ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

Fast Interconversion of Hydrogen Bonding at the Hematite (001)–Liquid Water Interface

View Author Information
Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K.
Pacific Northwest National Laboratory, Richland, Washington 99352, United States
Cite this: J. Phys. Chem. Lett. 2016, 7, 7, 1155–1160
Publication Date (Web):March 8, 2016
https://doi.org/10.1021/acs.jpclett.6b00165
Copyright © 2016 American Chemical Society
Article Views
1271
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

Abstract Image

The interface between transition-metal oxides and aqueous solutions plays an important role in biogeochemistry and photoelectrochemistry, but the atomistic structure is often elusive. Here we report on the surface geometry, solvation structure, and thermal fluctuations of the hydrogen bonding network at the hematite (001)–water interface as obtained from hybrid density functional theory-based molecular dynamics. We find that the protons terminating the surface form binary patterns by either pointing in-plane or out-of-plane. The patterns exist for about 1 ps and spontaneously interconvert in an ultrafast, solvent-driven process within 50 fs. This results in only about half of the terminating protons pointing toward the solvent and being acidic. The lifetimes of all hydrogen bonds formed at the interface are shorter than those in pure liquid water. The solvation structure reported herein forms the basis for a better fundamental understanding of electron transfer coupled to proton transfer reactions at this important interface.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.6b00165.

  • Simulation details, coordinates and the HB detection method, the vibrational density of states, two figures showing the Hartree potential across the interface and the surface termination patterns as well as three tables summarizing the HB lifetime distribution and the conditional probabilities for finding a HB alongside the possible angles according to Figure 4 (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 37 publications.

  1. Vivek Ramakrishnan, Anton Tsyganok, Elena Davydova, Mariela J. Pavan, Avner Rothschild, Iris Visoly-Fisher. Competitive Photo-Oxidation of Water and Hole Scavengers on Hematite Photoanodes: Photoelectrochemical and Operando Raman Spectroelectrochemistry Study. ACS Catalysis 2023, 13 (1) , 540-549. https://doi.org/10.1021/acscatal.2c02849
  2. Christian S. Ahart, Kevin M. Rosso, Jochen Blumberger. Electron and Hole Mobilities in Bulk Hematite from Spin-Constrained Density Functional Theory. Journal of the American Chemical Society 2022, 144 (10) , 4623-4632. https://doi.org/10.1021/jacs.1c13507
  3. Zdenek Futera, Niall J. English. Water Breakup at Fe2O3–Hematite/Water Interfaces: Influence of External Electric Fields from Nonequilibrium Ab Initio Molecular Dynamics. The Journal of Physical Chemistry Letters 2021, 12 (29) , 6818-6826. https://doi.org/10.1021/acs.jpclett.1c01479
  4. Meirong Zong, Duo Song, Xin Zhang, Xiaopeng Huang, Xiancai Lu, Kevin M. Rosso. Facet-Dependent Photodegradation of Methylene Blue by Hematite Nanoplates in Visible Light. Environmental Science & Technology 2021, 55 (1) , 677-688. https://doi.org/10.1021/acs.est.0c05592
  5. Quinn A. Besford, Andrew J. Christofferson, Jas Kalayan, Jens-Uwe Sommer, Richard H. Henchman. The Attraction of Water for Itself at Hydrophobic Quartz Interfaces. The Journal of Physical Chemistry B 2020, 124 (29) , 6369-6375. https://doi.org/10.1021/acs.jpcb.0c04545
  6. Chao Zhang, Jürg Hutter, Michiel Sprik. Coupling of Surface Chemistry and Electric Double Layer at TiO2 Electrochemical Interfaces. The Journal of Physical Chemistry Letters 2019, 10 (14) , 3871-3876. https://doi.org/10.1021/acs.jpclett.9b01355
  7. Kiran George, Matthijs van Berkel, Xueqing Zhang, Rochan Sinha, Anja Bieberle-Hütter. Impedance Spectra and Surface Coverages Simulated Directly from the Electrochemical Reaction Mechanism: A Nonlinear State-Space Approach. The Journal of Physical Chemistry C 2019, 123 (15) , 9981-9992. https://doi.org/10.1021/acs.jpcc.9b01836
  8. Katherine J. Harmon, Ying Chen, Eric J. Bylaska, Jeffrey G. Catalano, Michael J. Bedzyk, John H. Weare, Paul Fenter. Insights on the Alumina–Water Interface Structure by Direct Comparison of Density Functional Simulations with X-ray Reflectivity. The Journal of Physical Chemistry C 2018, 122 (47) , 26934-26944. https://doi.org/10.1021/acs.jpcc.8b08522
  9. Oliver R. Gittus, Guido Falk von Rudorff, Kevin M. Rosso, Jochen Blumberger. Acidity Constants of the Hematite–Liquid Water Interface from Ab Initio Molecular Dynamics. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5574-5582. https://doi.org/10.1021/acs.jpclett.8b01870
  10. Guido Falk von Rudorff, Rasmus Jakobsen, Kevin M. Rosso, and Jochen Blumberger . Improving the Performance of Hybrid Functional-Based Molecular Dynamics Simulation through Screening of Hartree–Fock Exchange Forces. Journal of Chemical Theory and Computation 2017, 13 (5) , 2178-2184. https://doi.org/10.1021/acs.jctc.6b01121
  11. Kelsey A. Stoerzinger, Ryan Comes, Steven R. Spurgeon, Suntharampillai Thevuthasan, Kyuwook Ihm, Ethan J. Crumlin, and Scott A. Chambers . Influence of LaFeO3 Surface Termination on Water Reactivity. The Journal of Physical Chemistry Letters 2017, 8 (5) , 1038-1043. https://doi.org/10.1021/acs.jpclett.7b00195
  12. Martin E. McBriarty, Guido Falk von Rudorff, Joanne E. Stubbs, Peter J. Eng, Jochen Blumberger, and Kevin M. Rosso . Dynamic Stabilization of Metal Oxide–Water Interfaces. Journal of the American Chemical Society 2017, 139 (7) , 2581-2584. https://doi.org/10.1021/jacs.6b13096
  13. Kinran Lau, Felix Niemann, Kaltum Abdiaziz, Markus Heidelmann, Yuke Yang, Yujin Tong, Michael Fechtelkord, Torsten C. Schmidt, Alexander Schnegg, R. Kramer Campen, Baoxiang Peng, Martin Muhler, Sven Reichenberger, Stephan Barcikowski. Unterscheidung zwischen sauren und basischen Oberflächenhydroxylgruppen auf Metalloxiden durch Fluoridsubstitution: Eine Fallstudie am Beispiel von defektreichem, blauem TiO 2 aus der laserbasierten Defekterzeugung. Angewandte Chemie 2023, 135 (12) https://doi.org/10.1002/ange.202213968
  14. Kinran Lau, Felix Niemann, Kaltum Abdiaziz, Markus Heidelmann, Yuke Yang, Yujin Tong, Michael Fechtelkord, Torsten C. Schmidt, Alexander Schnegg, R. Kramer Campen, Baoxiang Peng, Martin Muhler, Sven Reichenberger, Stephan Barcikowski. Differentiating between Acidic and Basic Surface Hydroxyls on Metal Oxides by Fluoride Substitution: A Case Study on Blue TiO 2 from Laser Defect Engineering. Angewandte Chemie International Edition 2023, 62 (12) https://doi.org/10.1002/anie.202213968
  15. Qianqian Wang, Haofeng Zhang, Yanling Xu, Shenxu Bao, Cheng Liu, Siyuan Yang. The molecular structure effects of starches and starch phosphates in the reverse flotation of quartz from hematite. Carbohydrate Polymers 2023, 303 , 120484. https://doi.org/10.1016/j.carbpol.2022.120484
  16. Giulia Righi, Julius Plescher, Franz-Philipp Schmidt, R. Kramer Campen, Stefano Fabris, Axel Knop-Gericke, Robert Schlögl, Travis E. Jones, Detre Teschner, Simone Piccinin. On the origin of multihole oxygen evolution in haematite photoanodes. Nature Catalysis 2022, 5 (10) , 888-899. https://doi.org/10.1038/s41929-022-00845-9
  17. Philipp Schienbein, Jochen Blumberger. Nanosecond solvation dynamics of the hematite/liquid water interface at hybrid DFT accuracy using committee neural network potentials. Physical Chemistry Chemical Physics 2022, 24 (25) , 15365-15375. https://doi.org/10.1039/D2CP01708C
  18. Weibin Chu, Shijing Tan, Qijing Zheng, Wei Fang, Yexin Feng, Oleg V. Prezhdo, Bing Wang, Xin-Zheng Li, Jin Zhao. Ultrafast charge transfer coupled to quantum proton motion at molecule/metal oxide interface. Science Advances 2022, 8 (24) https://doi.org/10.1126/sciadv.abo2675
  19. Jie-Qiong Li, Xiao-Jian Wen, Mei Jia, Yong-Bin Zhuang, Xue Zhang, Jia-Bo Le, Jun Cheng. Ab Initio Modeling of Semiconductor-Water Interfaces. 2022, 399-422. https://doi.org/10.1007/978-3-030-63713-2_16
  20. Niall J. English. Electric-field-promoted photo-electrochemical production of hydrogen from water splitting. Journal of Molecular Liquids 2021, 342 , 116949. https://doi.org/10.1016/j.molliq.2021.116949
  21. P. A. Delcompare-Rodriguez, N. Seriani. Ultrathin space charge layer in hematite photoelectrodes: A theoretical investigation. The Journal of Chemical Physics 2021, 155 (11) , 114701. https://doi.org/10.1063/5.0060417
  22. Juan Jose Gutierrez-Sevillano, Agata Podsiadły-Paszkowska, Bartłomiej M. Szyja, Sofia Calero. On the design of models for an accurate description of the water – hematite interface. Applied Surface Science 2021, 560 , 149884. https://doi.org/10.1016/j.apsusc.2021.149884
  23. V. Sinha, D. Sun, E. J. Meijer, T. J. H. Vlugt, A. Bieberle-Hütter. A multiscale modelling approach to elucidate the mechanism of the oxygen evolution reaction at the hematite–water interface. Faraday Discussions 2021, 229 , 89-107. https://doi.org/10.1039/C9FD00140A
  24. Hongliang Zhang, Zhijie Xu, Daixiong Chen, Bo Hu, Qiqi Zhou, Shengda Chen, Sai Li, Wei Sun, Chenyang Zhang. Adsorption mechanism of water molecules on hematite (1 0 4) surface and the hydration microstructure. Applied Surface Science 2021, 550 , 149328. https://doi.org/10.1016/j.apsusc.2021.149328
  25. Weibin Chu, Qijing Zheng, Wei Fan, Yexin Feng, Oleg Prezhdo, Xinzheng Li, Jin Zhao. Ultrafast Charge Transfer Coupled to Quantum Proton Motion at Molecule/Metal Oxide Interface. SSRN Electronic Journal 2021, 12 https://doi.org/10.2139/ssrn.3917160
  26. Chao Zhang, Thomas Sayer, Jürg Hutter, Michiel Sprik. Modelling electrochemical systems with finite field molecular dynamics. Journal of Physics: Energy 2020, 2 (3) , 032005. https://doi.org/10.1088/2515-7655/ab9d8c
  27. Guido Falk von Rudorff, O. Anatole von Lilienfeld. Rapid and accurate molecular deprotonation energies from quantum alchemy. Physical Chemistry Chemical Physics 2020, 22 (19) , 10519-10525. https://doi.org/10.1039/C9CP06471K
  28. Christian S. Ahart, Jochen Blumberger, Kevin M. Rosso. Polaronic structure of excess electrons and holes for a series of bulk iron oxides. Physical Chemistry Chemical Physics 2020, 22 (19) , 10699-10709. https://doi.org/10.1039/C9CP06482F
  29. Sateesh Bandaru, Ivan Scivetti, Chi-Yung Yam, Gilberto Teobaldi. The role of isotropic and anisotropic Hubbard corrections for the magnetic ordering and absolute band alignment of hematite α-Fe2O3(0001) surfaces. Progress in Natural Science: Materials International 2019, 29 (3) , 349-355. https://doi.org/10.1016/j.pnsc.2019.05.010
  30. Kanchan Ulman, Emiliano Poli, Nicola Seriani, Simone Piccinin, Ralph Gebauer. Understanding the electrochemical double layer at the hematite/water interface: A first principles molecular dynamics study. The Journal of Chemical Physics 2019, 150 (4) , 041707. https://doi.org/10.1063/1.5047930
  31. Richard B Wang, Anders Hellman. Surface terminations of hematite ( α -Fe 2 O 3 ) exposed to oxygen, hydrogen, or water: dependence on the density functional theory methodology. Journal of Physics: Condensed Matter 2018, 30 (27) , 275002. https://doi.org/10.1088/1361-648X/aac743
  32. Hebatallah Ali, Robert Seidel, Marvin N. Pohl, Bernd Winter. Molecular species forming at the α-Fe 2 O 3 nanoparticle–aqueous solution interface. Chemical Science 2018, 9 (19) , 4511-4523. https://doi.org/10.1039/C7SC05156E
  33. Nicola Seriani. Ab initio simulations of water splitting on hematite. Journal of Physics: Condensed Matter 2017, 29 (46) , 463002. https://doi.org/10.1088/1361-648X/aa84d9
  34. Sayyed Hashem Sajjadi, Elaheh K. Goharshadi. Highly monodispersed hematite cubes for removal of ionic dyes. Journal of Environmental Chemical Engineering 2017, 5 (1) , 1096-1106. https://doi.org/10.1016/j.jece.2017.01.035
  35. Guido Falk von Rudorff, Rasmus Jakobsen, Kevin M Rosso, Jochen Blumberger. Hematite(001)-liquid water interface from hybrid density functional-based molecular dynamics. Journal of Physics: Condensed Matter 2016, 28 (39) , 394001. https://doi.org/10.1088/0953-8984/28/39/394001
  36. Natav Yatom, Maytal Caspary Toroker. Electronic Structure of Catalysis Intermediates by the G0W0 Approximation. Catalysis Letters 2016, 146 (10) , 2009-2014. https://doi.org/10.1007/s10562-016-1825-3
  37. Xueqing Zhang, Anja Bieberle-Hütter. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling. ChemSusChem 2016, 9 (11) , 1223-1242. https://doi.org/10.1002/cssc.201600214

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE