ACS Publications. Most Trusted. Most Cited. Most Read
Thermodynamic Origin of Photoinstability in the CH3NH3Pb(I1–xBrx)3 Hybrid Halide Perovskite Alloy
My Activity

Figure 1Loading Img
  • Open Access
Letter

Thermodynamic Origin of Photoinstability in the CH3NH3Pb(I1–xBrx)3 Hybrid Halide Perovskite Alloy
Click to copy article linkArticle link copied!

View Author Information
Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
Universidade Federal da Fronteira Sul, Realeza Paraná 85770-000, Brazil
§ Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
Open PDF

The Journal of Physical Chemistry Letters

Cite this: J. Phys. Chem. Lett. 2016, 7, 6, 1083–1087
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jpclett.6b00226
Published March 7, 2016

Copyright © 2016 American Chemical Society. This publication is licensed under CC-BY.

Abstract

Click to copy section linkSection link copied!

The formation of solid-solutions of iodide, bromide, and chloride provides the means to control the structure, band gap, and stability of hybrid halide perovskite semiconductors for photovoltaic applications. We report a computational investigation of the CH3NH3PbI3/CH3NH3PbBr3 alloy from density functional theory with a thermodynamic analysis performed within the generalized quasi-chemical approximation. We construct the phase diagram and identify a large miscibility gap, with a critical temperature of 343 K. The observed photoinstability in some mixed-halide solar cells is explained by the thermodynamics of alloy formation, where an initially homogeneous solution is subject to spinodal decomposition with I and Br-rich phases, which is further complicated by a wide metastable region defined by the binodal line.

Copyright © 2016 American Chemical Society

The last four years have seen the emergence of photovoltaic devices based on methylammonium lead iodide (MAPbI3, MA = CH3NH3+) and related hybrid organic–inorganic perovskites. The excitement in the field has led to a large research effort and a rapid development of high-efficiency devices. (1-3) The physical properties of MAPbI3, in particular the band gap, can be tuned in several ways: (i) changing the central organic molecule MA, for example substituting it by the formamidinium (FA); (4) (ii) replacing Pb by another cation, for example Sn or Ge; (5) (iii) substituting iodine by bromine or chlorine.
The first hybrid perovskite photovoltaic devices included small amounts of chlorine, which were believed to be randomly interchanged with iodine forming the MAPb(I1–xClx)3 pseudobinary alloy. Mixed MAPb(I1–xBrx)3 has been recently successfully produced by different groups. (1, 6-11) The motivating factors for the I/Br mixture are increased chemical stability and control of the band gap toward tandem solar cell applications. However, it is still not completely understood whether the alloy is stable against phase segregation in the entire range of composition. There has been some evidence for photoinduced phase separation, (12-14) which can affect measurements and performance when the material is photoexcited. (15, 16) This effect is unusual, as typically electron and ion transport are decoupled (electrons move quickly with short lifetimes compared to slower ion diffusion processes). There have been some initial theoretical studies of the stability of this alloy, but they either focus on a single composition (17) or are based on the inorganic CsPb(I1–xBrx)3 system. (18)
In this Letter we combine first-principles total energy calculations with a statistical mechanical treatment of the configurational space of the solid-solution formed between MAPbI3 and MAPbBr3. From this model, we determine how the thermodynamic potentials of the alloy vary with respect to composition and temperature. From this analysis, we construct the first phase diagram of the system. The qualitative picture that emerges is that the I/Br mixture has a miscibility gap above room temperature and that heavily mixed systems (0.3 < x < 0.6) will be subject to spinodal decomposition and phase separation at 300 K. The main two approximations in our model are the supercell expansion, which limits the configurational space of the alloy that is sampled, and the use of a pseudocubic building block, as the end member compounds and alloys show temperature-dependent structures. (6, 9, 19)
The calculated energy of mixing as a function of the alloy composition is shown in Figure 1. The variation is unusual, as had been already pointed out by Yin et al. for the CsPb(I1–xBrx)3 alloy. (18) The MAPb(I1–xBrx)3 alloy presents a large spread in the energy of mixing in the Br-rich region, which may suggest a tendency for spontaneous ordering in this region at low temperatures. Indeed, there are two configurations that have negative energies of mixing and should be stable against phase separation into the pure end-member compounds, as indicated by the convex hull in Figure 1. These configurations correspond to ordered structures of MAPbIBr2 and MAPbI1/2Br5/2, as shown in Figure 2. Both structures are formed when the iodine ions are located at the apical positions, forming superlattices along the [001] direction. From the Shannon ionic radii, (20) the mismatch between the two halides is 0.24 Å (rI = 2.20 Å, rBr = 1.96 Å). These two ordered structures provide the structural freedom to separate the Pb–I (longer) and Pb–Br (shorter) interatomic separations along distinct directions, so that internal strain is minimized.

Figure 1

Figure 1. Energy of mixing (top) and entropy of mixing (bottom) as functions of the CH3NH3Pb(I1–xBrx)3 alloy composition. The symbols are the values calculated for each configuration (eq 1). The solid lines show the behavior for the alloy at 200 K (blue), 300 K (green) and for a completely random alloy in the high T limit (red) within the generalized quasi-chemical approximation. The dashed line represents the convex hull.

Figure 2

Figure 2. Stable ordered structures identified for MAPbIBr2 and MAPbI1/2Br5/2, which minimize internal strain arising from the size mismatch between I and Br. The atoms at the corners of the octahedra are the halides Br (orange) and I (pink). The most stable structures are layered with iodine at the apical positions.

The variation in the energy of mixing of the alloy calculated within the generalized quasi-chemical approximation (GQCA) (21) is also shown in Figure 1. The shape of the curve changes considerably with temperature, becoming more symmetric for high temperatures. At room temperature, the energy of mixing of the solid solution can be well represented by the expression Ωx(1 – x), with Ω = 0.06–0.02x (in eV/anion), i.e., with a small deviation from the regular solution behavior. As can also be seen in Figure 1, the variation in the entropy of mixing of the alloy with temperature is close to the ideal solution expression – kB[x ln x + (1 – x) ln (1 – x)], which is expected for a random alloy at high temperatures. The variation of the free energy for MAPb(I1–xBrx)3 is shown in Figure 3. For low temperatures the curve is asymmetric around x = 1/2 and is considerably lower in the Br-rich region, a consequence of the existence of the two ordered structures with negative energies of mixing described above. Also for low temperatures the free energy presents points with the same tangent, which indicates the existence of a miscibility gap. As the temperature increases, the shape of the curve becomes more symmetric as the probability of sampling all possible configurations increases.

Figure 3

Figure 3. Calculated Helmholtz free energy as a function of the alloy composition and temperature as calculated within the generalized quasi-chemical approximation.

Based on the Helmholtz free energy variation, we built the phase diagram of MAPb(I1–xBrx)3, which is shown in Figure 4. The phase diagram reflects the asymmetry of the free energy, showing that the solid solution is more stable in the Br-rich region for typical growth temperatures. The phase diagram also shows that, at 300 K, the alloy is not stable against phase separation in the range of compositions between x1 = 0.19 and x2 = 0.68, the miscibility gap. Under equilibrium conditions, the pure compounds MAPbI3 and MAPbBr3 are not miscible inside this region, and two phases of compositions x1 and x2 must be formed. Also at room temperature, the alloy has spinodal points at the compositions x1 = 0.28 and x2 = 0.58, so in the intervals x1 < x < x1 and x2 < x < x2 the alloy can present metastable phases, i.e., resistant to small fluctuations in composition. The existence of a miscibility gap at low temperatures is not a surprise, since there is a difference of 6% between the equilibrium lattice constants of MAPbI3 and MAPbBr3. The mismatch of the lattice constants is generally associated with the instability of isovalent solid solutions. (22) The critical temperature–the temperature above which the solid solution is stable for any composition–is 343 K, a value considerably higher than the temperature of 223 K estimated by Yin et al. for the CsPb(I1–xBrx)3 perovskite.
Our model provides a simple thermodynamic explanation for the photoinduced phase separation observed in mixed halide solar cells. In an initial state, a uniform mixture can be fabricated either through control of the deposition kinetics or by annealing above the miscibility temperature. At room temperature, the uniform mixture becomes unstable, but phase separation will be a slow process. Illumination at high light intensities has the effect of overcoming these kinetic barriers and changing the local temperature. Another possible contribution associated with the photocurrent in an active solar cell is electromigration, which will affect Br more than I due to the lower atomic mass.
Direct comparison with experiment is made difficult by the fact that most studies have reported the stoichiometry of the precursor solutions, but not the final materials. Hoke et al. investigated a range of compositions from x = 0 to 1, which were annealed at 373 K. (13) A blue-shift in optical absorption was found from I-rich to Br-rich compositions except for around x = 0.5, which showed a behavior that indicated phase separation into I-rich domains of x ∼ 0.2 from analysis of the spectral shift in photoluminescence. Note that as Br-rich domains will have larger band gaps, they can be spectrally “invisible”. The observed behavior fits very well with our predicted phase diagram (Figure 4). Upon light soaking, compositions of x > 0.2 were all found to exhibit decomposition to the x ∼ 0.2 phase, which from our calculations can be interpreted as the spinodal line at 300 K. A recent investigation by Gil-Escrig of solar cells made from the Br/I mixture show a similar behavior with a marked decrease in performance for Br-rich compositions. The kinetics of these reorganization processes are consistent with the rapid anion exchange observed for these perovskites. (23, 24) Low activation energies for solid-state diffusion have been predicted from simulation studies, (25-27) and there is increasing evidence for mass transport in real devices. (28, 29) While it is unlikely that there is a mechanism to stabilize Br-rich mixtures toward practical devices, compositional engineering—in the three-dimensional Cs1–xMAxPb1–ySnyI3–zBrz system for example—may provide a solution to thermodynamically robust wider band gap materials.

Figure 4

Figure 4. Predicted phase diagram of the MAPb(I1–xBrx)3 alloy. The purple and pink lines are the binodal and spinodal lines, respectively. The dashed horizontal line shows the miscibility gap at room temperature. A thermodynamically stable solid-solution can be formed in the white region only.

To summarize, we have reported a statistical mechanical study of the solid-solution formed by two halide hybrid perovskites informed by quantum mechanical total energy calculations. The resulting phase diagram for MAPb(I1–xBrx)3 reveals several important features: (i) a critical temperature for mixing of 343 K; (ii) a window between 0.3 < x < 0.6 that is unstable with respect to spinodal decomposition at 300 K; (iii) a binodal (coexistence) point at x = 0.2 and x = 0.7 at 300 K. The thermodynamic metastability of this alloy for intermediate Br/I compositions explains the sensitivity of the mixture to preparatory conditions, temperature, and the operation conditions of a solar cell.

Computational Methods

Click to copy section linkSection link copied!

Disordered materials are challenging to accurately describe using atomistic simulations. We model the halide alloy as a statistical ensemble of independent configurations for seven compositions: x=0,16,13,12,23,56,1. The mixing energy of each configuration with energy Ej is defined as
ΔUj=Ej(1x)EMAPbI3xEMAPbBr3
(1)
where the last two terms represent fractions of the total energy of the pure compounds. The thermodynamic properties of the alloy were determined using the generalized quasi-chemical approximation. (21) This method has been successfully employed in the thermodynamic analysis of semiconductor alloys. (30, 31) By taking into account the total energy and the degeneracy of each configuration, the method provides simple expressions for the mixing contribution to the alloy internal energy ΔU and the configurational entropy ΔS as functions of the composition x and temperature T accordingly to a Boltzmann distribution. With these thermodynamic potentials, the Helmholtz free energy of the alloy can be directly evaluated:
ΔF(x,T)=ΔU(x,T)TΔS(x,T)
(2)
The phase diagram of the alloy can be built by calculating the free energy at different temperatures. For each temperature, the binodal points are determined by collecting the compositions for which ΔF has a common tangent. The spinodal points are those in which the second derivative of ΔF vanishes. The model has been implemented in a set of Python codes.
The configuration energies Ej were each computed within the framework of Kohn–Sham density functional theory (DFT). (32) We considered a tetragonal supercell with 2 × 1 × 1 expansion of a pseudocubic perovskite building block, which corresponds to six anions. (33, 34) The total number of configurations for this system is 26 = 64. For a perfect inorganic cubic perovskite (Oh symmetry), the three halide sites are equivalent, which reduces the total number of configurations to 21 in total (using the SOD code (35)). Due to the presence of CH3NH3+ cation, the symmetry is formally lowered. As a compromise between computational cost and accuracy, we take the symmetry-reduced inequivalent configurations and perform a full structural relaxation for each case. The initial cells were constructed using a linear combination of the end member lattice constants (a = 6.28 and 5.91 Å for MAPbI3 and MAPbBr3, respectively), i.e. Vegard’s law. As the molecules are known to be rotationally active at room temperature, (36, 37) a range of orientations may be accessible, but this effect is not included in our current model. Contributions from rotational and vibrational entropy are not taken into account in the free energy expansion.
For the DFT total energy calculations, we used the VASP (38) code with the Perdew–Burke–Ernzerhof exchange-correlation functional revised for solids (PBEsol) (39) and the projector augmented-wave formalism (40) including scalar-relativistic corrections. A plane-wave cutoff energy of 500 eV and a 3 × 6 × 6 k-point mesh were used for all the configurations. The lattice volume and shape, and the atomic positions of each configuration were fully optimized to minimize atomic forces below 1.0 meV/Å.
Data Access Statement. The GQCA alloy code is available from https://github.com/WMD-group/GQCA_alloys and the crystal structures from https://github.com/WMD-group/hybrid-perovskites.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Aron Walsh - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United KingdomGlobal E3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea Email: E-mail: [email protected]
  • Authors
    • Federico Brivio - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
    • Clovis Caetano - Universidade Federal da Fronteira Sul, Realeza Paraná 85770-000, Brazil
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

The simulations performed in this work benefited from membership of the UK’s HPC Materials Chemistry Consortium, which is funded by EPSRC grant EP/L000202. A.W. is funded by ERC Starting Grant No. 277757, F.B. is supported by EU-FP7 Grant No. 316494, and C.C. acknowledges support from the Brazilian Research Agency CNPq Grant No. 249280/2013-2 PDE.

References

Click to copy section linkSection link copied!

This article references 40 other publications.

  1. 1
    Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent Engineering for High-performance Inorganic-organic Hybrid Perovskite Solar Cells Nat. Mater. 2014, 13, 897 DOI: 10.1038/nmat4014
  2. 2
    Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface Engineering of Highly Efficient Perovskite Solar Cells Science 2014, 345, 542 DOI: 10.1126/science.1254050
  3. 3
    Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G. Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide J. Am. Chem. Soc. 2015, 137, 8696 DOI: 10.1021/jacs.5b04930
  4. 4
    Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional Engineering of Perovskite Materials for High-performance Solar Cells Nature 2015, 517, 476 DOI: 10.1038/nature14133
  5. 5
    Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G. Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells J. Am. Chem. Soc. 2014, 136, 8094 DOI: 10.1021/ja5033259
  6. 6
    Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic-organic Hybrid Nanostructured Solar Cells Nano Lett. 2013, 13, 1764 DOI: 10.1021/nl400349b
  7. 7
    Sadhanala, A.; Deschler, F.; Thomas, T. H.; Dutton, S. E.; Goedel, K. C.; Hanusch, F. C.; Lai, M. L.; Steiner, U.; Bein, T.; Docampo, P. Preparation of Single Phase Films of CH3NH3Pb(I1–xBrx)3 with Sharp Optical Band Edges J. Phys. Chem. Lett. 2014, 5, 2501 DOI: 10.1021/jz501332v
  8. 8
    Kulkarni, S. A.; Baikie, T.; Boix, P. P.; Yantara, N.; Mathews, N.; Mhaisalkar, S. Band-gap Tuning of Lead Halide Perovskites Using a Sequential Deposition Process J. Mater. Chem. A 2014, 2, 9221 DOI: 10.1039/C4TA00435C
  9. 9
    Fedeli, P.; Gazza, F.; Calestani, D.; Ferro, P.; Besagni, T.; Zappettini, A.; Calestani, G.; Marchi, E.; Ceroni, P.; Mosca, R. Influence of the Synthetic Procedures on the Structural and Optical Properties of Mixed-Halide (Br,I) Perovskite Films J. Phys. Chem. C 2015, 119, 21304 DOI: 10.1021/acs.jpcc.5b03923
  10. 10
    Ledinský, M.; Löper, P.; Niesen, B.; Holovský, J.; Moon, S.-J.; Yum, J.-H.; De Wolf, S.; Fejfar, A.; Ballif, C. Raman Spectroscopy of Organic Inorganic Halide Perovskites J. Phys. Chem. Lett. 2015, 6, 401 DOI: 10.1021/jz5026323
  11. 11
    Gil-Escrig, L.; Miquel-Sempere, A.; Sessolo, M.; Bolink, H. J. Mixed Iodide-bromide Methylammonium Lead Perovskite-based Diodes for Light Emission and Photovoltaics J. Phys. Chem. Lett. 2015, 6, 3743 DOI: 10.1021/acs.jpclett.5b01716
  12. 12
    Egger, D. A.; Edri, E.; Cahen, D.; Hodes, G. Perovskite Solar Cells: Do We Know What We Do Not Know? J. Phys. Chem. Lett. 2015, 6, 279 DOI: 10.1021/jz502726b
  13. 13
    Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Reversible Photo-induced Trap Formation in Mixed-halide Hybrid Perovskites for Photovoltaics Chem. Sci. 2015, 6, 613 DOI: 10.1039/C4SC03141E
  14. 14
    Niemann, R. G.; Kontos, A. G.; Palles, D.; Kamitsos, E. I.; Kaltzoglou, A.; Brivio, F.; Falaras, P.; Cameron, P. J. Halogen Effects on Ordering and Bonding of CH3NH3+ in CH3NH3PbX3 (X= Cl, Br, I) Hybrid Perovskites: A Vibrational Spectroscopic Study J. Phys. Chem. C 2016, 120, 2509 DOI: 10.1021/acs.jpcc.5b11256
  15. 15
    Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. Giant Switchable Photovoltaic Effect in Organometal Trihalide Perovskite Devices Nat. Mater. 2015, 14, 193 DOI: 10.1038/nmat4150
  16. 16
    Yuan, Y.; Huang, J. Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability Acc. Chem. Res. 2016, 49, 286 DOI: 10.1021/acs.accounts.5b00420
  17. 17
    Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. First Principles Modeling of Mixed Halde Organometal Perovskites for Photovoltaic Applications J. Phys. Chem. C 2013, 117, 13902 DOI: 10.1021/jp4048659
  18. 18
    Yin, W.-J.; Yan, Y.; Wei, S.-H. Anomalous Alloy Properties in Mixed Halide Perovskites J. Phys. Chem. Lett. 2014, 5, 3625 DOI: 10.1021/jz501896w
  19. 19
    Onoda-Yamamuro, N.; Matsuo, T.; Suga, H. Calorimetric and IR Spectroscopic Studies of Phase Transitions in Methylammonium Trihalogenoplumbates (II) J. Phys. Chem. Solids 1990, 51, 1383 DOI: 10.1016/0022-3697(90)90021-7
  20. 20
    Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751 DOI: 10.1107/S0567739476001551
  21. 21
    Sher, A.; van Schilfgaarde, M.; Chen, A.-B.; Chen, W. Quasichemical Approximation in Binary Alloys Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 36, 4279 DOI: 10.1103/PhysRevB.36.4279
  22. 22
    Stringfellow, G. Calculation of Ternary and Quaternary III-V Phase Diagrams J. Cryst. Growth 1974, 27, 21 DOI: 10.1016/S0022-0248(74)80047-3
  23. 23
    Yang, T.-Y.; Gregori, G.; Pellet, N.; Grätzel, M.; Maier, J. The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer Angew. Chem., Int. Ed. 2015, 54, 7905 DOI: 10.1002/anie.201500014
  24. 24
    Zhang, Y.; Liu, M.; Eperon, G. E.; Leijtens, T. C.; McMeekin, D.; Saliba, M.; Zhang, W.; De Bastiani, M.; Petrozza, A.; Herz, L. M. Charge Selective Contacts, Mobile Ions and Anomalous Hysteresis in Organic-Inorganic Perovskite Solar Cells Mater. Horiz. 2015, 2, 315 DOI: 10.1039/C4MH00238E
  25. 25
    Eames, C.; Frost, J. M.; Barnes, P. R. F.; O’Regan, B. C.; Walsh, A.; Islam, M. S. Ionic Transport in Hybrid Lead Iodide Perovskite Solar Cells Nat. Commun. 2015, 6, 7497 DOI: 10.1038/ncomms8497
  26. 26
    Haruyama, J.; Sodeyama, K.; Han, L.; Tateyama, Y. First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers J. Am. Chem. Soc. 2015, 137, 10048 DOI: 10.1021/jacs.5b03615
  27. 27
    Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Defects Migration in Methylammonium Lead Iodide and their Role in Perovskite Solar Cells Operation Energy Environ. Sci. 2015, 8, 2118 DOI: 10.1039/C5EE01265A
  28. 28
    Hentz, O.; Zhao, Z.; Gradecak, S. Impacts of Ion Segregation on Local Optical Properties in Mixed Halide Perovskite Films Nano Lett. 2016, 16, 1485 DOI: 10.1021/acs.nanolett.5b05181
  29. 29
    Shi, J.; Xu, X.; Zhang, H.; Luo, Y.; Li, D.; Meng, Q. Intrinsic Slow Charge Response in the Perovskite Solar Cells: Electron and Ion Transport Appl. Phys. Lett. 2015, 107, 163901 DOI: 10.1063/1.4934633
  30. 30
    Teles, L. K.; Furthmüller, J.; Scolfaro, L. M. R.; Leite, J. R.; Bechstedt, F. First-principles Calculations of the Thermodynamic and Structural Properties of Strained InxGa1–xN and AlxGa1–xN Alloys Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 62, 2475 DOI: 10.1103/PhysRevB.62.2475
  31. 31
    Schleife, A.; Eisenacher, M.; Rödl, C.; Fuchs, F.; Furthmüller, J.; Bechstedt, F. Ab initio Description of Heterostructural Alloys: Thermodynamic and Structural Properties of MgxZn1–xO and CdxZn1–xO Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 245210 DOI: 10.1103/PhysRevB.81.245210
  32. 32
    Kohn, W.; Sham, L. J. Self-consistent Equations Including Exchange and Correlation Effects Phys. Rev. 1965, 140, A1133 DOI: 10.1103/PhysRev.140.A1133
  33. 33
    Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells Nano Lett. 2014, 14, 2584 DOI: 10.1021/nl500390f
  34. 34
    Brivio, F.; Frost, J. M.; Skelton, J. M.; Jackson, A. J.; Weber, O. J.; Weller, M. T.; Goni, A. R.; Leguy, A. M. A.; Barnes, P. R. F.; Walsh, A. Lattice Dynamics and Vibrational Spectra of the Orthorhombic, Tetragonal, and Cubic Phases of Methylammonium Lead Iodide Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92, 144308 DOI: 10.1103/PhysRevB.92.144308
  35. 35
    Grau-Crespo, R.; Hamad, S.; Catlow, C. R. A.; de Leeuw, N. H. Symmetry-adapted Configurational Modelling of Fractional Site Occupancy in Solids J. Phys.: Condens. Matter 2007, 19, 256201 DOI: 10.1088/0953-8984/19/25/256201
  36. 36
    Leguy, A.; Hu, Y.; Campoy-Quiles, M.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; van Schilfgaarde, M.; Weller, M. T.; Bein, T.; Nelson, J. The Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals and Solar Cells Chem. Mater. 2015, 27, 3397 DOI: 10.1021/acs.chemmater.5b00660
  37. 37
    Bakulin, A. A.; Selig, O.; Bakker, H. J.; Rezus, Y. L. A.; Müller, C.; Glaser, T.; Lovrincic, R.; Sun, Z.; Chen, Z.; Walsh, A. Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites J. Phys. Chem. Lett. 2015, 6, 3663 DOI: 10.1021/acs.jpclett.5b01555
  38. 38
    Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab initio Total-energy Calculations Using a Plane-wave Basis Set Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169 DOI: 10.1103/PhysRevB.54.11169
  39. 39
    Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces Phys. Rev. Lett. 2008, 100, 136406 DOI: 10.1103/PhysRevLett.100.136406
  40. 40
    Blöchl, P. E. Projector Augmented-wave Method Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953 DOI: 10.1103/PhysRevB.50.17953

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 341 publications.

  1. Arup Ghorai, Sudarshan Singh, Baidyanath Roy, Shaona Bose, Somnath Mahato, Nikolai Mukhin, Pragyan Jha, Samit K. Ray. Suppression of Light-Induced Phase Segregations in Mixed Halide Perovskites through Ligand Passivation. The Journal of Physical Chemistry Letters 2025, 16 (7) , 1760-1768. https://doi.org/10.1021/acs.jpclett.4c03509
  2. Nuerbiya Aihemaiti, Siying Peng. Rationalizing Light-Induced Phase Segregation Reversal by Halide Oxidation and Diffusion in Mixed Halide Perovskites. ACS Energy Letters 2025, 10 (2) , 907-914. https://doi.org/10.1021/acsenergylett.4c03073
  3. Changbo Li, Changshun Chen, Weiyin Gao, He Dong, Yipeng Zhou, Zhongbin Wu, Chenxin Ran. Wide-Bandgap Lead Halide Perovskites for Next-Generation Optoelectronics: Current Status and Future Prospects. ACS Nano 2024, 18 (52) , 35130-35163. https://doi.org/10.1021/acsnano.4c12107
  4. Yusuke Daikoku, Takumi Yamada, Ai Shimazaki, Tomoya Nakamura, Atsushi Wakamiya, Yoshihiko Kanemitsu. Revealing the Dynamic Aspects of Photoinduced Halide Segregation in Mixed-Halide Cs0.15FA0.85PbI2Br Perovskite Films Using a Hyperspectral Imaging Technique. The Journal of Physical Chemistry Letters 2024, 15 (50) , 12341-12347. https://doi.org/10.1021/acs.jpclett.4c03077
  5. Md Habibur Rahman, Maitreyo Biswas, Arun Mannodi-Kanakkithodi. Understanding Defect-Mediated Ion Migration in Semiconductors using Atomistic Simulations and Machine Learning. ACS Materials Au 2024, 4 (6) , 557-573. https://doi.org/10.1021/acsmaterialsau.4c00095
  6. Halyna Okrepka, Yang Ding, Sushrut Ghonge, Anthony Ruth, Masaru Kuno. Excitation Intensity-Dependent Terminal Halide Photosegregation Stoichiometries in Formamidinium/Cesium Lead Iodide/Bromide [FACsPb(I1–xBrx)3] Thin Films. The Journal of Physical Chemistry Letters 2024, 15 (42) , 10488-10494. https://doi.org/10.1021/acs.jpclett.4c02008
  7. Tong Zhu, Luke Grater, Sam Teale, Eugenia S. Vasileiadou, Jonathan Sharir-Smith, Bin Chen, Mercouri G. Kanatzidis, Edward H. Sargent. Coupling Photogeneration with Thermodynamic Modeling of Light-Induced Alloy Segregation Enables the Identification of Stabilizing Dopants. Chemistry of Materials 2024, 36 (15) , 7438-7450. https://doi.org/10.1021/acs.chemmater.4c01402
  8. Xue Ren, Zhe-Yong Chen, Hui-Ling Hu, Yi Liu, Feng-Lei Jiang. Direct Observation of the Inhibition of Phase Segregation by Quaternary Ammonium in Mixed-Halide Perovskite. ACS Applied Energy Materials 2024, 7 (8) , 3245-3252. https://doi.org/10.1021/acsaem.4c00010
  9. Mantas Simenas, Anna Gagor, Juras Banys, Miroslaw Maczka. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chemical Reviews 2024, 124 (5) , 2281-2326. https://doi.org/10.1021/acs.chemrev.3c00532
  10. Lena Merten, Timo Eberle, Ekaterina Kneschaurek, Niels Scheffczyk, Paul Zimmermann, Ivan Zaluzhnyy, Azat Khadiev, Florian Bertram, Fabian Paulus, Alexander Hinderhofer, Frank Schreiber. Halide Segregated Crystallization of Mixed-Halide Perovskites Revealed by In Situ GIWAXS. ACS Applied Materials & Interfaces 2024, 16 (7) , 8913-8921. https://doi.org/10.1021/acsami.3c18623
  11. Gourab Sarkar, Priyanka Deswal, Dibyajyoti Ghosh. Ion Diffusion Dynamics and Halogen Mixing at the Heterojunction of Halide Perovskites: Atomistic Insights. The Journal of Physical Chemistry C 2024, 128 (4) , 1762-1772. https://doi.org/10.1021/acs.jpcc.3c06329
  12. Deepani V. Athapaththu, Martin E. Kordesch, Jixin Chen. Monitoring Phase Separation and Dark Recovery in Mixed Halide Perovskite Clusters and Single Crystals Using In Situ Spectromicroscopy. The Journal of Physical Chemistry Letters 2024, 15 (4) , 1105-1111. https://doi.org/10.1021/acs.jpclett.3c03280
  13. Subham Paramanik, Soirik Dan, Amlan J. Pal. Formation of Dual Bands in Mixed-Halide Perovskites During Photoinduced Halide Segregation. ACS Energy Letters 2024, 9 (1) , 56-63. https://doi.org/10.1021/acsenergylett.3c02082
  14. Grigorii Verkhogliadov, Ross Haroldson, Dmitry Gets, Anvar A. Zakhidov, Sergey V. Makarov. Temperature Dependence of Photoinduced Phase Segregation in Bromide-Rich Mixed Halide Perovskites. The Journal of Physical Chemistry C 2023, 127 (50) , 24339-24349. https://doi.org/10.1021/acs.jpcc.3c04887
  15. Mutibah Alanazi, Ashley Marshall, Shaoni Kar, Yincheng Liu, Jinwoo Kim, Henry J. Snaith, Robert A. Taylor, Tristan Farrow. Stability of Mixed Lead Halide Perovskite Films Encapsulated in Cyclic Olefin Copolymer at Room and Cryogenic Temperatures. The Journal of Physical Chemistry Letters 2023, 14 (50) , 11333-11341. https://doi.org/10.1021/acs.jpclett.3c02733
  16. Sang Woo Park, Jin Hyuck Heo, Hyong Joon Lee, Hyungjun Kim, Sang Hyuk Im, Ki-Ha Hong. Compositional Design for High-Efficiency All-Inorganic Tin Halide Perovskite Solar Cells. ACS Energy Letters 2023, 8 (12) , 5061-5069. https://doi.org/10.1021/acsenergylett.3c02032
  17. Paramesh Chandra, Swapan Kumar Mandal. Observation of Negative Photoconductivity in (CH3NH3)3Bi2(BrxCl1–x)9: Correlating Ion Migration, Stability, and Efficiency in Mixed Halide Perovskite Solar Cell. The Journal of Physical Chemistry C 2023, 127 (47) , 23109-23121. https://doi.org/10.1021/acs.jpcc.3c06427
  18. Yuhuan Li, Tongxiao Yang, Yaqi She, Beizheng Xu, Yonghui Du, Miao Zhang. Halide Double Perovskites Cs2PdBr6–xIx with Tunable Bandgaps for Solar Cells. Inorganic Chemistry 2023, 62 (47) , 19248-19255. https://doi.org/10.1021/acs.inorgchem.3c02516
  19. Marianna D’Amato, Lucien Belzane, Corentin Dabard, Mathieu Silly, Gilles Patriarche, Quentin Glorieux, Hanna Le Jeannic, Emmanuel Lhuillier, Alberto Bramati. Highly Photostable Zn-Treated Halide Perovskite Nanocrystals for Efficient Single Photon Generation. Nano Letters 2023, 23 (22) , 10228-10235. https://doi.org/10.1021/acs.nanolett.3c02739
  20. Hannah Funk, Tal Binyamin, Lioz Etgar, Oleksandra Shargaieva, Thomas Unold, Alberto Eljarrat, Christoph T. Koch, Daniel Abou-Ras. Phase Segregation Mechanisms in Mixed-Halide CsPb(BrxI1–x)3 Nanocrystals in Dependence of Their Sizes and Their Initial [Br]:[I] Ratios. ACS Materials Au 2023, 3 (6) , 687-698. https://doi.org/10.1021/acsmaterialsau.3c00056
  21. Anthony Ruth, Masaru Kuno. Modeling the Photoelectrochemical Evolution of Lead-Based, Mixed-Halide Perovskites Due to Photosegregation. ACS Nano 2023, 17 (20) , 20502-20511. https://doi.org/10.1021/acsnano.3c07165
  22. Jie Xu, Suresh Kumar Podapangi, Sathy Harshavardhan Reddy, Luigi Angelo Castriotta, Aldo Di Carlo, Thomas M. Brown. Key Parameters and Thresholds Values for Obtaining High Performance Perovskite Solar Cells Indoors from Full Br Compositional and Bandgap Engineering. ACS Applied Energy Materials 2023, 6 (20) , 10215-10224. https://doi.org/10.1021/acsaem.2c03394
  23. Anthony Ruth, Halyna Okrepka, Prashant Kamat, Masaru Kuno. Thermodynamic Band Gap Model for Photoinduced Phase Segregation in Mixed-Halide Perovskites. The Journal of Physical Chemistry C 2023, 127 (37) , 18547-18559. https://doi.org/10.1021/acs.jpcc.3c04708
  24. Yu-Hsien Chiang, Kyle Frohna, Hayden Salway, Anna Abfalterer, Linfeng Pan, Bart Roose, Miguel Anaya, Samuel D. Stranks. Vacuum-Deposited Wide-Bandgap Perovskite for All-Perovskite Tandem Solar Cells. ACS Energy Letters 2023, 8 (6) , 2728-2737. https://doi.org/10.1021/acsenergylett.3c00564
  25. Zhaojian Xu, Daniel D. Astridge, Ross A. Kerner, Xinjue Zhong, Junnan Hu, Jisu Hong, Jesse A. Wisch, Kai Zhu, Joseph J. Berry, Antoine Kahn, Alan Sellinger, Barry P. Rand. Origins of Photoluminescence Instabilities at Halide Perovskite/Organic Hole Transport Layer Interfaces. Journal of the American Chemical Society 2023, 145 (21) , 11846-11858. https://doi.org/10.1021/jacs.3c03539
  26. Fabian Hartl, Veronika Brune, Sophie Lüggert, Corinna Hegemann, David van Gerven, Michael Wilhelm, Seulgi Ji, Heechae Choi, Sanjay Mathur. Direct Synthesis of Two-Dimensional SnSe and SnSe2 through Molecular Scale Preorganization. Inorganic Chemistry 2023, 62 (16) , 6274-6287. https://doi.org/10.1021/acs.inorgchem.2c04083
  27. Kunal Datta, Alessandro Caiazzo, Michael A. Hope, Junyu Li, Aditya Mishra, Manuel Cordova, Zehua Chen, Lyndon Emsley, Martijn M. Wienk, René A. J. Janssen. Light-Induced Halide Segregation in 2D and Quasi-2D Mixed-Halide Perovskites. ACS Energy Letters 2023, 8 (4) , 1662-1670. https://doi.org/10.1021/acsenergylett.3c00160
  28. Parth Raval, Mohammad Ali Akhavan Kazemi, Julie Ruellou, Julien Trébosc, Olivier Lafon, Laurent Delevoye, Frédéric Sauvage, G. N. Manjunatha Reddy. Examining a Year-Long Chemical Degradation Process and Reaction Kinetics in Pristine and Defect-Passivated Lead Halide Perovskites. Chemistry of Materials 2023, 35 (7) , 2904-2917. https://doi.org/10.1021/acs.chemmater.2c03803
  29. Zehua Chen, Haibo Xue, Geert Brocks, Peter A. Bobbert, Shuxia Tao. Thermodynamic Origin of the Photostability of the Two-Dimensional Perovskite PEA2Pb(I1–xBrx)4. ACS Energy Letters 2023, 8 (2) , 943-949. https://doi.org/10.1021/acsenergylett.2c02463
  30. Yun Liu, Jean-Philippe Banon, Kyle Frohna, Yu-Hsien Chiang, Ganbaatar Tumen-Ulzii, Samuel D. Stranks, Marcel Filoche, Richard H. Friend. The Electronic Disorder Landscape of Mixed Halide Perovskites. ACS Energy Letters 2023, 8 (1) , 250-258. https://doi.org/10.1021/acsenergylett.2c02352
  31. Irina Gushchina, Vadim Trepalin, Evgenii Zaitsev, Anthony Ruth, Masaru Kuno. Excitation Intensity- and Size-Dependent Halide Photosegregation in CsPb(I0.5Br0.5)3 Perovskite Nanocrystals. ACS Nano 2022, 16 (12) , 21636-21644. https://doi.org/10.1021/acsnano.2c10781
  32. Stefano Toso, Irina Gushchina, Allen G. Oliver, Liberato Manna, Masaru Kuno. Are Mixed-Halide Ruddlesden–Popper Perovskites Really Mixed?. ACS Energy Letters 2022, 7 (12) , 4242-4247. https://doi.org/10.1021/acsenergylett.2c01967
  33. Tik Lun Leung, Zhilin Ren, Ali Asgher Syed, Luca Grisanti, Aleksandra B. Djurišić, Jasminka Popović. Photoinduced Segregation Behavior in 2D Mixed Halide Perovskite: Effects of Light and Heat. ACS Energy Letters 2022, 7 (10) , 3500-3508. https://doi.org/10.1021/acsenergylett.2c01688
  34. So-Yeon Ju, Wan In Lee, Hui-Seon Kim. Enhanced Phase Stability of Compressive Strain-Induced Perovskite Crystals. ACS Applied Materials & Interfaces 2022, 14 (35) , 39996-40004. https://doi.org/10.1021/acsami.2c10450
  35. Ruilin Zheng, Jumpei Ueda, Kenji Shinozaki, Setsuhisa Tanabe. Reversible Phase Segregation and Amorphization of Mixed-Halide Perovskite Nanocrystals in Glass Matrices. The Journal of Physical Chemistry Letters 2022, 13 (33) , 7809-7815. https://doi.org/10.1021/acs.jpclett.2c02261
  36. T. H. Chan, N. T. Taylor, S. Sundaram, S. P. Hepplestone. Phase Stability and Electronic Properties of Hybrid Organic–Inorganic Perovskite Solid Solution (CH(NH2)2)x(CH3NH3)1–xPb(BryI1–y)3 as a Function of Composition. The Journal of Physical Chemistry C 2022, 126 (32) , 13640-13648. https://doi.org/10.1021/acs.jpcc.2c03555
  37. Po-Kai Kung, Kuang-I Lin, Chun-Sheng Wu, Ming-Hsien Li, Chia-Ru Chan, Raja Rajendran, Chen-Fu Lin, Peter Chen. Visualization of Ion Migration in an Inorganic Mixed Halide Perovskite by One-Photon and Multiphoton Absorption: Effect of Guanidinium A-Site Cation Incorporation. The Journal of Physical Chemistry Letters 2022, 13 (30) , 6944-6955. https://doi.org/10.1021/acs.jpclett.2c01515
  38. Taehee Kim, Seongsik Jeong, Kyeong-Hwan Kim, Hyunseok Shim, Dongho Kim, Hae-Jin Kim. Engineered Surface Halide Defects by Two-Dimensional Perovskite Passivation for Deformable Intelligent Photodetectors. ACS Applied Materials & Interfaces 2022, 14 (22) , 26004-26013. https://doi.org/10.1021/acsami.2c03089
  39. Niara E. Wright, Xixi Qin, Junwei Xu, Leah L. Kelly, Steven P. Harvey, Michael F. Toney, Volker Blum, Adrienne D. Stiff-Roberts. Influence of Annealing and Composition on the Crystal Structure of Mixed-Halide, Ruddlesden–Popper Perovskites. Chemistry of Materials 2022, 34 (7) , 3109-3122. https://doi.org/10.1021/acs.chemmater.1c04213
  40. S. Akash, Altaf Pasha, R. Geetha Balakrishna. Dissipation of Charge Accumulation and Suppression of Phase Segregation in Mixed Halide Perovskite Solar Cells via Nanoribbons. ACS Applied Energy Materials 2022, 5 (3) , 2727-2737. https://doi.org/10.1021/acsaem.1c03229
  41. Yuhang Sheng, Weijian Chen, Fengrui Hu, Cihui Liu, Yunsong Di, Chong Sheng, Zhihui Chen, Baohua Jia, Xiaoming Wen, Zhixing Gan. Mechanism of Photoinduced Phase Segregation in Mixed-Halide Perovskite Microplatelets and Its Application in Micropatterning. ACS Applied Materials & Interfaces 2022, 14 (10) , 12412-12422. https://doi.org/10.1021/acsami.2c00590
  42. Dawid Drozdowski, Anna Gągor, Dagmara Stefańska, Jan K. Zarȩba, Katarzyna Fedoruk, Mirosław Mączka, Adam Sieradzki. Three-Dimensional Methylhydrazinium Lead Halide Perovskites: Structural Changes and Effects on Dielectric, Linear, and Nonlinear Optical Properties Entailed by the Halide Tuning. The Journal of Physical Chemistry C 2022, 126 (3) , 1600-1610. https://doi.org/10.1021/acs.jpcc.1c07911
  43. Shangchao Lin, Lifu Yan, Lingling Zhao, Zhuangli Cai, Zuolin Liu, Bin Yang, Min Yang, Changying Zhao. Strain Engineering for Tailored Carrier Transport and Thermoelectric Performance in Mixed Halide Perovskites CsPb(I1–xBrx)3. ACS Applied Energy Materials 2021, 4 (12) , 14508-14519. https://doi.org/10.1021/acsaem.1c03177
  44. Kaiyu Wang, Qing Yao, Jie Zhang, Chenyu Shang, Changqian Li, Feitong Chen, Tianliang Zhou, Haiqing Sun, Weiwei Zhang, Huiling Zhu, Jianxu Ding. Short-Range Migration of A-Site Cations Inhibit Photoinduced Phase Segregation in FAxMAyCs1–x–yPbI3–zBrz Single Crystals. The Journal of Physical Chemistry C 2021, 125 (42) , 23050-23057. https://doi.org/10.1021/acs.jpcc.1c08346
  45. Yuan Liu, Yitong Dong, Tong Zhu, Dongxin Ma, Andrew Proppe, Bin Chen, Chao Zheng, Yi Hou, Seungjin Lee, Bin Sun, Eui Hyuk Jung, Fanglong Yuan, Ya-kun Wang, Laxmi Kishore Sagar, Sjoerd Hoogland, F. Pelayo García de Arquer, Min-Jae Choi, Kamalpreet Singh, Shana O. Kelley, Oleksandr Voznyy, Zheng-Hong Lu, Edward H. Sargent. Bright and Stable Light-Emitting Diodes Based on Perovskite Quantum Dots in Perovskite Matrix. Journal of the American Chemical Society 2021, 143 (38) , 15606-15615. https://doi.org/10.1021/jacs.1c02148
  46. Hyejin Choe, Dohyun Jeon, Seon Joo Lee, Junsang Cho. Mixed or Segregated: Toward Efficient and Stable Mixed Halide Perovskite-Based Devices. ACS Omega 2021, 6 (38) , 24304-24315. https://doi.org/10.1021/acsomega.1c03714
  47. Seongrok Seo, Sooeun Shin, Eunsoo Kim, Seonghwa Jeong, Nam-Gyu Park, Hyunjung Shin. Amorphous TiO2 Coatings Stabilize Perovskite Solar Cells. ACS Energy Letters 2021, 6 (9) , 3332-3341. https://doi.org/10.1021/acsenergylett.1c01446
  48. Tim W. J. van de Goor, Yun Liu, Sascha Feldmann, Sean A. Bourelle, Timo Neumann, Thomas Winkler, Nicola D. Kelly, Cheng Liu, Michael A. Jones, Steffen P. Emge, Richard H. Friend, Bartomeu Monserrat, Felix Deschler, Siân E. Dutton. Impact of Orientational Glass Formation and Local Strain on Photo-Induced Halide Segregation in Hybrid Metal-Halide Perovskites. The Journal of Physical Chemistry C 2021, 125 (27) , 15025-15034. https://doi.org/10.1021/acs.jpcc.1c03169
  49. Yuxiao Guo, Xingtian Yin, Dan Liu, Jie Liu, Cong Zhang, Haixia Xie, Yawei Yang, Wenxiu Que. Photoinduced Self-healing of Halide Segregation in Mixed-halide Perovskites. ACS Energy Letters 2021, 6 (7) , 2502-2511. https://doi.org/10.1021/acsenergylett.1c01040
  50. Ilia M. Pavlovetc, Anthony Ruth, Irina Gushchina, Loc Ngo, Shubin Zhang, Zhuoming Zhang, Masaru Kuno. Distinguishing Models for Mixed Halide Lead Perovskite Photosegregation via Terminal Halide Stoichiometry. ACS Energy Letters 2021, 6 (6) , 2064-2071. https://doi.org/10.1021/acsenergylett.1c00790
  51. Gailan Al-Dainy, Fumiya Watanabe, Alexandru S. Biris, Shawn E. Bourdo. Surface Passivation of Triple-Cation Perovskite via Organic Halide-Saturated Antisolvent for Inverted Planar Solar Cells. ACS Applied Energy Materials 2021, 4 (4) , 3297-3309. https://doi.org/10.1021/acsaem.0c03059
  52. Jeffrey T. DuBose, Preethi S. Mathew, Junsang Cho, Masaru Kuno, Prashant V. Kamat. Modulation of Photoinduced Iodine Expulsion in Mixed Halide Perovskites with Electrochemical Bias. The Journal of Physical Chemistry Letters 2021, 12 (10) , 2615-2621. https://doi.org/10.1021/acs.jpclett.1c00367
  53. Pietro Caprioglio, Sebastián Caicedo-Dávila, Terry Chien-Jen Yang, Christian M. Wolff, Francisco Peña-Camargo, Peter Fiala, Bernd Rech, Christophe Ballif, Daniel Abou-Ras, Martin Stolterfoht, Steve Albrecht, Quentin Jeangros, Dieter Neher. Nano-emitting Heterostructures Violate Optical Reciprocity and Enable Efficient Photoluminescence in Halide-Segregated Methylammonium-Free Wide Bandgap Perovskites. ACS Energy Letters 2021, 6 (2) , 419-428. https://doi.org/10.1021/acsenergylett.0c02270
  54. Alexander J. Knight, Juliane Borchert, Robert D. J. Oliver, Jay B. Patel, Paolo G. Radaelli, Henry J. Snaith, Michael B. Johnston, Laura M. Herz. Halide Segregation in Mixed-Halide Perovskites: Influence of A-Site Cations. ACS Energy Letters 2021, 6 (2) , 799-808. https://doi.org/10.1021/acsenergylett.0c02475
  55. Prashant V. Kamat, Masaru Kuno. Halide Ion Migration in Perovskite Nanocrystals and Nanostructures. Accounts of Chemical Research 2021, 54 (3) , 520-531. https://doi.org/10.1021/acs.accounts.0c00749
  56. Junke Jiang, Feng Liu, Ionut Tranca, Qing Shen, Shuxia Tao. Atomistic and Electronic Origin of Phase Instability of Metal Halide Perovskites. ACS Applied Energy Materials 2020, 3 (12) , 11548-11558. https://doi.org/10.1021/acsaem.0c00791
  57. Finn Babbe, Eloïse Masquelier, Zhi Zheng, Carolin M. Sutter-Fella. Flash Formation of I-Rich Clusters during Multistage Halide Segregation Studied in MAPbI1.5Br1.5. The Journal of Physical Chemistry C 2020, 124 (45) , 24608-24615. https://doi.org/10.1021/acs.jpcc.0c07063
  58. Mohammad Rahil, Pramod Rajput, Dibyajyoti Ghosh, Shahab Ahmad. Highly Tunable Single-Phase Excitons in Mixed Halide Layered Perovskites. ACS Applied Electronic Materials 2020, 2 (10) , 3199-3210. https://doi.org/10.1021/acsaelm.0c00554
  59. Miłosz Martynow, Damian Głowienka, Yulia Galagan, Julien Guthmuller. Effects of Bromine Doping on the Structural Properties and Band Gap of CH3NH3Pb(I1–xBrx)3 Perovskite. ACS Omega 2020, 5 (41) , 26946-26953. https://doi.org/10.1021/acsomega.0c04406
  60. Erjin Zheng, Zhiyin Niu, Gabriella A. Tosado, Hao Dong, Yaqoub Albrikan, Qiuming Yu. Revealing Stability of Inverted Planar MA-Free Perovskite Solar Cells and Electric Field-Induced Phase Instability. The Journal of Physical Chemistry C 2020, 124 (34) , 18805-18815. https://doi.org/10.1021/acs.jpcc.0c05357
  61. Yutao Wang, Xinwei Guan, Weijian Chen, Jack Yang, Long Hu, Jiong Yang, Sean Li, Kourosh Kalantar-Zadeh, Xiaoming Wen, Tom Wu. Illumination-Induced Phase Segregation and Suppressed Solubility Limit in Br-Rich Mixed-Halide Inorganic Perovskites. ACS Applied Materials & Interfaces 2020, 12 (34) , 38376-38385. https://doi.org/10.1021/acsami.0c10363
  62. Stefania Cacovich, Davina Messou, Adrien Bercegol, Solène Béchu, Armelle Yaiche, Hamza Shafique, Jean Rousset, Philip Schulz, Muriel Bouttemy, Laurent Lombez. Light-Induced Passivation in Triple Cation Mixed Halide Perovskites: Interplay between Transport Properties and Surface Chemistry. ACS Applied Materials & Interfaces 2020, 12 (31) , 34784-34794. https://doi.org/10.1021/acsami.0c06844
  63. Yang Huang, Tao Zhang, Jing Wang, Shao-Gang Xu, Peng Zhang, Shiyou Chen, Wan-Jian Yin, Xiuwen Zhang, Su-Huai Wei. Design of Multifunctional Quinternary Metal-Halide Perovskite Compounds Based on Cation–Anion Co-Ordering. Chemistry of Materials 2020, 32 (14) , 5949-5957. https://doi.org/10.1021/acs.chemmater.0c00674
  64. Carolin Rehermann, Aboma Merdasa, Klara Suchan, Vincent Schröder, Florian Mathies, Eva L. Unger. Origin of Ionic Inhomogeneity in MAPb(IxBr1–x)3 Perovskite Thin Films Revealed by In-Situ Spectroscopy during Spin Coating and Annealing. ACS Applied Materials & Interfaces 2020, 12 (27) , 30343-30352. https://doi.org/10.1021/acsami.0c05894
  65. Hannah Funk, Oleksandra Shargaieva, Alberto Eljarrat, Eva L. Unger, Christoph T. Koch, Daniel Abou-Ras. In Situ TEM Monitoring of Phase-Segregation in Inorganic Mixed Halide Perovskite. The Journal of Physical Chemistry Letters 2020, 11 (13) , 4945-4950. https://doi.org/10.1021/acs.jpclett.0c01296
  66. David O. Tiede, Mauricio E. Calvo, Juan F. Galisteo-López, Hernán Míguez. Local Rearrangement of the Iodide Defect Structure Determines the Phase Segregation Effect in Mixed-Halide Perovskites. The Journal of Physical Chemistry Letters 2020, 11 (12) , 4911-4916. https://doi.org/10.1021/acs.jpclett.0c01127
  67. Preethi Susan Mathew, Gergely F. Samu, Csaba Janáky, Prashant V. Kamat. Iodine (I) Expulsion at Photoirradiated Mixed Halide Perovskite Interface. Should I Stay or Should I Go?. ACS Energy Letters 2020, 5 (6) , 1872-1880. https://doi.org/10.1021/acsenergylett.0c00925
  68. Sungmin Kim, Taedaehyeong Eom, Ye-Seol Ha, Ki-Ha Hong, Hyungjun Kim. Thermodynamics of Multicomponent Perovskites: A Guide to Highly Efficient and Stable Solar Cell Materials. Chemistry of Materials 2020, 32 (10) , 4265-4272. https://doi.org/10.1021/acs.chemmater.0c00893
  69. Jongseob Kim, Sung-Hoon Lee, Sang Hyuk Im, Ki-Ha Hong. Phase Selection of Cesium Lead Triiodides through Surface Ligand Engineering. The Journal of Physical Chemistry Letters 2020, 11 (10) , 4232-4238. https://doi.org/10.1021/acs.jpclett.0c00499
  70. Nikita Rybin, Dibyajyoti Ghosh, Jeremy Tisdale, Shreetu Shrestha, Michael Yoho, Duc Vo, Jacky Even, Claudine Katan, Wanyi Nie, Amanda J. Neukirch, Sergei Tretiak. Effects of Chlorine Mixing on Optoelectronics, Ion Migration, and Gamma-Ray Detection in Bromide Perovskites. Chemistry of Materials 2020, 32 (5) , 1854-1863. https://doi.org/10.1021/acs.chemmater.9b04244
  71. Juvinch R. Vicente, Jixin Chen. Phase Segregation and Photothermal Remixing of Mixed-Halide Lead Perovskites. The Journal of Physical Chemistry Letters 2020, 11 (5) , 1802-1807. https://doi.org/10.1021/acs.jpclett.9b03734
  72. Alex Aziz, Nicholas Aristidou, Xiangnan Bu, Robert J. E. Westbrook, Saif A. Haque, M. Saiful Islam. Understanding the Enhanced Stability of Bromide Substitution in Lead Iodide Perovskites. Chemistry of Materials 2020, 32 (1) , 400-409. https://doi.org/10.1021/acs.chemmater.9b04000
  73. Tor Elmelund, Brian Seger, Masaru Kuno, Prashant V. Kamat. How Interplay between Photo and Thermal Activation Dictates Halide Ion Segregation in Mixed Halide Perovskites. ACS Energy Letters 2020, 5 (1) , 56-63. https://doi.org/10.1021/acsenergylett.9b02265
  74. Alessandro Senocrate, Gee Yeong Kim, Michael Grätzel, Joachim Maier. Thermochemical Stability of Hybrid Halide Perovskites. ACS Energy Letters 2019, 4 (12) , 2859-2870. https://doi.org/10.1021/acsenergylett.9b01605
  75. Ekaterina I. Marchenko, Sergey A. Fateev, Andrey A. Petrov, Eugene A. Goodilin, Nikolay N. Eremin, Alexey B. Tarasov. Transferable Approach of Semi-Empirical Modeling of Disordered Mixed-Halide Hybrid Perovskites CH3NH3Pb(I1–xBrx)3: Prediction of Thermodynamic Properties, Phase Stability, and Deviations from Vegard’s Law. The Journal of Physical Chemistry C 2019, 123 (42) , 26036-26040. https://doi.org/10.1021/acs.jpcc.9b08995
  76. Weisheng Fan, Yongliang Shi, Tongfei Shi, Shenglong Chu, Wenjing Chen, Kester O. Ighodalo, Jin Zhao, Xinhua Li, Zhengguo Xiao. Suppression and Reversion of Light-Induced Phase Separation in Mixed-Halide Perovskites by Oxygen Passivation. ACS Energy Letters 2019, 4 (9) , 2052-2058. https://doi.org/10.1021/acsenergylett.9b01383
  77. Hua Wu, Huimin Zhu, Axel Erbing, Malin B. Johansson, Soham Mukherjee, Gabriel J. Man, Håkan Rensmo, Michael Odelius, Erik M. J. Johansson. Bandgap Tuning of Silver Bismuth Iodide via Controllable Bromide Substitution for Improved Photovoltaic Performance. ACS Applied Energy Materials 2019, 2 (8) , 5356-5362. https://doi.org/10.1021/acsaem.9b00914
  78. Tor Elmelund, Rebecca A. Scheidt, Brian Seger, Prashant V. Kamat. Bidirectional Halide Ion Exchange in Paired Lead Halide Perovskite Films with Thermal Activation. ACS Energy Letters 2019, 4 (8) , 1961-1969. https://doi.org/10.1021/acsenergylett.9b01280
  79. Diego Guedes-Sobrinho, Ivan Guilhon, Marcelo Marques, Lara K. Teles. Relativistic DFT-1/2 Calculations Combined with a Statistical Approach for Electronic and Optical Properties of Mixed Metal Hybrid Perovskites. The Journal of Physical Chemistry Letters 2019, 10 (15) , 4245-4251. https://doi.org/10.1021/acs.jpclett.9b01499
  80. Rhiannon M. Kennard, Clayton J. Dahlman, Hidenori Nakayama, Ryan A. DeCrescent, Jon A. Schuller, Ram Seshadri, Kunal Mukherjee, Michael L. Chabinyc. Phase Stability and Diffusion in Lateral Heterostructures of Methyl Ammonium Lead Halide Perovskites. ACS Applied Materials & Interfaces 2019, 11 (28) , 25313-25321. https://doi.org/10.1021/acsami.9b06069
  81. Gustavo M. Dalpian, Xin-Gang Zhao, Lawrence Kazmerski, Alex Zunger. Formation and Composition-Dependent Properties of Alloys of Cubic Halide Perovskites. Chemistry of Materials 2019, 31 (7) , 2497-2506. https://doi.org/10.1021/acs.chemmater.8b05329
  82. Wenjun Shi, Yong Wang, Taiyang Zhang, Haijuan Zhang, Yixin Zhao, Jie Chen. Fast Charge Diffusion in MAPb(I1–xBrx)3 Films for High-Efficiency Solar Cells Revealed by Ultrafast Time-Resolved Reflectivity. The Journal of Physical Chemistry A 2019, 123 (13) , 2674-2678. https://doi.org/10.1021/acs.jpca.9b00978
  83. Caleb C. Boyd, Rongrong Cheacharoen, Tomas Leijtens, Michael D. McGehee. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews 2019, 119 (5) , 3418-3451. https://doi.org/10.1021/acs.chemrev.8b00336
  84. Liang Chen, Yan-Yan Tan, Zhi-Xin Chen, Tan Wang, Shu Hu, Zi-Ang Nan, Li-Qiang Xie, Yong Hui, Jing-Xin Huang, Chao Zhan, Su-Heng Wang, Jian-Zhang Zhou, Jia-Wei Yan, Bing-Wei Mao, Zhong-Qun Tian. Toward Long-Term Stability: Single-Crystal Alloys of Cesium-Containing Mixed Cation and Mixed Halide Perovskite. Journal of the American Chemical Society 2019, 141 (4) , 1665-1671. https://doi.org/10.1021/jacs.8b11610
  85. Alexander J. Knight, Adam D. Wright, Jay B. Patel, David P. McMeekin, Henry J. Snaith, Michael B. Johnston, Laura M. Herz. Electronic Traps and Phase Segregation in Lead Mixed-Halide Perovskite. ACS Energy Letters 2019, 4 (1) , 75-84. https://doi.org/10.1021/acsenergylett.8b02002
  86. Amanda J. Neukirch, Iwnetim I. Abate, Liujiang Zhou, Wanyi Nie, Hsinhan Tsai, Laurent Pedesseau, Jacky Even, Jared J. Crochet, Aditya D. Mohite, Claudine Katan, Sergei Tretiak. Geometry Distortion and Small Polaron Binding Energy Changes with Ionic Substitution in Halide Perovskites. The Journal of Physical Chemistry Letters 2018, 9 (24) , 7130-7136. https://doi.org/10.1021/acs.jpclett.8b03343
  87. Fabian Ruf, Pascal Rietz, Meltem F. Aygüler, Ina Kelz, Pablo Docampo, Heinz Kalt, Michael Hetterich. The Bandgap as a Moving Target: Reversible Bandgap Instabilities in Multiple-Cation Mixed-Halide Perovskite Solar Cells. ACS Energy Letters 2018, 3 (12) , 2995-3001. https://doi.org/10.1021/acsenergylett.8b01857
  88. Rebecca A. Belisle, Kevin A. Bush, Luca Bertoluzzi, Aryeh Gold-Parker, Michael F. Toney, Michael D. McGehee. Impact of Surfaces on Photoinduced Halide Segregation in Mixed-Halide Perovskites. ACS Energy Letters 2018, 3 (11) , 2694-2700. https://doi.org/10.1021/acsenergylett.8b01562
  89. Anthony Ruth, Michael C. Brennan, Sergiu Draguta, Yurii V. Morozov, Maksym Zhukovskyi, Boldizsar Janko, Peter Zapol, Masaru Kuno. Vacancy-Mediated Anion Photosegregation Kinetics in Mixed Halide Hybrid Perovskites: Coupled Kinetic Monte Carlo and Optical Measurements. ACS Energy Letters 2018, 3 (10) , 2321-2328. https://doi.org/10.1021/acsenergylett.8b01369
  90. Meiying Leng, Ying Yang, Zhengwu Chen, Wanru Gao, Jian Zhang, Guangda Niu, Dengbing Li, Haisheng Song, Jianbing Zhang, Song Jin, Jiang Tang. Surface Passivation of Bismuth-Based Perovskite Variant Quantum Dots To Achieve Efficient Blue Emission. Nano Letters 2018, 18 (9) , 6076-6083. https://doi.org/10.1021/acs.nanolett.8b03090
  91. Pronoy Nandi, Chandan Giri, Diptikanta Swain, U. Manju, Subhendra D. Mahanti, Dinesh Topwal. Temperature Dependent Photoinduced Reversible Phase Separation in Mixed-Halide Perovskite. ACS Applied Energy Materials 2018, 1 (8) , 3807-3814. https://doi.org/10.1021/acsaem.8b00587
  92. Aron Walsh, Samuel D. Stranks. Taking Control of Ion Transport in Halide Perovskite Solar Cells. ACS Energy Letters 2018, 3 (8) , 1983-1990. https://doi.org/10.1021/acsenergylett.8b00764
  93. Junke Jiang, Chidozie K. Onwudinanti, Ross A. Hatton, Peter A. Bobbert, Shuxia Tao. Stabilizing Lead-Free All-Inorganic Tin Halide Perovskites by Ion Exchange. The Journal of Physical Chemistry C 2018, 122 (31) , 17660-17667. https://doi.org/10.1021/acs.jpcc.8b04013
  94. Dhruba B. Khadka, Yasuhiro Shirai, Masatoshi Yanagida, Takeshi Noda, Kenjiro Miyano. Tailoring the Open-Circuit Voltage Deficit of Wide-Band-Gap Perovskite Solar Cells Using Alkyl Chain-Substituted Fullerene Derivatives. ACS Applied Materials & Interfaces 2018, 10 (26) , 22074-22082. https://doi.org/10.1021/acsami.8b04439
  95. Weixin Huang, Seog Joon Yoon, Pitambar Sapkota. Effect of Light Illumination on Mixed Halide Lead Perovskites: Reversible or Irreversible Transformation. ACS Applied Energy Materials 2018, 1 (6) , 2859-2865. https://doi.org/10.1021/acsaem.8b00513
  96. Alex M. Ganose, Saya Matsumoto, John Buckeridge, David O. Scanlon. Defect Engineering of Earth-Abundant Solar Absorbers BiSI and BiSeI. Chemistry of Materials 2018, 30 (11) , 3827-3835. https://doi.org/10.1021/acs.chemmater.8b01135
  97. Abhoy Karmakar, Abdelrahman M. Askar, Guy M. Bernard, Victor V. Terskikh, Michelle Ha, Sahil Patel, Karthik Shankar, Vladimir K. Michaelis. Mechanochemical Synthesis of Methylammonium Lead Mixed–Halide Perovskites: Unraveling the Solid-Solution Behavior Using Solid-State NMR. Chemistry of Materials 2018, 30 (7) , 2309-2321. https://doi.org/10.1021/acs.chemmater.7b05209
  98. Xiaofeng Tang, Marius van den Berg, Ening Gu, Anke Horneber, Gebhard J. Matt, Andres Osvet, Alfred J. Meixner, Dai Zhang, Christoph J. Brabec. Local Observation of Phase Segregation in Mixed-Halide Perovskite. Nano Letters 2018, 18 (3) , 2172-2178. https://doi.org/10.1021/acs.nanolett.8b00505
  99. Dianxing Ju, Yangyang Dang, Zonglong Zhu, Hongbin Liu, Chu-Chen Chueh, Xiaosong Li, Lei Wang, Xiaobo Hu, Alex K.-Y. Jen, Xutang Tao. Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH3NH3PbxSn1–xBr3 Single Crystals. Chemistry of Materials 2018, 30 (5) , 1556-1565. https://doi.org/10.1021/acs.chemmater.7b04565
  100. Michael C. Brennan, Sergiu Draguta, Prashant V. Kamat, Masaru Kuno. Light-Induced Anion Phase Segregation in Mixed Halide Perovskites. ACS Energy Letters 2018, 3 (1) , 204-213. https://doi.org/10.1021/acsenergylett.7b01151
Load more citations

The Journal of Physical Chemistry Letters

Cite this: J. Phys. Chem. Lett. 2016, 7, 6, 1083–1087
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jpclett.6b00226
Published March 7, 2016

Copyright © 2016 American Chemical Society. This publication is licensed under CC-BY.

Article Views

10k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Energy of mixing (top) and entropy of mixing (bottom) as functions of the CH3NH3Pb(I1–xBrx)3 alloy composition. The symbols are the values calculated for each configuration (eq 1). The solid lines show the behavior for the alloy at 200 K (blue), 300 K (green) and for a completely random alloy in the high T limit (red) within the generalized quasi-chemical approximation. The dashed line represents the convex hull.

    Figure 2

    Figure 2. Stable ordered structures identified for MAPbIBr2 and MAPbI1/2Br5/2, which minimize internal strain arising from the size mismatch between I and Br. The atoms at the corners of the octahedra are the halides Br (orange) and I (pink). The most stable structures are layered with iodine at the apical positions.

    Figure 3

    Figure 3. Calculated Helmholtz free energy as a function of the alloy composition and temperature as calculated within the generalized quasi-chemical approximation.

    Figure 4

    Figure 4. Predicted phase diagram of the MAPb(I1–xBrx)3 alloy. The purple and pink lines are the binodal and spinodal lines, respectively. The dashed horizontal line shows the miscibility gap at room temperature. A thermodynamically stable solid-solution can be formed in the white region only.

  • References


    This article references 40 other publications.

    1. 1
      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent Engineering for High-performance Inorganic-organic Hybrid Perovskite Solar Cells Nat. Mater. 2014, 13, 897 DOI: 10.1038/nmat4014
    2. 2
      Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface Engineering of Highly Efficient Perovskite Solar Cells Science 2014, 345, 542 DOI: 10.1126/science.1254050
    3. 3
      Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G. Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide J. Am. Chem. Soc. 2015, 137, 8696 DOI: 10.1021/jacs.5b04930
    4. 4
      Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional Engineering of Perovskite Materials for High-performance Solar Cells Nature 2015, 517, 476 DOI: 10.1038/nature14133
    5. 5
      Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G. Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells J. Am. Chem. Soc. 2014, 136, 8094 DOI: 10.1021/ja5033259
    6. 6
      Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic-organic Hybrid Nanostructured Solar Cells Nano Lett. 2013, 13, 1764 DOI: 10.1021/nl400349b
    7. 7
      Sadhanala, A.; Deschler, F.; Thomas, T. H.; Dutton, S. E.; Goedel, K. C.; Hanusch, F. C.; Lai, M. L.; Steiner, U.; Bein, T.; Docampo, P. Preparation of Single Phase Films of CH3NH3Pb(I1–xBrx)3 with Sharp Optical Band Edges J. Phys. Chem. Lett. 2014, 5, 2501 DOI: 10.1021/jz501332v
    8. 8
      Kulkarni, S. A.; Baikie, T.; Boix, P. P.; Yantara, N.; Mathews, N.; Mhaisalkar, S. Band-gap Tuning of Lead Halide Perovskites Using a Sequential Deposition Process J. Mater. Chem. A 2014, 2, 9221 DOI: 10.1039/C4TA00435C
    9. 9
      Fedeli, P.; Gazza, F.; Calestani, D.; Ferro, P.; Besagni, T.; Zappettini, A.; Calestani, G.; Marchi, E.; Ceroni, P.; Mosca, R. Influence of the Synthetic Procedures on the Structural and Optical Properties of Mixed-Halide (Br,I) Perovskite Films J. Phys. Chem. C 2015, 119, 21304 DOI: 10.1021/acs.jpcc.5b03923
    10. 10
      Ledinský, M.; Löper, P.; Niesen, B.; Holovský, J.; Moon, S.-J.; Yum, J.-H.; De Wolf, S.; Fejfar, A.; Ballif, C. Raman Spectroscopy of Organic Inorganic Halide Perovskites J. Phys. Chem. Lett. 2015, 6, 401 DOI: 10.1021/jz5026323
    11. 11
      Gil-Escrig, L.; Miquel-Sempere, A.; Sessolo, M.; Bolink, H. J. Mixed Iodide-bromide Methylammonium Lead Perovskite-based Diodes for Light Emission and Photovoltaics J. Phys. Chem. Lett. 2015, 6, 3743 DOI: 10.1021/acs.jpclett.5b01716
    12. 12
      Egger, D. A.; Edri, E.; Cahen, D.; Hodes, G. Perovskite Solar Cells: Do We Know What We Do Not Know? J. Phys. Chem. Lett. 2015, 6, 279 DOI: 10.1021/jz502726b
    13. 13
      Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Reversible Photo-induced Trap Formation in Mixed-halide Hybrid Perovskites for Photovoltaics Chem. Sci. 2015, 6, 613 DOI: 10.1039/C4SC03141E
    14. 14
      Niemann, R. G.; Kontos, A. G.; Palles, D.; Kamitsos, E. I.; Kaltzoglou, A.; Brivio, F.; Falaras, P.; Cameron, P. J. Halogen Effects on Ordering and Bonding of CH3NH3+ in CH3NH3PbX3 (X= Cl, Br, I) Hybrid Perovskites: A Vibrational Spectroscopic Study J. Phys. Chem. C 2016, 120, 2509 DOI: 10.1021/acs.jpcc.5b11256
    15. 15
      Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. Giant Switchable Photovoltaic Effect in Organometal Trihalide Perovskite Devices Nat. Mater. 2015, 14, 193 DOI: 10.1038/nmat4150
    16. 16
      Yuan, Y.; Huang, J. Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability Acc. Chem. Res. 2016, 49, 286 DOI: 10.1021/acs.accounts.5b00420
    17. 17
      Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. First Principles Modeling of Mixed Halde Organometal Perovskites for Photovoltaic Applications J. Phys. Chem. C 2013, 117, 13902 DOI: 10.1021/jp4048659
    18. 18
      Yin, W.-J.; Yan, Y.; Wei, S.-H. Anomalous Alloy Properties in Mixed Halide Perovskites J. Phys. Chem. Lett. 2014, 5, 3625 DOI: 10.1021/jz501896w
    19. 19
      Onoda-Yamamuro, N.; Matsuo, T.; Suga, H. Calorimetric and IR Spectroscopic Studies of Phase Transitions in Methylammonium Trihalogenoplumbates (II) J. Phys. Chem. Solids 1990, 51, 1383 DOI: 10.1016/0022-3697(90)90021-7
    20. 20
      Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751 DOI: 10.1107/S0567739476001551
    21. 21
      Sher, A.; van Schilfgaarde, M.; Chen, A.-B.; Chen, W. Quasichemical Approximation in Binary Alloys Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 36, 4279 DOI: 10.1103/PhysRevB.36.4279
    22. 22
      Stringfellow, G. Calculation of Ternary and Quaternary III-V Phase Diagrams J. Cryst. Growth 1974, 27, 21 DOI: 10.1016/S0022-0248(74)80047-3
    23. 23
      Yang, T.-Y.; Gregori, G.; Pellet, N.; Grätzel, M.; Maier, J. The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer Angew. Chem., Int. Ed. 2015, 54, 7905 DOI: 10.1002/anie.201500014
    24. 24
      Zhang, Y.; Liu, M.; Eperon, G. E.; Leijtens, T. C.; McMeekin, D.; Saliba, M.; Zhang, W.; De Bastiani, M.; Petrozza, A.; Herz, L. M. Charge Selective Contacts, Mobile Ions and Anomalous Hysteresis in Organic-Inorganic Perovskite Solar Cells Mater. Horiz. 2015, 2, 315 DOI: 10.1039/C4MH00238E
    25. 25
      Eames, C.; Frost, J. M.; Barnes, P. R. F.; O’Regan, B. C.; Walsh, A.; Islam, M. S. Ionic Transport in Hybrid Lead Iodide Perovskite Solar Cells Nat. Commun. 2015, 6, 7497 DOI: 10.1038/ncomms8497
    26. 26
      Haruyama, J.; Sodeyama, K.; Han, L.; Tateyama, Y. First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers J. Am. Chem. Soc. 2015, 137, 10048 DOI: 10.1021/jacs.5b03615
    27. 27
      Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Defects Migration in Methylammonium Lead Iodide and their Role in Perovskite Solar Cells Operation Energy Environ. Sci. 2015, 8, 2118 DOI: 10.1039/C5EE01265A
    28. 28
      Hentz, O.; Zhao, Z.; Gradecak, S. Impacts of Ion Segregation on Local Optical Properties in Mixed Halide Perovskite Films Nano Lett. 2016, 16, 1485 DOI: 10.1021/acs.nanolett.5b05181
    29. 29
      Shi, J.; Xu, X.; Zhang, H.; Luo, Y.; Li, D.; Meng, Q. Intrinsic Slow Charge Response in the Perovskite Solar Cells: Electron and Ion Transport Appl. Phys. Lett. 2015, 107, 163901 DOI: 10.1063/1.4934633
    30. 30
      Teles, L. K.; Furthmüller, J.; Scolfaro, L. M. R.; Leite, J. R.; Bechstedt, F. First-principles Calculations of the Thermodynamic and Structural Properties of Strained InxGa1–xN and AlxGa1–xN Alloys Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 62, 2475 DOI: 10.1103/PhysRevB.62.2475
    31. 31
      Schleife, A.; Eisenacher, M.; Rödl, C.; Fuchs, F.; Furthmüller, J.; Bechstedt, F. Ab initio Description of Heterostructural Alloys: Thermodynamic and Structural Properties of MgxZn1–xO and CdxZn1–xO Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 245210 DOI: 10.1103/PhysRevB.81.245210
    32. 32
      Kohn, W.; Sham, L. J. Self-consistent Equations Including Exchange and Correlation Effects Phys. Rev. 1965, 140, A1133 DOI: 10.1103/PhysRev.140.A1133
    33. 33
      Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells Nano Lett. 2014, 14, 2584 DOI: 10.1021/nl500390f
    34. 34
      Brivio, F.; Frost, J. M.; Skelton, J. M.; Jackson, A. J.; Weber, O. J.; Weller, M. T.; Goni, A. R.; Leguy, A. M. A.; Barnes, P. R. F.; Walsh, A. Lattice Dynamics and Vibrational Spectra of the Orthorhombic, Tetragonal, and Cubic Phases of Methylammonium Lead Iodide Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92, 144308 DOI: 10.1103/PhysRevB.92.144308
    35. 35
      Grau-Crespo, R.; Hamad, S.; Catlow, C. R. A.; de Leeuw, N. H. Symmetry-adapted Configurational Modelling of Fractional Site Occupancy in Solids J. Phys.: Condens. Matter 2007, 19, 256201 DOI: 10.1088/0953-8984/19/25/256201
    36. 36
      Leguy, A.; Hu, Y.; Campoy-Quiles, M.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; van Schilfgaarde, M.; Weller, M. T.; Bein, T.; Nelson, J. The Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals and Solar Cells Chem. Mater. 2015, 27, 3397 DOI: 10.1021/acs.chemmater.5b00660
    37. 37
      Bakulin, A. A.; Selig, O.; Bakker, H. J.; Rezus, Y. L. A.; Müller, C.; Glaser, T.; Lovrincic, R.; Sun, Z.; Chen, Z.; Walsh, A. Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites J. Phys. Chem. Lett. 2015, 6, 3663 DOI: 10.1021/acs.jpclett.5b01555
    38. 38
      Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab initio Total-energy Calculations Using a Plane-wave Basis Set Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169 DOI: 10.1103/PhysRevB.54.11169
    39. 39
      Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces Phys. Rev. Lett. 2008, 100, 136406 DOI: 10.1103/PhysRevLett.100.136406
    40. 40
      Blöchl, P. E. Projector Augmented-wave Method Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953 DOI: 10.1103/PhysRevB.50.17953