang, G. Temperature dependence of Raman scattering in single crystal SnSe. Vib. Spectrosc. 2020, 107, 103034,  DOI: 10.1016/j.vibspec.2020.103034
    40. 40
      Shi, G.; Kioupakis, E. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe. J. Appl. Phys. 2015, 117, 065103,  DOI: 10.1063/1.4907805
    41. 41
      Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 1622316233,  DOI: 10.1103/PhysRevB.49.16223
    42. 42
      Nikolić, P. M.; Milković, L.; Mihajlović, P.; Lavrenčić, B. Raman scattering in snse. Czech. J. Phys. 1978, 28, 456459,  DOI: 10.1007/BF01594258
    43. 43
      Huang, Y.; Teitelbaum, S.; Yang, S.; na, G. D. l. P.; Chollet, T. S. M.; Zhu, D.; Niedziela, J. L.; Bansal, D.; May, A. F.; Lindenberg, A. M. Determination of nonthermal bonding origin of a novel photoexcited lattice instability in SnSe. arXiv 2023, 2301.08955,  DOI: 10.48550/arXiv.2301.08955
    44. 44
      Reis, D. A.; Lindenberg, A. M. Ultrafast X-ray scattering in solids. Topics in Applied Physics 2006, 108, 371422,  DOI: 10.1007/978-3-540-34436-0_6
    45. 45
      Tangney, P.; Fahy, S. Density-functional theory approach to ultrafast laser excitation of semiconductors: Application to the A1 phonon in tellurium. Phys. Rev. B 2002, 65, 054302,  DOI: 10.1103/PhysRevB.65.054302
    46. 46
      Hu, J.; Vanacore, G. M.; Yang, Z.; Miao, X.; Zewail, A. H. Transient Structures and Possible Limits of Data Recording in Phase-Change Materials. ACS Nano 2015, 9, 67286737,  DOI: 10.1021/acsnano.5b01965
    47. 47
      Cavalleri, A.; Tóth, C.; Siders, C. W.; Squier, J. A.; Ráksi, F.; Forget, P.; Kieffer, J. C. Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. Phys. Rev. Lett. 2001, 87, 237401,  DOI: 10.1103/PhysRevLett.87.237401
    48. 48
      Wall, S.; Yang, S.; Vidas, L.; Chollet, M.; Glownia, J. M.; Kozina, M.; Katayama, T.; Henighan, T.; Jiang, M.; Miller, T. A. Ultrafast disordering of vanadium dimers in photoexcited VO2. Science 2018, 362, 572576,  DOI: 10.1126/science.aau3873
    49. 49
      Behnia, K. Finding merit in dividing neighbors. Science 2016, 351, 124124,  DOI: 10.1126/science.aad8688
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02450.

    • Description of the computational methods, crystal structures, and comparison of the two different cDFT approaches (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.