ACS Publications. Most Trusted. Most Cited. Most Read
Classical Magnetic Dipole Moments for the Simulation of Vibrational Circular Dichroism by ab Initio Molecular Dynamics
My Activity

Figure 1Loading Img
    Letter

    Classical Magnetic Dipole Moments for the Simulation of Vibrational Circular Dichroism by ab Initio Molecular Dynamics
    Click to copy article linkArticle link copied!

    View Author Information
    Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
    *Phone: +49 228 7360439. Fax: +49 228 739064. E-mail: [email protected]
    *Phone: +49 228 7360439. Fax: +49 228 739064. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2016, 7, 3, 509–513
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.5b02752
    Published January 15, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We present a new approach for calculating vibrational circular dichroism spectra by ab initio molecular dynamics. In the context of molecular dynamics, these spectra are given by the Fourier transform of the cross-correlation function of magnetic dipole moment and electric dipole moment. We obtain the magnetic dipole moment from the electric current density according to the classical definition. The electric current density is computed by solving a partial differential equation derived from the continuity equation and the condition that eddy currents should be absent. In combination with a radical Voronoi tessellation, this yields an individual magnetic dipole moment for each molecule in a bulk phase simulation. Using the chiral alcohol 2-butanol as an example, we show that experimental spectra are reproduced very well. Our approach requires knowing only the electron density in each simulation step, and it is not restricted to any particular electronic structure method.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.5b02752.

    • Computational details, an investigation of the convergence of the magnetic dipole moments with respect to several numerical parameters that enter their calculation, a study of the influence of the reference point for the magnetic dipole moments, and the results for propylene oxide and α-pinene as further example systems (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 54 publications.

    1. Julien Bloino, Sascha Jähnigen, Christian Merten. After 50 Years of Vibrational Circular Dichroism Spectroscopy: Challenges and Opportunities of Increasingly Accurate and Complex Experiments and Computations. The Journal of Physical Chemistry Letters 2024, 15 (34) , 8813-8828. https://doi.org/10.1021/acs.jpclett.4c01700
    2. Jan Blasius, Katrin Drysch, Frank Hendrik Pilz, Tom Frömbgen, Patrycja Kielb, Barbara Kirchner. Efficient Prediction of Mole Fraction Related Vibrational Frequency Shifts. The Journal of Physical Chemistry Letters 2023, 14 (47) , 10531-10536. https://doi.org/10.1021/acs.jpclett.3c02761
    3. Marina Macchiagodena, Gavino Bassu, Irene Vettori, Emiliano Fratini, Piero Procacci, Marco Pagliai. 2-Butanol Aqueous Solutions: A Combined Molecular Dynamics and Small/Wide-Angle X-ray Scattering Study. The Journal of Physical Chemistry A 2022, 126 (47) , 8826-8833. https://doi.org/10.1021/acs.jpca.2c05708
    4. Daria Ruth Galimberti. Vibrational Circular Dichroism from DFT Molecular Dynamics: The AWV Method. Journal of Chemical Theory and Computation 2022, 18 (10) , 6217-6230. https://doi.org/10.1021/acs.jctc.2c00736
    5. Barbara Kirchner, Jan Blasius, Vahideh Alizadeh, Andreas Gansäuer, Oldamur Hollóczki. Chemistry Dissolved in Ionic Liquids. A Theoretical Perspective. The Journal of Physical Chemistry B 2022, 126 (4) , 766-777. https://doi.org/10.1021/acs.jpcb.1c09092
    6. Sascha Jähnigen, Anne Zehnacker, Rodolphe Vuilleumier. Computation of Solid-State Vibrational Circular Dichroism in the Periodic Gauge. The Journal of Physical Chemistry Letters 2021, 12 (30) , 7213-7220. https://doi.org/10.1021/acs.jpclett.1c01682
    7. Beatriz von der Esch, Laurens D. M. Peters, Lena Sauerland, Christian Ochsenfeld. Quantitative Comparison of Experimental and Computed IR-Spectra Extracted from Ab Initio Molecular Dynamics. Journal of Chemical Theory and Computation 2021, 17 (2) , 985-995. https://doi.org/10.1021/acs.jctc.0c01279
    8. Zoe L. Seeger, Ekaterina I. Izgorodina. A Systematic Study of DFT Performance for Geometry Optimizations of Ionic Liquid Clusters. Journal of Chemical Theory and Computation 2020, 16 (10) , 6735-6753. https://doi.org/10.1021/acs.jctc.0c00549
    9. Jan Blasius, Barbara Kirchner. Cluster-Weighting in Bulk Phase Vibrational Circular Dichroism. The Journal of Physical Chemistry B 2020, 124 (33) , 7272-7283. https://doi.org/10.1021/acs.jpcb.0c06313
    10. Eva Perlt, Sarah A. Berger, Anne-Marie Kelterer, Barbara Kirchner. Anharmonicity of Vibrational Modes in Hydrogen Chloride–Water Mixtures. Journal of Chemical Theory and Computation 2019, 15 (4) , 2535-2547. https://doi.org/10.1021/acs.jctc.8b01070
    11. Martin Brehm, Martin Thomas. An Efficient Lossless Compression Algorithm for Trajectories of Atom Positions and Volumetric Data. Journal of Chemical Information and Modeling 2018, 58 (10) , 2092-2107. https://doi.org/10.1021/acs.jcim.8b00501
    12. Martin Brehm and Martin Thomas . Computing Bulk Phase Raman Optical Activity Spectra from ab initio Molecular Dynamics Simulations. The Journal of Physical Chemistry Letters 2017, 8 (14) , 3409-3414. https://doi.org/10.1021/acs.jpclett.7b01616
    13. Sandra Luber . Raman Optical Activity Spectra from Density Functional Perturbation Theory and Density-Functional-Theory-Based Molecular Dynamics. Journal of Chemical Theory and Computation 2017, 13 (3) , 1254-1262. https://doi.org/10.1021/acs.jctc.6b00820
    14. Jessica Bowles, Sascha Jähnigen, Federica Agostini, Rodolphe Vuilleumier, Anne Zehnacker, Florent Calvo, Carine Clavaguéra. Vibrational Circular Dichroism Spectroscopy with a Classical Polarizable Force Field: Alanine in the Gas and Condensed Phases. ChemPhysChem 2024, 25 (8) https://doi.org/10.1002/cphc.202300982
    15. Laurens D. M. Peters, Erik I. Tellgren, Trygve Helgaker. Propagators for molecular dynamics in a magnetic field. Molecular Physics 2024, 122 (5) https://doi.org/10.1080/00268976.2023.2259008
    16. Shima Taherivardanjani, Luke Wylie, Reinhard Dötzer, Barbara Kirchner. Exploring the Influence of the Phosphorus‐Heteroatom Substitution in Nicotine on Its Electronic and Vibrational Spectroscopic Properties. Chemistry – A European Journal 2024, 30 (7) https://doi.org/10.1002/chem.202302534
    17. Tom Frömbgen, Jan Blasius, Leonard Dick, Katrin Drysch, Vahideh Alizadeh, Luke Wylie, Barbara Kirchner. Reducing Uncertainties in and Analysis of Ionic Liquid Trajectories. 2024, 692-722. https://doi.org/10.1016/B978-0-12-821978-2.00097-0
    18. Wang Sun, Liang-Sheng Li, Hong-Cheng Yin, Wei Chen. Study of permeability and permittivity of α -Fe 2 O 3 using computer simulation method. Computational Materials Science 2024, 233 , 112756. https://doi.org/10.1016/j.commatsci.2023.112756
    19. Christian Merten. Modelling solute–solvent interactions in VCD spectra analysis with the micro-solvation approach. Physical Chemistry Chemical Physics 2023, 25 (43) , 29404-29414. https://doi.org/10.1039/D3CP03408A
    20. Sascha Jähnigen. Vibrational Circular Dichroism Spectroscopy of Chiral Molecular Crystals: Insights from Theory. Angewandte Chemie International Edition 2023, 62 (41) https://doi.org/10.1002/anie.202303595
    21. Sascha Jähnigen. Vibrational Circular Dichroism Spectroscopy of Chiral Molecular Crystals: Insights from Theory. Angewandte Chemie 2023, 135 (41) https://doi.org/10.1002/ange.202303595
    22. Angelo Shehan Perera, Colton D. Carlson, Joseph Cheramy, Yunjie Xu. Infrared and vibrational circular dichroism spectra of methyl β‐D‐glucopyranose in water: The application of the quantum cluster growth and clusters‐in‐a‐liquid solvation models. Chirality 2023, 35 (10) , 718-731. https://doi.org/10.1002/chir.23576
    23. Jan Blasius, Barbara Kirchner. Selective Chirality Transfer to the Bis(trifluoromethylsulfonyl)imide Anion of an Ionic Liquid. Chemistry – A European Journal 2023, 29 (51) https://doi.org/10.1002/chem.202301239
    24. Clemens Müller, Christian Merten. Solvation of serine-based model peptides and the role of the intramolecular OH·O hydrogen bond in interpreting VCD spectra. Physical Chemistry Chemical Physics 2023, 25 (29) , 19462-19469. https://doi.org/10.1039/D3CP02426A
    25. Mutasem Alshalalfeh, Ningjie Sun, Amanda Hanashiro Moraes, Alexandra Paola Aponte Utani, Yunjie Xu. Conformational Distributions of Phenyl β-D-Glucopyranoside and Gastrodin in Solution by Vibrational Optical Activity and Theoretical Calculations. Molecules 2023, 28 (10) , 4013. https://doi.org/10.3390/molecules28104013
    26. Dongbo Zhao, Kang Liao, Benkun Hong, Wei Li, Shuhua Li. Accurate and efficient prediction of vibrational circular dichroism spectra of condensed-phase systems with the generalized energy-based fragmentation method. Electronic Structure 2023, 5 (1) , 014001. https://doi.org/10.1088/2516-1075/acb1e7
    27. Sascha Jähnigen, Katia Le Barbu‐Debus, Régis Guillot, Rodolphe Vuilleumier, Anne Zehnacker. How Crystal Symmetry Dictates Non‐Local Vibrational Circular Dichroism in the Solid State. Angewandte Chemie International Edition 2023, 62 (5) https://doi.org/10.1002/anie.202215599
    28. Sascha Jähnigen, Katia Le Barbu‐Debus, Régis Guillot, Rodolphe Vuilleumier, Anne Zehnacker. How Crystal Symmetry Dictates Non‐Local Vibrational Circular Dichroism in the Solid State. Angewandte Chemie 2023, 135 (5) https://doi.org/10.1002/ange.202215599
    29. Luiza Buimaga-Iarinca, Cristian Morari. Calculation of infrared spectra for adsorbed molecules from the dipole autocorrelation function. Theoretical Chemistry Accounts 2022, 141 (11) https://doi.org/10.1007/s00214-022-02932-3
    30. Edward Ditler, Sandra Luber. Vibrational spectroscopy by means of first‐principles molecular dynamics simulations. WIREs Computational Molecular Science 2022, 12 (5) https://doi.org/10.1002/wcms.1605
    31. Kevin Scholten, Christian Merten. Solvation of the Boc–Val–Phe– n Pr peptide characterized by VCD spectroscopy and DFT calculations. Physical Chemistry Chemical Physics 2022, 24 (6) , 3611-3617. https://doi.org/10.1039/D1CP05457K
    32. Valery Andrushchenko, Andrii Kurochka, Jan Kubelka, Jakub Kaminský. Spectroscopic Analysis: Calculations of Chiroptical Spectra. 2022https://doi.org/10.1016/B978-0-32-390644-9.00074-3
    33. Sascha Jähnigen, Daniel Sebastiani, Rodolphe Vuilleumier. The important role of non-covalent interactions for the vibrational circular dichroism of lactic acid in aqueous solution. Physical Chemistry Chemical Physics 2021, 23 (32) , 17232-17241. https://doi.org/10.1039/D1CP03106F
    34. Barbara Kirchner, Jan Blasius, Lars Esser, Werner Reckien. Predicting Vibrational Spectroscopy for Flexible Molecules and Molecules with Non‐Idle Environments. Advanced Theory and Simulations 2021, 4 (4) https://doi.org/10.1002/adts.202000223
    35. Martin Brehm, Martin Thomas. Optimized Atomic Partial Charges and Radii Defined by Radical Voronoi Tessellation of Bulk Phase Simulations. Molecules 2021, 26 (7) , 1875. https://doi.org/10.3390/molecules26071875
    36. Prasad L. Polavarapu, Ernesto Santoro. Vibrational optical activity for structural characterization of natural products. Natural Product Reports 2020, 37 (12) , 1661-1699. https://doi.org/10.1039/D0NP00025F
    37. Katia Le Barbu-Debus, Jessica Bowles, Sascha Jähnigen, Carine Clavaguéra, Florent Calvo, Rodolphe Vuilleumier, Anne Zehnacker. Assessing cluster models of solvation for the description of vibrational circular dichroism spectra: synergy between static and dynamic approaches. Physical Chemistry Chemical Physics 2020, 22 (45) , 26047-26068. https://doi.org/10.1039/D0CP03869E
    38. Luisa Weirich, Katharina Blanke, Christian Merten. More complex, less complicated? Explicit solvation of hydroxyl groups for the analysis of VCD spectra. Physical Chemistry Chemical Physics 2020, 22 (22) , 12515-12523. https://doi.org/10.1039/D0CP01656J
    39. Jan Blasius, Roman Elfgen, Oldamur Hollóczki, Barbara Kirchner. Glucose in dry and moist ionic liquid: vibrational circular dichroism, IR, and possible mechanisms. Physical Chemistry Chemical Physics 2020, 22 (19) , 10726-10737. https://doi.org/10.1039/C9CP06798A
    40. M. Brehm, M. Thomas, S. Gehrke, B. Kirchner. TRAVIS—A free analyzer for trajectories from molecular simulation. The Journal of Chemical Physics 2020, 152 (16) https://doi.org/10.1063/5.0005078
    41. Monika Krupová, Jiří Kessler, Petr Bouř. Recent Trends in Chiroptical Spectroscopy: Theory and Applications of Vibrational Circular Dichroism and Raman Optical Activity. ChemPlusChem 2020, 85 (3) , 561-575. https://doi.org/10.1002/cplu.202000014
    42. Luisa Weirich, Juliana Magalhães de Oliveira, Christian Merten. How many solvent molecules are required to solvate chiral 1,2-diols with hydrogen bonding solvents? A VCD spectroscopic study. Physical Chemistry Chemical Physics 2020, 22 (3) , 1525-1533. https://doi.org/10.1039/C9CP06030H
    43. Sandra Luber. Trendbericht Theoretische Chemie: Schwingungsspektroskopie mit Ab‐initio‐Molekulardynamik. Nachrichten aus der Chemie 2019, 67 (11) , 61-64. https://doi.org/10.1002/nadc.20194090382
    44. Magdalena Pecul, Joanna Sadlej. Chiral Recognition by Molecular Spectroscopy. 2019, 171-198. https://doi.org/10.1002/9783527814596.ch6
    45. Luisa Weirich, Christian Merten. Solvation and self-aggregation of chiral alcohols: how hydrogen bonding affects their VCD spectral signatures. Physical Chemistry Chemical Physics 2019, 21 (25) , 13494-13503. https://doi.org/10.1039/C9CP01407A
    46. Sascha Jähnigen, Arne Scherrer, Rodolphe Vuilleumier, Daniel Sebastiani. Chiral Crystal Packing Induces Enhancement of Vibrational Circular Dichroism. Angewandte Chemie International Edition 2018, 57 (40) , 13344-13348. https://doi.org/10.1002/anie.201805671
    47. Sascha Jähnigen, Arne Scherrer, Rodolphe Vuilleumier, Daniel Sebastiani. VCD‐Verstärkung durch chirale Packungseffekte in molekularen Kristallen. Angewandte Chemie 2018, 130 (40) , 13528-13532. https://doi.org/10.1002/ange.201805671
    48. Martin Brehm, Daniel Sebastiani. Simulating structure and dynamics in small droplets of 1-ethyl-3-methylimidazolium acetate. The Journal of Chemical Physics 2018, 148 (19) https://doi.org/10.1063/1.5010342
    49. Yiyin Xia, Mark A. J. Koenis, Juan F. Collados, Pablo Ortiz, Syuzanna R. Harutyunyan, Lucas Visscher, Wybren J. Buma, Valentin P. Nicu. Regional Susceptibility in VCD Spectra to Dynamic Molecular Motions: The Case of a Benzyl α‐Hydroxysilane. ChemPhysChem 2018, 19 (5) , 561-565. https://doi.org/10.1002/cphc.201701335
    50. Laurence A. Nafie. Vibrational Optical Activity: From Small Chiral Molecules to Protein Pharmaceuticals and Beyond. 2018, 421-469. https://doi.org/10.1016/B978-0-12-811220-5.00014-9
    51. Monika Srebro-Hooper, Jochen Autschbach. Calculating Natural Optical Activity of Molecules from First Principles. Annual Review of Physical Chemistry 2017, 68 (1) , 399-420. https://doi.org/10.1146/annurev-physchem-052516-044827
    52. Kevin Reiter, Michael Kühn, Florian Weigend. Vibrational circular dichroism spectra for large molecules and molecules with heavy elements. The Journal of Chemical Physics 2017, 146 (5) https://doi.org/10.1063/1.4974897
    53. Christian Merten. Vibrational optical activity as probe for intermolecular interactions. Physical Chemistry Chemical Physics 2017, 19 (29) , 18803-18812. https://doi.org/10.1039/C7CP02544K
    54. Arne Scherrer, Rodolphe Vuilleumier, Daniel Sebastiani. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase. The Journal of Chemical Physics 2016, 145 (8) https://doi.org/10.1063/1.4960653

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2016, 7, 3, 509–513
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.5b02752
    Published January 15, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    1957

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.