ACS Publications. Most Trusted. Most Cited. Most Read
Ferroelectric Polarization in CH3NH3PbI3 Perovskite
My Activity

Figure 1Loading Img
    Letter

    Ferroelectric Polarization in CH3NH3PbI3 Perovskite
    Click to copy article linkArticle link copied!

    View Author Information
    School of Chemical Engineering and Department of Energy Science, School of Advanced Materials Science and Engineering, and §SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746, Korea
    *E-mail: [email protected] (S.-W.K.).
    *E-mail: [email protected] (N.-G.P.).
    Other Access Options

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2015, 6, 9, 1729–1735
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.5b00695
    Published April 21, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report on ferroelectric polarization behavior in CH3NH3PbI3 perovskite in the dark and under illumination. Perovskite crystals with three different sizes of 700, 400, and 100 nm were prepared for piezoresponse force microscopy (PFM) measurements. PFM results confirmed the formation of spontaneous polarization in CH3NH3PbI3 in the absence of electric field, where the size dependency to polarization was not significant. Whereas the photoinduced stimulation was not significant without an external electric field, the stimulated polarization by poling was further enhanced under illumination. The retention of ferroelectric polarization was also observed after removal of the electric field, in which larger crystals showed longer retention behavior compared to the smaller sized one. Additionally, we suggest the effect of perovskite crystal size (morphology) on charge collection at the interface of the ferroelectric material even though insignificant size dependency in electric polarization was observed.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 187 publications.

    1. Prabhanjan Pradhan, Prabhat Kumar, Ravi Kumar Bandaru, Rambabu Dandela, Rupak Banerjee, Biplab K. Patra. Phosphonium Cation-Based Ferroelectric 1D Halide Perovskite-Like Semiconductor for Mechanical Energy Harvesting. Chemistry of Materials 2024, 36 (22) , 11015-11024. https://doi.org/10.1021/acs.chemmater.4c01446
    2. Mantas Simenas, Anna Gagor, Juras Banys, Miroslaw Maczka. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chemical Reviews 2024, 124 (5) , 2281-2326. https://doi.org/10.1021/acs.chemrev.3c00532
    3. Eliane A. Morais, Naidel A. M. S. Caturello, Maykon A. Lemes, Henrique Ferreira, Fabio F. Ferreira, Jose J. S. Acuña, Sergio Brochsztain, Gustavo M. Dalpian, Jose A. Souza. Rashba Spin Splitting Limiting the Application of 2D Halide Perovskites for UV-Emitting Devices. ACS Applied Materials & Interfaces 2024, 16 (3) , 4261-4270. https://doi.org/10.1021/acsami.3c16541
    4. Isaac Metcalf, Siraj Sidhik, Hao Zhang, Ayush Agrawal, Jessica Persaud, Jin Hou, Jacky Even, Aditya D. Mohite. Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chemical Reviews 2023, 123 (15) , 9565-9652. https://doi.org/10.1021/acs.chemrev.3c00214
    5. András Bojtor, Sándor Kollarics, Bence Gábor Márkus, Andrzej Sienkiewicz, Márton Kollár, László Forró, Ferenc Simon. Ultralong Charge Carrier Recombination Time in Methylammonium Lead Halide Perovskites. ACS Photonics 2022, 9 (10) , 3341-3350. https://doi.org/10.1021/acsphotonics.2c00687
    6. Ningbo Fan, Xue Ma, Bin Xu. Effect of Iodine Octahedral Rotations on Dipole Ordering in Organic–Inorganic Hybrid Perovskite CH3NH3PbI3. The Journal of Physical Chemistry C 2022, 126 (1) , 779-785. https://doi.org/10.1021/acs.jpcc.1c09230
    7. Tian-Yuan Zhu, Da-Jun Shu. Polarization-Controlled Surface Defect Formation in a Hybrid Perovskite. The Journal of Physical Chemistry Letters 2021, 12 (16) , 3898-3906. https://doi.org/10.1021/acs.jpclett.1c00702
    8. Yuetong Fang, Shuaibo Zhai, Liang Chu, Jiasong Zhong. Advances in Halide Perovskite Memristor from Lead-Based to Lead-Free Materials. ACS Applied Materials & Interfaces 2021, 13 (15) , 17141-17157. https://doi.org/10.1021/acsami.1c03433
    9. Venkatraju Jella, Swathi Ippili, Soon-Gil Yoon. Halide (Cl/Br)-Incorporated Organic–Inorganic Metal Trihalide Perovskite Films: Study and Investigation of Dielectric Properties and Mechanical Energy Harvesting Performance. ACS Applied Electronic Materials 2020, 2 (8) , 2579-2590. https://doi.org/10.1021/acsaelm.0c00473
    10. Dibyajyoti Ghosh, Eric Welch, Amanda J. Neukirch, Alex Zakhidov, Sergei Tretiak. Polarons in Halide Perovskites: A Perspective. The Journal of Physical Chemistry Letters 2020, 11 (9) , 3271-3286. https://doi.org/10.1021/acs.jpclett.0c00018
    11. Shivam Singh, Gangadhar Banappanavar, Dinesh Kabra. Correlation between Charge Transport Length Scales and Dielectric Relaxation Time Constant in Hybrid Halide Perovskite Semiconductors. ACS Energy Letters 2020, 5 (3) , 728-735. https://doi.org/10.1021/acsenergylett.0c00120
    12. Liam Collins, Yongtao Liu, Olga S. Ovchinnikova, Roger Proksch. Quantitative Electromechanical Atomic Force Microscopy. ACS Nano 2019, 13 (7) , 8055-8066. https://doi.org/10.1021/acsnano.9b02883
    13. Chao Lian, Zulfikhar A. Ali, Hyuna Kwon, Bryan M. Wong. Indirect but Efficient: Laser-Excited Electrons Can Drive Ultrafast Polarization Switching in Ferroelectric Materials. The Journal of Physical Chemistry Letters 2019, 10 (12) , 3402-3407. https://doi.org/10.1021/acs.jpclett.9b01046
    14. Zhang-Ran Gao, Xiao-Fan Sun, Yu-Ying Wu, Yi-Zhang Wu, Hong-Ling Cai, X. S. Wu. Ferroelectricity of the Orthorhombic and Tetragonal MAPbBr3 Single Crystal. The Journal of Physical Chemistry Letters 2019, 10 (10) , 2522-2527. https://doi.org/10.1021/acs.jpclett.9b00776
    15. Prescott E. Evans, Maren Pink, Ayan A. Zhumekenov, Guanhua Hao, Yaroslav Losovyj, Osman M. Bakr, Peter A. Dowben, Andrew J. Yost. Rotationally Free and Rigid Sublattices of the Single Crystal Perovskite CH3NH3PbBr3 (001): The Case of the Lattice Polar Liquid. The Journal of Physical Chemistry C 2018, 122 (44) , 25506-25514. https://doi.org/10.1021/acs.jpcc.8b08994
    16. Albert Ferrando, Juan P. Martínez Pastor, Isaac Suárez. Toward Metal Halide Perovskite Nonlinear Photonics. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5612-5623. https://doi.org/10.1021/acs.jpclett.8b01967
    17. Sharada Govinda, Bhushan P. Kore, Pratibha Mahale, Anshu Pandey, D. D. Sarma. Can SHG Measurements Determine the Polarity of Hybrid Lead Halide Perovskites?. ACS Energy Letters 2018, 3 (8) , 1887-1891. https://doi.org/10.1021/acsenergylett.8b00999
    18. Biao Liu, Mengqiu Long, Meng-Qiu Cai, Xiaotao Hao, Junliang Yang. Ferroelectric Polarization in CsPbI3/CsSnI3 Perovskite Heterostructure. The Journal of Physical Chemistry C 2018, 122 (31) , 17820-17824. https://doi.org/10.1021/acs.jpcc.8b04467
    19. Seul-Gi Kim, Jiangzhao Chen, Ja-Young Seo, Dong-Ho Kang, Nam-Gyu Park. Rear-Surface Passivation by Melaminium Iodide Additive for Stable and Hysteresis-less Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (30) , 25372-25383. https://doi.org/10.1021/acsami.8b06616
    20. Yuheng Li, Maziar Behtash, Joseph Wong, and Kesong Yang . Enhancing Ferroelectric Dipole Ordering in Organic–Inorganic Hybrid Perovskite CH3NH3PbI3: Strain and Doping Engineering. The Journal of Physical Chemistry C 2018, 122 (1) , 177-184. https://doi.org/10.1021/acs.jpcc.7b10413
    21. Shunbo Hu, Heng Gao, Yuting Qi, Yongxue Tao, Yongle Li, Jeffrey R. Reimers, Menno Bokdam, Cesare Franchini, Domenico Di Sante, Alessandro Stroppa, and Wei Ren . Dipole Order in Halide Perovskites: Polarization and Rashba Band Splittings. The Journal of Physical Chemistry C 2017, 121 (41) , 23045-23054. https://doi.org/10.1021/acs.jpcc.7b05929
    22. Peijun Guo, Yi Xia, Jue Gong, Constantinos C. Stoumpos, Kyle M. McCall, Grant C. B. Alexander, Zhiyuan Ma, Hua Zhou, David J. Gosztola, John B. Ketterson, Mercouri G. Kanatzidis, Tao Xu, Maria K. Y. Chan, and Richard D. Schaller . Polar Fluctuations in Metal Halide Perovskites Uncovered by Acoustic Phonon Anomalies. ACS Energy Letters 2017, 2 (10) , 2463-2469. https://doi.org/10.1021/acsenergylett.7b00790
    23. Sharada Govinda, Bhushan P. Kore, Menno Bokdam, Pratibha Mahale, Abhinav Kumar, Somnath Pal, Biswajit Bhattacharyya, Jonathan Lahnsteiner, Georg Kresse, Cesare Franchini, Anshu Pandey, and D. D. Sarma . Behavior of Methylammonium Dipoles in MAPbX3 (X = Br and I). The Journal of Physical Chemistry Letters 2017, 8 (17) , 4113-4121. https://doi.org/10.1021/acs.jpclett.7b01740
    24. Jie Jiang, Ruth Pachter, Yurong Yang, and Laurent Bellaiche . Dependence of the Electronic and Optical Properties of Methylammonium Lead Triiodide on Ferroelectric Polarization Directions and Domains: A First Principles Computational Study. The Journal of Physical Chemistry C 2017, 121 (28) , 15375-15383. https://doi.org/10.1021/acs.jpcc.7b04557
    25. Jin-Wook Lee, Seul-Gi Kim, Sang-Hoon Bae, Do-Kyoung Lee, Oliver Lin, Yang Yang, and Nam-Gyu Park . The Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells. Nano Letters 2017, 17 (7) , 4270-4276. https://doi.org/10.1021/acs.nanolett.7b01211
    26. Chuang Zhang, Dali Sun, Xiaojie Liu, Chuan-Xiang Sheng, and Zeev Valy Vardeny . Temperature-Dependent Electric Field Poling Effects in CH3NH3PbI3 Optoelectronic Devices. The Journal of Physical Chemistry Letters 2017, 8 (7) , 1429-1435. https://doi.org/10.1021/acs.jpclett.7b00353
    27. Nam-Gyu Park . Nonstoichiometric Adduct Approach for High-Efficiency Perovskite Solar Cells. Inorganic Chemistry 2017, 56 (1) , 3-10. https://doi.org/10.1021/acs.inorgchem.6b01294
    28. Luis K. Ono and Yabing Qi . Surface and Interface Aspects of Organometal Halide Perovskite Materials and Solar Cells. The Journal of Physical Chemistry Letters 2016, 7 (22) , 4764-4794. https://doi.org/10.1021/acs.jpclett.6b01951
    29. Tian Xie and Wei Qin . Multiferroic Nanohybrid MAPbI3/P3HT Nanowire Complex. The Journal of Physical Chemistry C 2016, 120 (42) , 24498-24502. https://doi.org/10.1021/acs.jpcc.6b09891
    30. Xiaobing Cao, Yahui Li, Can Li, Fei Fang, Youwei Yao, Xian Cui, and Jinquan Wei . Modulating Hysteresis of Perovskite Solar Cells by a Poling Voltage. The Journal of Physical Chemistry C 2016, 120 (40) , 22784-22792. https://doi.org/10.1021/acs.jpcc.6b05775
    31. Shi Liu and R. E. Cohen . Response of Methylammonium Lead Iodide to External Stimuli and Caloric Effects from Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2016, 120 (31) , 17274-17281. https://doi.org/10.1021/acs.jpcc.6b06416
    32. Sharada G, Pratibha Mahale, Bhushan P. Kore, Somdutta Mukherjee, Mysore S. Pavan, Chandan De, Somnath Ghara, A. Sundaresan, Anshu Pandey, Tayur N. Guru Row, and D. D. Sarma . Is CH3NH3PbI3 Polar?. The Journal of Physical Chemistry Letters 2016, 7 (13) , 2412-2419. https://doi.org/10.1021/acs.jpclett.6b00803
    33. Yasemin Kutes, Yuanyuan Zhou, James L. Bosse, James Steffes, Nitin P. Padture, and Bryan D. Huey . Mapping the Photoresponse of CH3NH3PbI3 Hybrid Perovskite Thin Films at the Nanoscale. Nano Letters 2016, 16 (6) , 3434-3441. https://doi.org/10.1021/acs.nanolett.5b04157
    34. Chungwan Gu and Jang-Sik Lee . Flexible Hybrid Organic–Inorganic Perovskite Memory. ACS Nano 2016, 10 (5) , 5413-5418. https://doi.org/10.1021/acsnano.6b01643
    35. Constantinos C. Stoumpos, Duyen H. Cao, Daniel J. Clark, Joshua Young, James M. Rondinelli, Joon I. Jang, Joseph T. Hupp, and Mercouri G. Kanatzidis . Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chemistry of Materials 2016, 28 (8) , 2852-2867. https://doi.org/10.1021/acs.chemmater.6b00847
    36. Shi Liu, Fan Zheng, Ilya Grinberg, and Andrew M. Rappe . Photoferroelectric and Photopiezoelectric Properties of Organometal Halide Perovskites. The Journal of Physical Chemistry Letters 2016, 7 (8) , 1460-1465. https://doi.org/10.1021/acs.jpclett.6b00527
    37. Zhi Guo, Seog Joon Yoon, Joseph S. Manser, Prashant V. Kamat, and Tengfei Luo . Structural Phase- and Degradation-Dependent Thermal Conductivity of CH3NH3PbI3 Perovskite Thin Films. The Journal of Physical Chemistry C 2016, 120 (12) , 6394-6401. https://doi.org/10.1021/acs.jpcc.6b00513
    38. Ilka M. Hermes, Simon A. Bretschneider, Victor W. Bergmann, Dan Li, Alexander Klasen, Julian Mars, Wolfgang Tremel, Frédéric Laquai, Hans-Jürgen Butt, Markus Mezger, Rüdiger Berger, Brian J. Rodriguez, and Stefan A. L. Weber . Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite. The Journal of Physical Chemistry C 2016, 120 (10) , 5724-5731. https://doi.org/10.1021/acs.jpcc.5b11469
    39. Bo Chen, Mengjin Yang, Shashank Priya, and Kai Zhu . Origin of J–V Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2016, 7 (5) , 905-917. https://doi.org/10.1021/acs.jpclett.6b00215
    40. Sheng Chen, Xiaoming Wen, Rui Sheng, Shujuan Huang, Xiaofan Deng, Martin A. Green, and Anita Ho-Baillie . Mobile Ion Induced Slow Carrier Dynamics in Organic–Inorganic Perovskite CH3NH3PbBr3. ACS Applied Materials & Interfaces 2016, 8 (8) , 5351-5357. https://doi.org/10.1021/acsami.5b12376
    41. Linkai Li, Feng Wang, Xiaojing Wu, Hui Yu, Shuang Zhou, and Ni Zhao . Carrier-Activated Polarization in Organometal Halide Perovskites. The Journal of Physical Chemistry C 2016, 120 (5) , 2536-2541. https://doi.org/10.1021/acs.jpcc.5b11627
    42. Robin Ohmann, Luis K. Ono, Hui-Seon Kim, Haiping Lin, Michael V. Lee, Youyong Li, Nam-Gyu Park, and Yabing Qi . Real-Space Imaging of the Atomic Structure of Organic–Inorganic Perovskite. Journal of the American Chemical Society 2015, 137 (51) , 16049-16054. https://doi.org/10.1021/jacs.5b08227
    43. Alessio Filippetti, Pietro Delugas, Maria Ilenia Saba, and Alessandro Mattoni . Entropy-Suppressed Ferroelectricity in Hybrid Lead-Iodide Perovskites. The Journal of Physical Chemistry Letters 2015, 6 (24) , 4909-4915. https://doi.org/10.1021/acs.jpclett.5b02117
    44. Fan Zheng, Liang Z. Tan, Shi Liu, and Andrew M. Rappe . Rashba Spin–Orbit Coupling Enhanced Carrier Lifetime in CH3NH3PbI3. Nano Letters 2015, 15 (12) , 7794-7800. https://doi.org/10.1021/acs.nanolett.5b01854
    45. Fan Zheng, Diomedes Saldana-Greco, Shi Liu, and Andrew M. Rappe . Material Innovation in Advancing Organometal Halide Perovskite Functionality. The Journal of Physical Chemistry Letters 2015, 6 (23) , 4862-4872. https://doi.org/10.1021/acs.jpclett.5b01830
    46. Christian Müller, Tobias Glaser, Marcel Plogmeyer, Michael Sendner, Sebastian Döring, Artem A. Bakulin, Carlo Brzuska, Roland Scheer, Maxim S. Pshenichnikov, Wolfgang Kowalsky, Annemarie Pucci, and Robert Lovrinčić . Water Infiltration in Methylammonium Lead Iodide Perovskite: Fast and Inconspicuous. Chemistry of Materials 2015, 27 (22) , 7835-7841. https://doi.org/10.1021/acs.chemmater.5b03883
    47. Laxman Gouda, Ronen Gottesman, Adam Ginsburg, David A. Keller, Eynav Haltzi, Jiangang Hu, Shay Tirosh, Assaf Y. Anderson, and Arie Zaban , Pablo P. Boix . Open Circuit Potential Build-Up in Perovskite Solar Cells from Dark Conditions to 1 Sun. The Journal of Physical Chemistry Letters 2015, 6 (22) , 4640-4645. https://doi.org/10.1021/acs.jpclett.5b02014
    48. Hui-Seon Kim, In-Hyuk Jang, Namyoung Ahn, Mansoo Choi, Antonio Guerrero, Juan Bisquert, and Nam-Gyu Park . Control of I–V Hysteresis in CH3NH3PbI3 Perovskite Solar Cell. The Journal of Physical Chemistry Letters 2015, 6 (22) , 4633-4639. https://doi.org/10.1021/acs.jpclett.5b02273
    49. Tobias Glaser, Christian Müller, Michael Sendner, Christian Krekeler, Octavi E. Semonin, Trevor D. Hull, Omer Yaffe, Jonathan S. Owen, Wolfgang Kowalsky, Annemarie Pucci, and Robert Lovrinčić . Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites. The Journal of Physical Chemistry Letters 2015, 6 (15) , 2913-2918. https://doi.org/10.1021/acs.jpclett.5b01309
    50. Jiahua Tao, Chunhu Zhao, Zhaojin Wang, You Chen, Lele Zang, Guang Yang, Yang Bai, Junhao Chu. Suppressing non-radiative recombination for efficient and stable perovskite solar cells. Energy & Environmental Science 2025, 18 (2) , 509-544. https://doi.org/10.1039/D4EE02917H
    51. Shankar Dutt, Archna Sagdeo. Elucidating the absence of ferroelectricity in methylammonium lead bromide single crystal, MAPbBr3. Journal of Materials Science: Materials in Electronics 2025, 36 (1) https://doi.org/10.1007/s10854-024-14129-4
    52. Taame Abraha Berhe, Etsana Kiros Ashebir, Wei-Nien Su, Bing Joe Hwang. Nano-engineering halide perovskites: towards energy harvesting, nano-plasmonic sensing and photoflexoelectric applications. Energy Advances 2025, 635 https://doi.org/10.1039/D4YA00442F
    53. Xian Shi, Xiu‐Ni Hua, Zhuoer Cai, Yinan Zhang, Xiang Zhang, Pingxin Huo, Linjing Li, Tianshi Qin, Hai‐Bao Duan. Room Temperature Phase Transition and Luminescence Behavior of a Novel Metal‐Free Ionic Crystal [C 7 H 16 NO][ClO 4 ]. Zeitschrift für anorganische und allgemeine Chemie 2024, 650 (24) https://doi.org/10.1002/zaac.202400148
    54. Junwei Shi, Muhammad Waqas Samad, Fangchao Li, Chenxi Guo, Cheng Liu, Junjun Guo, Yong Zhang, Jie Zeng, Deng Wang, Wanli Ma, Baomin Xu, Jianyu Yuan. Dual‐Site Molecular Dipole Enables Tunable Interfacial Field Toward Efficient and Stable Perovskite Solar Cells. Advanced Materials 2024, 36 (44) https://doi.org/10.1002/adma.202410464
    55. Minwoo Lee, Lei Wang, Dawei Zhang, Jiangyu Li, Jincheol Kim, Jae Sung Yun, Jan Seidel. Scanning Probe Microscopy of Halide Perovskite Solar Cells. Advanced Materials 2024, 8 https://doi.org/10.1002/adma.202407291
    56. Pronoy Nandi, Sooun Shin, Hyoungmin Park, Yongjae In, Urasawadee Amornkitbamrung, Hyeon Jun Jeong, Seok Joon Kwon, Hyunjung Shin. Large and Small Polarons in Highly Efficient and Stable Organic‐Inorganic Lead Halide Perovskite Solar Cells: A Review. Solar RRL 2024, 8 (14) https://doi.org/10.1002/solr.202400364
    57. Guohui Luo, Linfeng Zhang, Liyun Guo, Xiuhong Geng, Penghui Ren, Yi Zhang, Haihua Hu, Xiaoping Wu, Lingbo Xu, Ping Lin, Haiyan He, Xuegong Yu, Peng Wang, Can Cui. Highly ordered crystallization of α-FAPbI3 films via homogeneous seeds for efficient perovskite solar cells. Journal of Energy Chemistry 2024, 94 , 625-634. https://doi.org/10.1016/j.jechem.2024.03.014
    58. Lei Yang, Anzheng Zhu, Xiaodong Huang, Chonghai Deng, Kunhong Hu, Hai Yu, Jianguo Lv. Ferroelectric spontaneous polarization assisted TiO2@BaTiO3@Ag photoanode for efficient photoelectrochemical water splitting via BaTiO3 phase regulation. International Journal of Hydrogen Energy 2024, 55 , 997-1006. https://doi.org/10.1016/j.ijhydene.2023.12.132
    59. Guillaume Vidon, Pia Dally, Mirella Al‐Katrib, Daniel Ory, Minjin Kim, Etienne Soret, Eva Rangayen, Marie Legrand, Alexandre Blaizot, Philip Schulz, Jean‐Baptiste Puel, Daniel Suchet, Jean‐François Guillemoles, Arnaud Etcheberry, Muriel Bouttemy, Stefania Cacovich. The Impact of X‐Ray Radiation on Chemical and Optical Properties of Triple‐Cation Lead Halide Perovskite: from the Surface to the Bulk. Advanced Functional Materials 2023, 33 (45) https://doi.org/10.1002/adfm.202304730
    60. Mahdi Kari, Kamyar Saghafi. Hysteresis reduction in planar perovskite solar cell with CH3NH3PbI3 absorber by changing the precursor ratio and electron/hole transport layers. Optik 2023, 287 , 170959. https://doi.org/10.1016/j.ijleo.2023.170959
    61. Weilin Zheng, Xiucai Wang, Xin Zhang, Bing Chen, Hao Suo, Zhifeng Xing, Yanze Wang, Han‐Lin Wei, Jiangkun Chen, Yang Guo, Feng Wang. Emerging Halide Perovskite Ferroelectrics. Advanced Materials 2023, 35 (21) https://doi.org/10.1002/adma.202205410
    62. Yutong Wu, Bohong Chang, Lian Wang, Hui Li, Lu Pan, Zhen Liu, Longwei Yin. Intrinsic Dipole Arrangement to Coordinate Energy Levels for Efficient and Stable Perovskite Solar Cells. Advanced Materials 2023, 35 (18) https://doi.org/10.1002/adma.202300174
    63. Huajun Guo, Shenghui Yi, Shuai Yang, Yinan Jiao, Shengjian Qin, Rui Li, Ye Wang, Hao Li, Yuanhua Xia, Yang Zhang, Zishang Liang, Rongrong Yan, Huan Liu, Jinjin Zhao. Structural Symmetry Impressing Carrier Dynamics of Halide Perovskite. Advanced Functional Materials 2023, 33 (17) https://doi.org/10.1002/adfm.202214180
    64. Hui Zhang, Nam-Gyu Park. Polarons in perovskite solar cells: effects on photovoltaic performance and stability. Journal of Physics: Energy 2023, 5 (2) , 024002. https://doi.org/10.1088/2515-7655/acb96d
    65. Xiaobing Yan, Ying Zhao, Gang Cao, Xiaoyu Li, Chao Gao, Luan Liu, Shakeel Ahmed, Faizah Altaf, Hui Tan, Xiaopeng Ma, Zhongjian Xie, Han Zhang. 2D Organic Materials: Status and Challenges. Advanced Science 2023, 10 (7) https://doi.org/10.1002/advs.202203889
    66. Shankar Dutt, Omkar V. Rambadey, Pankaj R. Sagdeo, Archna Sagdeo. Absence of presumed ferroelectricity in methylammonium lead chloride single crystals representing organic-inorganic hybrid perovskites. Materials Chemistry and Physics 2023, 295 , 127169. https://doi.org/10.1016/j.matchemphys.2022.127169
    67. Sidra Khatoon, Satish Kumar Yadav, Vishwadeep Chakravorty, Jyotsna Singh, Rajendra Bahadur Singh, Md Saquib Hasnain, S.M. Mozammil Hasnain. Perovskite solar cell’s efficiency, stability and scalability: A review. Materials Science for Energy Technologies 2023, 6 , 437-459. https://doi.org/10.1016/j.mset.2023.04.007
    68. Xiaoyan Liu, Yijie Wang, Yu Wang, Yize Zhao, Jinghao Yu, Xinyi Shan, Yi Tong, Xiaojuan Lian, Xiang Wan, Lei Wang, Pengfei Tian, Hao-Chung Kuo. Recent advances in perovskites-based optoelectronics. Nanotechnology Reviews 2022, 11 (1) , 3063-3094. https://doi.org/10.1515/ntrev-2022-0494
    69. Chin Chyi Loo, Sha Shiong Ng, Wei Sea Chang. Electrostatic Contribution to the Photo-Assisted Piezoresponse Force Microscopy by Photo-Induced Surface Charge. Microscopy and Microanalysis 2022, 28 (5) , 1599-1603. https://doi.org/10.1017/S143192762200085X
    70. Xin Sheng, Yahui Li, Ming Xia, Enzheng Shi. Quasi-2D halide perovskite crystals and their optoelectronic applications. Journal of Materials Chemistry A 2022, 10 (37) , 19169-19183. https://doi.org/10.1039/D2TA02219B
    71. Jing‐Yu Mao, Su‐Ting Han. Novel Electronic Devices Based on Perovskite Materials. 2022, 601-628. https://doi.org/10.1002/9783527832552.ch18
    72. Himanshu Dixit, Binita Boro, Subrata Ghosh, Mrittika Paul, Ashish Kumar, Trilok Singh. Assessment of Lead‐Free Tin Halide Perovskite Solar Cells Using J–V Hysteresis. physica status solidi (a) 2022, 219 (11) https://doi.org/10.1002/pssa.202100823
    73. Sung Heo, Do Yoon Lee, Dongwook Lee, Yonghui Lee, Kihong Kim, Hyun‐Sung Yun, Min Jae Paik, Tae Joo Shin, Hyeon Seung Oh, Taeho Shin, Jaekyung Kim, Seong Heon Kim, Sang Il Seok, MohammadKhaja Nazeeruddin. Enhancement of Piezoelectricity in Dimensionally Engineered Metal‐Halide Perovskites Induced by Deep Level Defects. Advanced Energy Materials 2022, 12 (19) https://doi.org/10.1002/aenm.202200181
    74. Mahdi Kari, Kamyar Saghafi. Current-voltage hysteresis reduction of CH3NH3PbI3 planar perovskite solar cell by multi-layer absorber. Micro and Nanostructures 2022, 165 , 207207. https://doi.org/10.1016/j.micrna.2022.207207
    75. Seul‐Gi Kim, Nam‐Gyu Park. Hysteresis of I – V Performance: Its Origin and Engineering for Elimination. 2022, 215-232. https://doi.org/10.1002/9783527826391.ch7
    76. Qamar Wali, Muhammad Aamir, Abid Ullah, Faiza Jan Iftikhar, Muhammad Ejaz Khan, Javeed Akhtar, Shengyuan Yang. Fundamentals of Hysteresis in Perovskite Solar Cells: From Structure‐Property Relationship to Neoteric Breakthroughs. The Chemical Record 2022, 22 (1) https://doi.org/10.1002/tcr.202100150
    77. Archna Sagdeo, Shankar Dutt, Omkar V. Rambadey, Pankaj R. Sagdeo. Absence of Ferroelectricity in Organic-Inorganic Hybrid Perovskite Methylammonium Lead Chloride Single Crystal, Mapbcl3. SSRN Electronic Journal 2022, 48 https://doi.org/10.2139/ssrn.4198120
    78. Min Zhao, Hua Wang, Gaoyang Gou, Xiangdong Ding, Jun Sun. Emergence of bulk photovoltaic effect in anion-ordered perovskite sulfur diiodide MASbSI2 with spontaneous out-of-plane ferroelectricity. Materials Today Physics 2021, 21 , 100459. https://doi.org/10.1016/j.mtphys.2021.100459
    79. F.B. Minussi, S.P. Reis, E.B. Araújo. Effects of frequency, temperature, and dc bias electric field on the dielectric properties of methylammonium lead iodide from the perspective of a relaxor-like ferroelectric. Acta Materialia 2021, 219 , 117235. https://doi.org/10.1016/j.actamat.2021.117235
    80. Yongtao Liu, Dohyung Kim, Anton V. Ievlev, Sergei V. Kalinin, Mahshid Ahmadi, Olga S. Ovchinnikova. Ferroic Halide Perovskite Optoelectronics. Advanced Functional Materials 2021, 31 (36) https://doi.org/10.1002/adfm.202102793
    81. Cheng-Sheng Liao, Zhuo-Liang Yu, Peng-Bin He, Biao Liu, Ruosheng Zeng, Qiang Wan, Meng-Qiu Cai. Theoretical study on the tunable electronic band structure of Cs2PbI2Cl2/CsPbBr3 halide perovskite heterostructure driven by ferroelectric polarization modulation. Journal of Colloid and Interface Science 2021, 597 , 233-241. https://doi.org/10.1016/j.jcis.2021.03.121
    82. Boyuan Huang, Zhenghao Liu, Changwei Wu, Yuan Zhang, Jinjin Zhao, Xiao Wang, Jiangyu Li. Polar or nonpolar? That is not the question for perovskite solar cells. National Science Review 2021, 8 (8) https://doi.org/10.1093/nsr/nwab094
    83. Tsung Sheng Kao, Yu-Heng Hong, Kuo-Bin Hong, Tien-Chang Lu. Perovskite random lasers: a tunable coherent light source for emerging applications. Nanotechnology 2021, 32 (28) , 282001. https://doi.org/10.1088/1361-6528/abe907
    84. Dikui Zhou, Zhihong Zhang, Yihan Zhu, Yiqun Xiao, Qingqing Ding, Luoyuan Ruan, Yiran Sun, Zhibin Zhang, Chongzhi Zhu, Zongping Chen, Yongjun Wu, Yuhui Huang, Guan Sheng, Jixue Li, Dapeng Yu, Enge Wang, Zhaohui Ren, Xinhui Lu, Kaihui Liu, Gaorong Han. Pattern‐Potential‐Guided Growth of Textured Macromolecular Films on Graphene/High‐Index Copper. Advanced Materials 2021, 33 (29) https://doi.org/10.1002/adma.202006836
    85. Pamarti Viswanath, K. Kanishka H. De Silva, Yuki Morikuni, Masamichi Yoshimura. Robust Polarization Stability in a Self‐Assembled Ultrathin Organic Ferroelectric Nano Lamellae. Advanced Electronic Materials 2021, 7 (6) https://doi.org/10.1002/aelm.202001085
    86. Rohit Saraf, Cecile Saguy, Vivek Maheshwari, Hemaprabha Elangovan, Yachin Ivry. Intrinsic-polarization origin of photoconductivity in MAPbI3 thin films. Applied Physics Letters 2021, 118 (15) https://doi.org/10.1063/5.0046997
    87. Huilin Li, Fumin Li, Zhitao Shen, Su-Ting Han, Junwei Chen, Chao Dong, Chong Chen, Ye Zhou, Mingtai Wang. Photoferroelectric perovskite solar cells: Principles, advances and insights. Nano Today 2021, 37 , 101062. https://doi.org/10.1016/j.nantod.2020.101062
    88. Alessandra Geddo Lehmann, Francesco Congiu, Daniela Marongiu, Andrea Mura, Alessio Filippetti, Alessandro Mattoni, Michele Saba, Guido Pegna, Valerio Sarritzu, Francesco Quochi, Giovanni Bongiovanni. Long-lived electrets and lack of ferroelectricity in methylammonium lead bromide CH 3 NH 3 PbBr 3 ferroelastic single crystals. Physical Chemistry Chemical Physics 2021, 23 (5) , 3233-3245. https://doi.org/10.1039/D0CP05918H
    89. Haian Qiu, Jeffrey M. Mativetsky. Nanoscale light- and voltage-induced lattice strain in perovskite thin films. Nanoscale 2021, 13 (2) , 746-752. https://doi.org/10.1039/D0NR07476D
    90. Yiming Wang, Zheng Tang, Chunlin Liu, Junjie Jiang, Wenlong Liu, Binbin Zhang, Kaige Gao, Hong-Ling Cai, Xiaoshan Wu. Room temperature ferroelectricity and blue photoluminescence in zero dimensional organic lead iodine perovskites. Journal of Materials Chemistry C 2021, 9 (1) , 223-227. https://doi.org/10.1039/D0TC04813E
    91. Pronoy Nandi, Dinesh Topwal, Nam-Gyu Park, Hyunjung Shin. Organic-inorganic hybrid lead halides as absorbers in perovskite solar cells: a debate on ferroelectricity. Journal of Physics D: Applied Physics 2020, 53 (49) , 493002. https://doi.org/10.1088/1361-6463/abb047
    92. Ashraful Hossain Howlader, Feng Li, Rongkun Zheng. Carbon Nanomaterials for Halide Perovskites‐Based Hybrid Photodetectors. Advanced Materials Technologies 2020, 5 (12) https://doi.org/10.1002/admt.202000643
    93. Shuyi Huang, Lin Shi, Taoyu Zou, Haoze Kuang, Pandey Rajagopalan, Hongsheng Xu, Shijie Zhan, Jinkai Chen, Weipeng Xuan, Hao Jin, Shurong Dong, Hang Zhou, Xiaozhi Wang, Wuliang Yin, Jong Min Kim, Jikui Luo. Controlling Performance of Organic–Inorganic Hybrid Perovskite Triboelectric Nanogenerators via Chemical Composition Modulation and Electric Field‐Induced Ion Migration. Advanced Energy Materials 2020, 10 (47) https://doi.org/10.1002/aenm.202002470
    94. Yiming Wang, Yanliang Liu, Yizhang Wu, Junjie Jiang, Chunlin Liu, Wenlong Liu, Kaige Gao, Hongling Cai, X. S. Wu. Properties and growth of large single crystals of one-dimensional organic lead iodine perovskite. CrystEngComm 2020, 22 (42) , 7090-7094. https://doi.org/10.1039/D0CE01104E
    95. Seo Yeon Kim, Soo Jin Cho, Seo Eun Byeon, Xin He, Hyo Jae Yoon. Self‐Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells. Advanced Energy Materials 2020, 10 (44) https://doi.org/10.1002/aenm.202002606
    96. Owoong Kwon, Daehee Seol, Huimin Qiao, Yunseok Kim. Recent Progress in the Nanoscale Evaluation of Piezoelectric and Ferroelectric Properties via Scanning Probe Microscopy. Advanced Science 2020, 7 (17) https://doi.org/10.1002/advs.201901391
    97. Yitong Gu, Ting Wang, Yi-na Dong, He Zhang, Di Wu, Weilin Chen. Ferroelectric polyoxometalate-modified nano semiconductor TiO 2 for increasing electron lifetime and inhibiting electron recombination in dye-sensitized solar cells. Inorganic Chemistry Frontiers 2020, 7 (17) , 3072-3080. https://doi.org/10.1039/D0QI00488J
    98. Xianzhong Zhou, Ziyang Zhang. Strain induced Rashba splitting in CH3NH3PbBr3 organic–inorganic lead halide perovskite. AIP Advances 2020, 10 (8) https://doi.org/10.1063/5.0020236
    99. Da Bin Kim, Kwan Hyun Park, Yong Soo Cho. Origin of high piezoelectricity of inorganic halide perovskite thin films and their electromechanical energy-harvesting and physiological current-sensing characteristics. Energy & Environmental Science 2020, 13 (7) , 2077-2086. https://doi.org/10.1039/C9EE03212F
    100. Anthony Lewis, Joel R. Troughton, Benjamin Smith, James McGettrick, Tom Dunlop, Francesca De Rossi, Adam Pockett, Michael Spence, Matthew J. Carnie, Trystan M. Watson, Cécile Charbonneau. In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light. Solar Energy Materials and Solar Cells 2020, 209 , 110448. https://doi.org/10.1016/j.solmat.2020.110448
    Load all citations

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2015, 6, 9, 1729–1735
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.5b00695
    Published April 21, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    5716

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.