Classical Magnetic Dipole Moments for the Simulation of Vibrational Circular Dichroism by ab Initio Molecular DynamicsClick to copy article linkArticle link copied!
Abstract

We present a new approach for calculating vibrational circular dichroism spectra by ab initio molecular dynamics. In the context of molecular dynamics, these spectra are given by the Fourier transform of the cross-correlation function of magnetic dipole moment and electric dipole moment. We obtain the magnetic dipole moment from the electric current density according to the classical definition. The electric current density is computed by solving a partial differential equation derived from the continuity equation and the condition that eddy currents should be absent. In combination with a radical Voronoi tessellation, this yields an individual magnetic dipole moment for each molecule in a bulk phase simulation. Using the chiral alcohol 2-butanol as an example, we show that experimental spectra are reproduced very well. Our approach requires knowing only the electron density in each simulation step, and it is not restricted to any particular electronic structure method.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 54 publications.
- Julien Bloino, Sascha Jähnigen, Christian Merten. After 50 Years of Vibrational Circular Dichroism Spectroscopy: Challenges and Opportunities of Increasingly Accurate and Complex Experiments and Computations. The Journal of Physical Chemistry Letters 2024, 15
(34)
, 8813-8828. https://doi.org/10.1021/acs.jpclett.4c01700
- Jan Blasius, Katrin Drysch, Frank Hendrik Pilz, Tom Frömbgen, Patrycja Kielb, Barbara Kirchner. Efficient Prediction of Mole Fraction Related Vibrational Frequency Shifts. The Journal of Physical Chemistry Letters 2023, 14
(47)
, 10531-10536. https://doi.org/10.1021/acs.jpclett.3c02761
- Marina Macchiagodena, Gavino Bassu, Irene Vettori, Emiliano Fratini, Piero Procacci, Marco Pagliai. 2-Butanol Aqueous Solutions: A Combined Molecular Dynamics and Small/Wide-Angle X-ray Scattering Study. The Journal of Physical Chemistry A 2022, 126
(47)
, 8826-8833. https://doi.org/10.1021/acs.jpca.2c05708
- Daria Ruth Galimberti. Vibrational Circular Dichroism from DFT Molecular Dynamics: The AWV Method. Journal of Chemical Theory and Computation 2022, 18
(10)
, 6217-6230. https://doi.org/10.1021/acs.jctc.2c00736
- Barbara Kirchner, Jan Blasius, Vahideh Alizadeh, Andreas Gansäuer, Oldamur Hollóczki. Chemistry Dissolved in Ionic Liquids. A Theoretical Perspective. The Journal of Physical Chemistry B 2022, 126
(4)
, 766-777. https://doi.org/10.1021/acs.jpcb.1c09092
- Sascha Jähnigen, Anne Zehnacker, Rodolphe Vuilleumier. Computation of Solid-State Vibrational Circular Dichroism in the Periodic Gauge. The Journal of Physical Chemistry Letters 2021, 12
(30)
, 7213-7220. https://doi.org/10.1021/acs.jpclett.1c01682
- Beatriz von der Esch, Laurens D. M. Peters, Lena Sauerland, Christian Ochsenfeld. Quantitative Comparison of Experimental and Computed IR-Spectra Extracted from Ab Initio Molecular Dynamics. Journal of Chemical Theory and Computation 2021, 17
(2)
, 985-995. https://doi.org/10.1021/acs.jctc.0c01279
- Zoe L. Seeger, Ekaterina I. Izgorodina. A Systematic Study of DFT Performance for Geometry Optimizations of Ionic Liquid Clusters. Journal of Chemical Theory and Computation 2020, 16
(10)
, 6735-6753. https://doi.org/10.1021/acs.jctc.0c00549
- Jan Blasius, Barbara Kirchner. Cluster-Weighting in Bulk Phase Vibrational Circular Dichroism. The Journal of Physical Chemistry B 2020, 124
(33)
, 7272-7283. https://doi.org/10.1021/acs.jpcb.0c06313
- Eva Perlt, Sarah A. Berger, Anne-Marie Kelterer, Barbara Kirchner. Anharmonicity of Vibrational Modes in Hydrogen Chloride–Water Mixtures. Journal of Chemical Theory and Computation 2019, 15
(4)
, 2535-2547. https://doi.org/10.1021/acs.jctc.8b01070
- Martin Brehm, Martin Thomas. An Efficient Lossless Compression Algorithm for Trajectories of Atom Positions and Volumetric Data. Journal of Chemical Information and Modeling 2018, 58
(10)
, 2092-2107. https://doi.org/10.1021/acs.jcim.8b00501
- Martin Brehm and Martin Thomas . Computing Bulk Phase Raman Optical Activity Spectra from ab initio Molecular Dynamics Simulations. The Journal of Physical Chemistry Letters 2017, 8
(14)
, 3409-3414. https://doi.org/10.1021/acs.jpclett.7b01616
- Sandra Luber . Raman Optical Activity Spectra from Density Functional Perturbation Theory and Density-Functional-Theory-Based Molecular Dynamics. Journal of Chemical Theory and Computation 2017, 13
(3)
, 1254-1262. https://doi.org/10.1021/acs.jctc.6b00820
- Jessica Bowles, Sascha Jähnigen, Federica Agostini, Rodolphe Vuilleumier, Anne Zehnacker, Florent Calvo, Carine Clavaguéra. Vibrational Circular Dichroism Spectroscopy with a Classical Polarizable Force Field: Alanine in the Gas and Condensed Phases. ChemPhysChem 2024, 25
(8)
https://doi.org/10.1002/cphc.202300982
- Laurens D. M. Peters, Erik I. Tellgren, Trygve Helgaker. Propagators for molecular dynamics in a magnetic field. Molecular Physics 2024, 122
(5)
https://doi.org/10.1080/00268976.2023.2259008
- Shima Taherivardanjani, Luke Wylie, Reinhard Dötzer, Barbara Kirchner. Exploring the Influence of the Phosphorus‐Heteroatom Substitution in Nicotine on Its Electronic and Vibrational Spectroscopic Properties. Chemistry – A European Journal 2024, 30
(7)
https://doi.org/10.1002/chem.202302534
- Tom Frömbgen, Jan Blasius, Leonard Dick, Katrin Drysch, Vahideh Alizadeh, Luke Wylie, Barbara Kirchner. Reducing Uncertainties in and Analysis of Ionic Liquid Trajectories. 2024, 692-722. https://doi.org/10.1016/B978-0-12-821978-2.00097-0
- Wang Sun, Liang-Sheng Li, Hong-Cheng Yin, Wei Chen. Study of permeability and permittivity of
α
-Fe
2
O
3
using computer simulation method. Computational Materials Science 2024, 233 , 112756. https://doi.org/10.1016/j.commatsci.2023.112756
- Christian Merten. Modelling solute–solvent interactions in VCD spectra analysis with the micro-solvation approach. Physical Chemistry Chemical Physics 2023, 25
(43)
, 29404-29414. https://doi.org/10.1039/D3CP03408A
- Sascha Jähnigen. Vibrational Circular Dichroism Spectroscopy of Chiral Molecular Crystals: Insights from Theory. Angewandte Chemie International Edition 2023, 62
(41)
https://doi.org/10.1002/anie.202303595
- Sascha Jähnigen. Vibrational Circular Dichroism Spectroscopy of Chiral Molecular Crystals: Insights from Theory. Angewandte Chemie 2023, 135
(41)
https://doi.org/10.1002/ange.202303595
- Angelo Shehan Perera, Colton D. Carlson, Joseph Cheramy, Yunjie Xu. Infrared and vibrational circular dichroism spectra of methyl β‐D‐glucopyranose in water: The application of the
quantum cluster growth
and
clusters‐in‐a‐liquid
solvation models. Chirality 2023, 35
(10)
, 718-731. https://doi.org/10.1002/chir.23576
- Jan Blasius, Barbara Kirchner. Selective Chirality Transfer to the Bis(trifluoromethylsulfonyl)imide Anion of an Ionic Liquid. Chemistry – A European Journal 2023, 29
(51)
https://doi.org/10.1002/chem.202301239
- Clemens Müller, Christian Merten. Solvation of serine-based model peptides and the role of the intramolecular OH·O hydrogen bond in interpreting VCD spectra. Physical Chemistry Chemical Physics 2023, 25
(29)
, 19462-19469. https://doi.org/10.1039/D3CP02426A
- Mutasem Alshalalfeh, Ningjie Sun, Amanda Hanashiro Moraes, Alexandra Paola Aponte Utani, Yunjie Xu. Conformational Distributions of Phenyl β-D-Glucopyranoside and Gastrodin in Solution by Vibrational Optical Activity and Theoretical Calculations. Molecules 2023, 28
(10)
, 4013. https://doi.org/10.3390/molecules28104013
- Dongbo Zhao, Kang Liao, Benkun Hong, Wei Li, Shuhua Li. Accurate and efficient prediction of vibrational circular dichroism spectra of condensed-phase systems with the generalized energy-based fragmentation method. Electronic Structure 2023, 5
(1)
, 014001. https://doi.org/10.1088/2516-1075/acb1e7
- Sascha Jähnigen, Katia Le Barbu‐Debus, Régis Guillot, Rodolphe Vuilleumier, Anne Zehnacker. How Crystal Symmetry Dictates Non‐Local Vibrational Circular Dichroism in the Solid State. Angewandte Chemie International Edition 2023, 62
(5)
https://doi.org/10.1002/anie.202215599
- Sascha Jähnigen, Katia Le Barbu‐Debus, Régis Guillot, Rodolphe Vuilleumier, Anne Zehnacker. How Crystal Symmetry Dictates Non‐Local Vibrational Circular Dichroism in the Solid State. Angewandte Chemie 2023, 135
(5)
https://doi.org/10.1002/ange.202215599
- Luiza Buimaga-Iarinca, Cristian Morari. Calculation of infrared spectra for adsorbed molecules from the dipole autocorrelation function. Theoretical Chemistry Accounts 2022, 141
(11)
https://doi.org/10.1007/s00214-022-02932-3
- Edward Ditler, Sandra Luber. Vibrational spectroscopy by means of first‐principles molecular dynamics simulations. WIREs Computational Molecular Science 2022, 12
(5)
https://doi.org/10.1002/wcms.1605
- Kevin Scholten, Christian Merten. Solvation of the Boc–Val–Phe–
n
Pr peptide characterized by VCD spectroscopy and DFT calculations. Physical Chemistry Chemical Physics 2022, 24
(6)
, 3611-3617. https://doi.org/10.1039/D1CP05457K
- Valery Andrushchenko, Andrii Kurochka, Jan Kubelka, Jakub Kaminský. Spectroscopic Analysis: Calculations of Chiroptical Spectra. 2022https://doi.org/10.1016/B978-0-32-390644-9.00074-3
- Sascha Jähnigen, Daniel Sebastiani, Rodolphe Vuilleumier. The important role of non-covalent interactions for the vibrational circular dichroism of lactic acid in aqueous solution. Physical Chemistry Chemical Physics 2021, 23
(32)
, 17232-17241. https://doi.org/10.1039/D1CP03106F
- Barbara Kirchner, Jan Blasius, Lars Esser, Werner Reckien. Predicting Vibrational Spectroscopy for Flexible Molecules and Molecules with Non‐Idle Environments. Advanced Theory and Simulations 2021, 4
(4)
https://doi.org/10.1002/adts.202000223
- Martin Brehm, Martin Thomas. Optimized Atomic Partial Charges and Radii Defined by Radical Voronoi Tessellation of Bulk Phase Simulations. Molecules 2021, 26
(7)
, 1875. https://doi.org/10.3390/molecules26071875
- Prasad L. Polavarapu, Ernesto Santoro. Vibrational optical activity for structural characterization of natural products. Natural Product Reports 2020, 37
(12)
, 1661-1699. https://doi.org/10.1039/D0NP00025F
- Katia Le Barbu-Debus, Jessica Bowles, Sascha Jähnigen, Carine Clavaguéra, Florent Calvo, Rodolphe Vuilleumier, Anne Zehnacker. Assessing cluster models of solvation for the description of vibrational circular dichroism spectra: synergy between static and dynamic approaches. Physical Chemistry Chemical Physics 2020, 22
(45)
, 26047-26068. https://doi.org/10.1039/D0CP03869E
- Luisa Weirich, Katharina Blanke, Christian Merten. More complex, less complicated? Explicit solvation of hydroxyl groups for the analysis of VCD spectra. Physical Chemistry Chemical Physics 2020, 22
(22)
, 12515-12523. https://doi.org/10.1039/D0CP01656J
- Jan Blasius, Roman Elfgen, Oldamur Hollóczki, Barbara Kirchner. Glucose in dry and moist ionic liquid: vibrational circular dichroism, IR, and possible mechanisms. Physical Chemistry Chemical Physics 2020, 22
(19)
, 10726-10737. https://doi.org/10.1039/C9CP06798A
- M. Brehm, M. Thomas, S. Gehrke, B. Kirchner. TRAVIS—A free analyzer for trajectories from molecular simulation. The Journal of Chemical Physics 2020, 152
(16)
https://doi.org/10.1063/5.0005078
- Monika Krupová, Jiří Kessler, Petr Bouř. Recent Trends in Chiroptical Spectroscopy: Theory and Applications of Vibrational Circular Dichroism and Raman Optical Activity. ChemPlusChem 2020, 85
(3)
, 561-575. https://doi.org/10.1002/cplu.202000014
- Luisa Weirich, Juliana Magalhães de Oliveira, Christian Merten. How many solvent molecules are required to solvate chiral 1,2-diols with hydrogen bonding solvents? A VCD spectroscopic study. Physical Chemistry Chemical Physics 2020, 22
(3)
, 1525-1533. https://doi.org/10.1039/C9CP06030H
- Sandra Luber. Trendbericht Theoretische Chemie: Schwingungsspektroskopie mit Ab‐initio‐Molekulardynamik. Nachrichten aus der Chemie 2019, 67
(11)
, 61-64. https://doi.org/10.1002/nadc.20194090382
- Magdalena Pecul, Joanna Sadlej. Chiral Recognition by Molecular Spectroscopy. 2019, 171-198. https://doi.org/10.1002/9783527814596.ch6
- Luisa Weirich, Christian Merten. Solvation and self-aggregation of chiral alcohols: how hydrogen bonding affects their VCD spectral signatures. Physical Chemistry Chemical Physics 2019, 21
(25)
, 13494-13503. https://doi.org/10.1039/C9CP01407A
- Sascha Jähnigen, Arne Scherrer, Rodolphe Vuilleumier, Daniel Sebastiani. Chiral Crystal Packing Induces Enhancement of Vibrational Circular Dichroism. Angewandte Chemie International Edition 2018, 57
(40)
, 13344-13348. https://doi.org/10.1002/anie.201805671
- Sascha Jähnigen, Arne Scherrer, Rodolphe Vuilleumier, Daniel Sebastiani. VCD‐Verstärkung durch chirale Packungseffekte in molekularen Kristallen. Angewandte Chemie 2018, 130
(40)
, 13528-13532. https://doi.org/10.1002/ange.201805671
- Martin Brehm, Daniel Sebastiani. Simulating structure and dynamics in small droplets of 1-ethyl-3-methylimidazolium acetate. The Journal of Chemical Physics 2018, 148
(19)
https://doi.org/10.1063/1.5010342
- Yiyin Xia, Mark A. J. Koenis, Juan F. Collados, Pablo Ortiz, Syuzanna R. Harutyunyan, Lucas Visscher, Wybren J. Buma, Valentin P. Nicu. Regional Susceptibility in VCD Spectra to Dynamic Molecular Motions: The Case of a Benzyl α‐Hydroxysilane. ChemPhysChem 2018, 19
(5)
, 561-565. https://doi.org/10.1002/cphc.201701335
- Laurence A. Nafie. Vibrational Optical Activity: From Small Chiral Molecules to Protein Pharmaceuticals and Beyond. 2018, 421-469. https://doi.org/10.1016/B978-0-12-811220-5.00014-9
- Monika Srebro-Hooper, Jochen Autschbach. Calculating Natural Optical Activity of Molecules from First Principles. Annual Review of Physical Chemistry 2017, 68
(1)
, 399-420. https://doi.org/10.1146/annurev-physchem-052516-044827
- Kevin Reiter, Michael Kühn, Florian Weigend. Vibrational circular dichroism spectra for large molecules and molecules with heavy elements. The Journal of Chemical Physics 2017, 146
(5)
https://doi.org/10.1063/1.4974897
- Christian Merten. Vibrational optical activity as probe for intermolecular interactions. Physical Chemistry Chemical Physics 2017, 19
(29)
, 18803-18812. https://doi.org/10.1039/C7CP02544K
- Arne Scherrer, Rodolphe Vuilleumier, Daniel Sebastiani. Vibrational circular dichroism from
ab initio
molecular dynamics and nuclear velocity perturbation theory in the liquid phase. The Journal of Chemical Physics 2016, 145
(8)
https://doi.org/10.1063/1.4960653
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.