Fast Interconversion of Hydrogen Bonding at the Hematite (001)–Liquid Water Interface
Abstract

The interface between transition-metal oxides and aqueous solutions plays an important role in biogeochemistry and photoelectrochemistry, but the atomistic structure is often elusive. Here we report on the surface geometry, solvation structure, and thermal fluctuations of the hydrogen bonding network at the hematite (001)–water interface as obtained from hybrid density functional theory-based molecular dynamics. We find that the protons terminating the surface form binary patterns by either pointing in-plane or out-of-plane. The patterns exist for about 1 ps and spontaneously interconvert in an ultrafast, solvent-driven process within 50 fs. This results in only about half of the terminating protons pointing toward the solvent and being acidic. The lifetimes of all hydrogen bonds formed at the interface are shorter than those in pure liquid water. The solvation structure reported herein forms the basis for a better fundamental understanding of electron transfer coupled to proton transfer reactions at this important interface.
Cited By
This article is cited by 37 publications.
- Vivek Ramakrishnan, Anton Tsyganok, Elena Davydova, Mariela J. Pavan, Avner Rothschild, Iris Visoly-Fisher. Competitive Photo-Oxidation of Water and Hole Scavengers on Hematite Photoanodes: Photoelectrochemical and Operando Raman Spectroelectrochemistry Study. ACS Catalysis 2023, 13 (1) , 540-549. https://doi.org/10.1021/acscatal.2c02849
- Christian S. Ahart, Kevin M. Rosso, Jochen Blumberger. Electron and Hole Mobilities in Bulk Hematite from Spin-Constrained Density Functional Theory. Journal of the American Chemical Society 2022, 144 (10) , 4623-4632. https://doi.org/10.1021/jacs.1c13507
- Zdenek Futera, Niall J. English. Water Breakup at Fe2O3–Hematite/Water Interfaces: Influence of External Electric Fields from Nonequilibrium Ab Initio Molecular Dynamics. The Journal of Physical Chemistry Letters 2021, 12 (29) , 6818-6826. https://doi.org/10.1021/acs.jpclett.1c01479
- Meirong Zong, Duo Song, Xin Zhang, Xiaopeng Huang, Xiancai Lu, Kevin M. Rosso. Facet-Dependent Photodegradation of Methylene Blue by Hematite Nanoplates in Visible Light. Environmental Science & Technology 2021, 55 (1) , 677-688. https://doi.org/10.1021/acs.est.0c05592
- Quinn A. Besford, Andrew J. Christofferson, Jas Kalayan, Jens-Uwe Sommer, Richard H. Henchman. The Attraction of Water for Itself at Hydrophobic Quartz Interfaces. The Journal of Physical Chemistry B 2020, 124 (29) , 6369-6375. https://doi.org/10.1021/acs.jpcb.0c04545
- Chao Zhang, Jürg Hutter, Michiel Sprik. Coupling of Surface Chemistry and Electric Double Layer at TiO2 Electrochemical Interfaces. The Journal of Physical Chemistry Letters 2019, 10 (14) , 3871-3876. https://doi.org/10.1021/acs.jpclett.9b01355
- Kiran George, Matthijs van Berkel, Xueqing Zhang, Rochan Sinha, Anja Bieberle-Hütter. Impedance Spectra and Surface Coverages Simulated Directly from the Electrochemical Reaction Mechanism: A Nonlinear State-Space Approach. The Journal of Physical Chemistry C 2019, 123 (15) , 9981-9992. https://doi.org/10.1021/acs.jpcc.9b01836
- Katherine J. Harmon, Ying Chen, Eric J. Bylaska, Jeffrey G. Catalano, Michael J. Bedzyk, John H. Weare, Paul Fenter. Insights on the Alumina–Water Interface Structure by Direct Comparison of Density Functional Simulations with X-ray Reflectivity. The Journal of Physical Chemistry C 2018, 122 (47) , 26934-26944. https://doi.org/10.1021/acs.jpcc.8b08522
- Oliver R. Gittus, Guido Falk von Rudorff, Kevin M. Rosso, Jochen Blumberger. Acidity Constants of the Hematite–Liquid Water Interface from Ab Initio Molecular Dynamics. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5574-5582. https://doi.org/10.1021/acs.jpclett.8b01870
- Guido Falk von Rudorff, Rasmus Jakobsen, Kevin M. Rosso, and Jochen Blumberger . Improving the Performance of Hybrid Functional-Based Molecular Dynamics Simulation through Screening of Hartree–Fock Exchange Forces. Journal of Chemical Theory and Computation 2017, 13 (5) , 2178-2184. https://doi.org/10.1021/acs.jctc.6b01121
- Kelsey A. Stoerzinger, Ryan Comes, Steven R. Spurgeon, Suntharampillai Thevuthasan, Kyuwook Ihm, Ethan J. Crumlin, and Scott A. Chambers . Influence of LaFeO3 Surface Termination on Water Reactivity. The Journal of Physical Chemistry Letters 2017, 8 (5) , 1038-1043. https://doi.org/10.1021/acs.jpclett.7b00195
- Martin E. McBriarty, Guido Falk von Rudorff, Joanne E. Stubbs, Peter J. Eng, Jochen Blumberger, and Kevin M. Rosso . Dynamic Stabilization of Metal Oxide–Water Interfaces. Journal of the American Chemical Society 2017, 139 (7) , 2581-2584. https://doi.org/10.1021/jacs.6b13096
- Kinran Lau, Felix Niemann, Kaltum Abdiaziz, Markus Heidelmann, Yuke Yang, Yujin Tong, Michael Fechtelkord, Torsten C. Schmidt, Alexander Schnegg, R. Kramer Campen, Baoxiang Peng, Martin Muhler, Sven Reichenberger, Stephan Barcikowski. Unterscheidung zwischen sauren und basischen Oberflächenhydroxylgruppen auf Metalloxiden durch Fluoridsubstitution: Eine Fallstudie am Beispiel von defektreichem, blauem TiO 2 aus der laserbasierten Defekterzeugung. Angewandte Chemie 2023, 135 (12) https://doi.org/10.1002/ange.202213968
- Kinran Lau, Felix Niemann, Kaltum Abdiaziz, Markus Heidelmann, Yuke Yang, Yujin Tong, Michael Fechtelkord, Torsten C. Schmidt, Alexander Schnegg, R. Kramer Campen, Baoxiang Peng, Martin Muhler, Sven Reichenberger, Stephan Barcikowski. Differentiating between Acidic and Basic Surface Hydroxyls on Metal Oxides by Fluoride Substitution: A Case Study on Blue TiO 2 from Laser Defect Engineering. Angewandte Chemie International Edition 2023, 62 (12) https://doi.org/10.1002/anie.202213968
- Qianqian Wang, Haofeng Zhang, Yanling Xu, Shenxu Bao, Cheng Liu, Siyuan Yang. The molecular structure effects of starches and starch phosphates in the reverse flotation of quartz from hematite. Carbohydrate Polymers 2023, 303 , 120484. https://doi.org/10.1016/j.carbpol.2022.120484
- Giulia Righi, Julius Plescher, Franz-Philipp Schmidt, R. Kramer Campen, Stefano Fabris, Axel Knop-Gericke, Robert Schlögl, Travis E. Jones, Detre Teschner, Simone Piccinin. On the origin of multihole oxygen evolution in haematite photoanodes. Nature Catalysis 2022, 5 (10) , 888-899. https://doi.org/10.1038/s41929-022-00845-9
- Philipp Schienbein, Jochen Blumberger. Nanosecond solvation dynamics of the hematite/liquid water interface at hybrid DFT accuracy using committee neural network potentials. Physical Chemistry Chemical Physics 2022, 24 (25) , 15365-15375. https://doi.org/10.1039/D2CP01708C
- Weibin Chu, Shijing Tan, Qijing Zheng, Wei Fang, Yexin Feng, Oleg V. Prezhdo, Bing Wang, Xin-Zheng Li, Jin Zhao. Ultrafast charge transfer coupled to quantum proton motion at molecule/metal oxide interface. Science Advances 2022, 8 (24) https://doi.org/10.1126/sciadv.abo2675
- Jie-Qiong Li, Xiao-Jian Wen, Mei Jia, Yong-Bin Zhuang, Xue Zhang, Jia-Bo Le, Jun Cheng. Ab Initio Modeling of Semiconductor-Water Interfaces. 2022, 399-422. https://doi.org/10.1007/978-3-030-63713-2_16
- Niall J. English. Electric-field-promoted photo-electrochemical production of hydrogen from water splitting. Journal of Molecular Liquids 2021, 342 , 116949. https://doi.org/10.1016/j.molliq.2021.116949
- P. A. Delcompare-Rodriguez, N. Seriani. Ultrathin space charge layer in hematite photoelectrodes: A theoretical investigation. The Journal of Chemical Physics 2021, 155 (11) , 114701. https://doi.org/10.1063/5.0060417
- Juan Jose Gutierrez-Sevillano, Agata Podsiadły-Paszkowska, Bartłomiej M. Szyja, Sofia Calero. On the design of models for an accurate description of the water – hematite interface. Applied Surface Science 2021, 560 , 149884. https://doi.org/10.1016/j.apsusc.2021.149884
- V. Sinha, D. Sun, E. J. Meijer, T. J. H. Vlugt, A. Bieberle-Hütter. A multiscale modelling approach to elucidate the mechanism of the oxygen evolution reaction at the hematite–water interface. Faraday Discussions 2021, 229 , 89-107. https://doi.org/10.1039/C9FD00140A
- Hongliang Zhang, Zhijie Xu, Daixiong Chen, Bo Hu, Qiqi Zhou, Shengda Chen, Sai Li, Wei Sun, Chenyang Zhang. Adsorption mechanism of water molecules on hematite (1 0 4) surface and the hydration microstructure. Applied Surface Science 2021, 550 , 149328. https://doi.org/10.1016/j.apsusc.2021.149328
- Weibin Chu, Qijing Zheng, Wei Fan, Yexin Feng, Oleg Prezhdo, Xinzheng Li, Jin Zhao. Ultrafast Charge Transfer Coupled to Quantum Proton Motion at Molecule/Metal Oxide Interface. SSRN Electronic Journal 2021, 12 https://doi.org/10.2139/ssrn.3917160
- Chao Zhang, Thomas Sayer, Jürg Hutter, Michiel Sprik. Modelling electrochemical systems with finite field molecular dynamics. Journal of Physics: Energy 2020, 2 (3) , 032005. https://doi.org/10.1088/2515-7655/ab9d8c
- Guido Falk von Rudorff, O. Anatole von Lilienfeld. Rapid and accurate molecular deprotonation energies from quantum alchemy. Physical Chemistry Chemical Physics 2020, 22 (19) , 10519-10525. https://doi.org/10.1039/C9CP06471K
- Christian S. Ahart, Jochen Blumberger, Kevin M. Rosso. Polaronic structure of excess electrons and holes for a series of bulk iron oxides. Physical Chemistry Chemical Physics 2020, 22 (19) , 10699-10709. https://doi.org/10.1039/C9CP06482F
- Sateesh Bandaru, Ivan Scivetti, Chi-Yung Yam, Gilberto Teobaldi. The role of isotropic and anisotropic Hubbard corrections for the magnetic ordering and absolute band alignment of hematite α-Fe2O3(0001) surfaces. Progress in Natural Science: Materials International 2019, 29 (3) , 349-355. https://doi.org/10.1016/j.pnsc.2019.05.010
- Kanchan Ulman, Emiliano Poli, Nicola Seriani, Simone Piccinin, Ralph Gebauer. Understanding the electrochemical double layer at the hematite/water interface: A first principles molecular dynamics study. The Journal of Chemical Physics 2019, 150 (4) , 041707. https://doi.org/10.1063/1.5047930
- Richard B Wang, Anders Hellman. Surface terminations of hematite ( α -Fe 2 O 3 ) exposed to oxygen, hydrogen, or water: dependence on the density functional theory methodology. Journal of Physics: Condensed Matter 2018, 30 (27) , 275002. https://doi.org/10.1088/1361-648X/aac743
- Hebatallah Ali, Robert Seidel, Marvin N. Pohl, Bernd Winter. Molecular species forming at the α-Fe 2 O 3 nanoparticle–aqueous solution interface. Chemical Science 2018, 9 (19) , 4511-4523. https://doi.org/10.1039/C7SC05156E
- Nicola Seriani. Ab initio simulations of water splitting on hematite. Journal of Physics: Condensed Matter 2017, 29 (46) , 463002. https://doi.org/10.1088/1361-648X/aa84d9
- Sayyed Hashem Sajjadi, Elaheh K. Goharshadi. Highly monodispersed hematite cubes for removal of ionic dyes. Journal of Environmental Chemical Engineering 2017, 5 (1) , 1096-1106. https://doi.org/10.1016/j.jece.2017.01.035
- Guido Falk von Rudorff, Rasmus Jakobsen, Kevin M Rosso, Jochen Blumberger. Hematite(001)-liquid water interface from hybrid density functional-based molecular dynamics. Journal of Physics: Condensed Matter 2016, 28 (39) , 394001. https://doi.org/10.1088/0953-8984/28/39/394001
- Natav Yatom, Maytal Caspary Toroker. Electronic Structure of Catalysis Intermediates by the G0W0 Approximation. Catalysis Letters 2016, 146 (10) , 2009-2014. https://doi.org/10.1007/s10562-016-1825-3
- Xueqing Zhang, Anja Bieberle-Hütter. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling. ChemSusChem 2016, 9 (11) , 1223-1242. https://doi.org/10.1002/cssc.201600214