ACS Publications. Most Trusted. Most Cited. Most Read
Directly Probing Charge Separation at Interface of TiO2 Phase Junction
My Activity

Figure 1Loading Img
    Letter

    Directly Probing Charge Separation at Interface of TiO2 Phase Junction
    Click to copy article linkArticle link copied!

    View Author Information
    State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, China
    University of Chinese Academy of Science, Beijing, 100049, China
    § Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Zhongshan Road 457, Dalian 116023, China
    *(F.T.F.) E-mail: [email protected]
    *(C.L.) E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2017, 8, 7, 1419–1423
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.7b00285
    Published March 14, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Phase junction is often recognized as an effective strategy to achieve efficient charge separation in photocatalysis and photochemistry. As a crucial factor to determine the photogenerated charges dynamics, there is an increasingly hot debate about the energy band alignment across the interface of phase junction. Herein, we reported the direct measurement of the surface potential profile over the interface of TiO2 phase junction. A built-in electric field up to 1 kV/cm from rutile to anatase nanoparticle was detected by Kelvin Probe Force Microscopy (KPFM). Home-built spatially resolved surface photovoltage spectroscopy (SRSPS) supplies a direct evidence for the vectorial charge transfer of photogenerated electrons from rutile to anatase. Moreover, the tunable anatase nanoparticle sizes in TiO2 phase junction leads to high surface photovoltage (SPV) by creating completely depleted space charge region (SCR) and enhancing the charge separation efficiency. The results provide a strong basis for understanding the impact of built-in electric field on the charge transfer across the interface of artificial photocatalysts.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.7b00285.

    • Experimental details, TEM, XRD measurements, Raman spectra/imaging, UV–vis spectra, and surface photovoltage (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 197 publications.

    1. Yaling Luo, Chenwei Ni, Jianfeng Zhao, Junhao Cui, Jie Zhang, Qianhong Zhu, Fengtao Fan, Can Li. Intrafacet Charge Separation toward Efficient Overall Water Splitting on SrTiO3 Single Crystal Photocatalysts. The Journal of Physical Chemistry Letters 2025, 16 (12) , 2981-2986. https://doi.org/10.1021/acs.jpclett.5c00244
    2. Qian Li, Chenwei Ni, Junhao Cui, Can Li, Fengtao Fan. Impact of Reaction Environment on Photogenerated Charge Transfer Demonstrated by Sequential Imaging. Journal of the American Chemical Society 2025, 147 (11) , 9103-9110. https://doi.org/10.1021/jacs.4c10300
    3. Jing Zhang, Xiuli Wang, Xiang Wang, Can Li. Heterophase Junction Effect on Photogenerated Charge Separation in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research 2025, 58 (6) , 787-798. https://doi.org/10.1021/acs.accounts.4c00582
    4. Keita Hiromori, Nobuo Nakajima, Takumi Hasegawa, Shin-ichi Wada, Osamu Takahashi, Takuo Ohkochi, Kazuhiko Mase, Kenichi Ozawa. Electronic Origin of Enhanced Photocatalytic Activity at the Anatase/Rutile Boundary: A Case of Acetic Acid on the TiO2 Surface. The Journal of Physical Chemistry C 2024, 128 (51) , 21767-21775. https://doi.org/10.1021/acs.jpcc.4c05630
    5. Yanjun Xu, Zhuan Wang, Yuxiang Weng. Defect States and Polarons in Photocatalytic Semiconductors Revealed via Time-Resolved Spectroscopy. The Journal of Physical Chemistry C 2024, 128 (39) , 16275-16290. https://doi.org/10.1021/acs.jpcc.4c03688
    6. Ke Shi, Boyang Zhang, Kaiwei Liu, Jifang Zhang, Guijun Ma. Rhodium-Doped Barium Titanate Perovskite as a Stable p-Type Photocathode in Solar Water Splitting. ACS Applied Materials & Interfaces 2023, 15 (40) , 47754-47763. https://doi.org/10.1021/acsami.3c09635
    7. Ranjana Verma, Anamika Pandey, Jay Singh, Anchal Srivastava. How Interplay between UV and Visible Activation Dictates Charge Transfer in Nanoengineered Gold Nanoparticle Interfaces at Rutile TiO2 Polymorphism: Photocatalysis with Contrasting Results. The Journal of Physical Chemistry C 2023, 127 (31) , 15195-15205. https://doi.org/10.1021/acs.jpcc.3c03112
    8. Jiangshan Qu, Jiandong He, Hao Li, Qike Jiang, Mingrun Li, Qingkun Kong, Ming Shi, Rengui Li, Can Li. Unraveling the Role of Interface in Photogenerated Charge Separation at the Anatase/Rutile Heterophase Junction. The Journal of Physical Chemistry C 2023, 127 (1) , 768-775. https://doi.org/10.1021/acs.jpcc.2c07482
    9. Xin Zhao, Mengjie Liu, Yuchao Wang, Yu Xiong, Peiyao Yang, Jiaqian Qin, Xiang Xiong, Yongpeng Lei. Designing a Built-In Electric Field for Efficient Energy Electrocatalysis. ACS Nano 2022, 16 (12) , 19959-19979. https://doi.org/10.1021/acsnano.2c09888
    10. Haibo Yin, Feng Dong, Dingsheng Wang, Junhua Li. Coupling Cu Single Atoms and Phase Junction for Photocatalytic CO2 Reduction with 100% CO Selectivity. ACS Catalysis 2022, 12 (22) , 14096-14105. https://doi.org/10.1021/acscatal.2c04563
    11. Nengchao Luo, Wei Nie, Junju Mu, Shiyang Liu, Mingrun Li, Jian Zhang, Zhuyan Gao, Fengtao Fan, Feng Wang. Low-Work Function Metals Boost Selective and Fast Scission of Methanol C–H Bonds. ACS Catalysis 2022, 12 (11) , 6375-6384. https://doi.org/10.1021/acscatal.1c06005
    12. Peipei Du, Ping Niu, Yongqiang Yang, Ruotian Chen, Li-Chang Yin, Fengtao Fan, Gang Liu. Constructing Anatase–Brookite TiO2 Phase Junction by Thermal Topotactic Transition to Promote Charge Separation for Superior Photocatalytic H2 Generation. The Journal of Physical Chemistry Letters 2022, 13 (19) , 4244-4250. https://doi.org/10.1021/acs.jpclett.2c00964
    13. Xin Guo, Cancan Chang, Guorong Wang, Xuqiang Hao, Zhiliang Jin. CoV-LDH and ZnxCd1–xS Solid-Solution Construct 0D/3D S-Scheme Heterojunction for Activated Solar Hydrogen Evolution. ACS Applied Energy Materials 2022, 5 (4) , 5064-5075. https://doi.org/10.1021/acsaem.2c00407
    14. Zili Wu, Qihua Yang, Yan Liu, Boyu Zhang, Rengui Li, Wangyin Wang, Jijie Wang, Kazunari Domen, Feng Wang, Fengtao Fan. Can Li: A Career in Catalysis. ACS Catalysis 2022, 12 (5) , 3063-3082. https://doi.org/10.1021/acscatal.1c06034
    15. Yuanxing Fang, Yidong Hou, Xianzhi Fu, Xinchen Wang. Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chemical Reviews 2022, 122 (3) , 4204-4256. https://doi.org/10.1021/acs.chemrev.1c00686
    16. Rito Yanagi, Tianshuo Zhao, Devan Solanki, Zhenhua Pan, Shu Hu. Charge Separation in Photocatalysts: Mechanisms, Physical Parameters, and Design Principles. ACS Energy Letters 2022, 7 (1) , 432-452. https://doi.org/10.1021/acsenergylett.1c02516
    17. Wei Nie, Xun Wang, Ziyuan Wang, Yuying Gao, Ruotian Chen, Yong Liu, Can Li, Fengtao Fan. Identifying the Role of the Local Charge Density on the Hydrogen Evolution Reaction of the Photoelectrode. The Journal of Physical Chemistry Letters 2021, 12 (44) , 10829-10836. https://doi.org/10.1021/acs.jpclett.1c03127
    18. Hao Wu, Rowshanak Irani, Kunfeng Zhang, Lin Jing, Hongxing Dai, Hoi Ying Chung, Fatwa F. Abdi, Yun Hau Ng. Unveiling Carrier Dynamics in Periodic Porous BiVO4 Photocatalyst for Enhanced Solar Water Splitting. ACS Energy Letters 2021, 6 (10) , 3400-3407. https://doi.org/10.1021/acsenergylett.1c01454
    19. Chengwei Qiu, Jinni Shen, Jinjin Lin, Dan liu, Dongmiao Li, Jiangjie Zhang, Zizhong Zhang, Huaxiang Lin, Xuxu Wang, Xianzhi Fu. Construction of the Rutile/Anatase Micro-Heterophase Junction Photocatalyst from Anatase by Liquid Nitrogen Quenching Method. ACS Applied Energy Materials 2021, 4 (9) , 10172-10186. https://doi.org/10.1021/acsaem.1c02066
    20. Feng Li, Wangshu Zheng, Jing Liu, Liping Zhao, Djordje Janackovic, Yu Qiu, Xuefeng Song, Peng Zhang, Lian Gao. Enhancing the Long-Term Photoelectrochemical Performance of TiO2/Si Photocathodes by Coating of Ti-Doped Mesoporous Hematite. ACS Applied Energy Materials 2021, 4 (8) , 7882-7890. https://doi.org/10.1021/acsaem.1c01238
    21. Jifa Liu, Fangfang Wang, Xuebing Chen, Rengui Li, Peng Yan, Song Bai, Xia Yang, Jing Zhang. Unraveling the Lattice Matching Effect in Surface Phase Junctions for Interfacial Charge Separation. The Journal of Physical Chemistry C 2021, 125 (26) , 14188-14194. https://doi.org/10.1021/acs.jpcc.1c02830
    22. S. Bhowmick, R. Sen, C. P. Saini, R. Singhal, L. Walczak, M. Gupta, D. M. Phase, A. Kanjilal. Unveiling Temperature-Mediated Dual-Band Edge in TiO2 Nanotubes with Enhanced Photocatalytic Effect. The Journal of Physical Chemistry C 2021, 125 (8) , 4846-4859. https://doi.org/10.1021/acs.jpcc.0c11081
    23. Yong H. Kim, Su Y. Lee, Ha N. Umh, Hyeon D. Song, Jeong W. Han, Jang W. Choi, Jongheop Yi. Directional Change of Interfacial Electric Field by Carbon Insertion in Heterojunction System TiO2/WO3. ACS Applied Materials & Interfaces 2020, 12 (13) , 15239-15245. https://doi.org/10.1021/acsami.0c00669
    24. Qian Wang, Kazunari Domen. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews 2020, 120 (2) , 919-985. https://doi.org/10.1021/acs.chemrev.9b00201
    25. Rui Ma, Tao Chen. Checking the Synergetic Effect between Anatase and Rutile. The Journal of Physical Chemistry C 2019, 123 (32) , 19479-19485. https://doi.org/10.1021/acs.jpcc.9b03381
    26. Linchao Mu, Bin Zeng, Xiaoping Tao, Yue Zhao, Can Li. Unusual Charge Distribution on the Facet of a SrTiO3 Nanocube under Light Irradiation. The Journal of Physical Chemistry Letters 2019, 10 (6) , 1212-1216. https://doi.org/10.1021/acs.jpclett.9b00243
    27. Changzhi Ai, Pengcheng Xie, Xidong Zhang, Xusheng Zheng, Jin Li, Andreas Kafizas, Shiwei Lin. Explaining the Enhanced Photoelectrochemical Behavior of Highly Ordered TiO2 Nanotube Arrays: Anatase/Rutile Phase Junction. ACS Sustainable Chemistry & Engineering 2019, 7 (5) , 5274-5282. https://doi.org/10.1021/acssuschemeng.8b06219
    28. Zihao Wang, Yilan Wang, Wan Zhang, Zenglin Wang, Yi Ma, Xin Zhou. Fabrication of TiO2(B)/Anatase Heterophase Junctions at High Temperature via Stabilizing the Surface of TiO2(B) for Enhanced Photocatalytic Activity. The Journal of Physical Chemistry C 2019, 123 (3) , 1779-1789. https://doi.org/10.1021/acs.jpcc.8b09763
    29. Lin Chen, Hao Hua, Qi Yang, Jianlin Liu, Xiangyu Han, Yanrong Li, Cuiling Zhang, Xue Wang, Chenguo Hu. Rational Electron Transmission Structure in an Ag2O/TiO2(anatase-B) System for Effective Enhancement of Visible Light Photocatalytic Activity. The Journal of Physical Chemistry C 2019, 123 (3) , 1817-1827. https://doi.org/10.1021/acs.jpcc.8b09783
    30. Hong Wang, Xiaomei Wang, Ruotian Chen, Hefeng Zhang, Xiuli Wang, Junhui Wang, Jing Zhang, Linchao Mu, Kaifeng Wu, Fengtao Fan, Xu Zong, Can Li. Promoting Photocatalytic H2 Evolution on Organic–Inorganic Hybrid Perovskite Nanocrystals by Simultaneous Dual-Charge Transportation Modulation. ACS Energy Letters 2019, 4 (1) , 40-47. https://doi.org/10.1021/acsenergylett.8b01830
    31. Lin Yang, Yuli Xiong, Li Li, Yibin Yang, Di Gao, Lu Liu, Hongmei Dong, Peng Xiao, Yunhuai Zhang. Manipulation of Charge Transfer in FeP@Fe2O3 Core–Shell Photoanode by Directed Built-In Electric Field. ACS Applied Energy Materials 2018, 1 (9) , 4591-4598. https://doi.org/10.1021/acsaem.8b00756
    32. Xiuli Wang, Can Li. Roles of Phase Junction in Photocatalysis and Photoelectrocatalysis. The Journal of Physical Chemistry C 2018, 122 (37) , 21083-21096. https://doi.org/10.1021/acs.jpcc.8b06039
    33. Jiayuan Hu, Shengsen Zhang, Yonghai Cao, Hongjuan Wang, Hao Yu, Feng Peng. Novel Highly Active Anatase/Rutile TiO2 Photocatalyst with Hydrogenated Heterophase Interface Structures for Photoelectrochemical Water Splitting into Hydrogen. ACS Sustainable Chemistry & Engineering 2018, 6 (8) , 10823-10832. https://doi.org/10.1021/acssuschemeng.8b02130
    34. Yao Lu, Jing Zhang, Fangfang Wang, Xuebing Chen, Zhaochi Feng, Can Li. K2SO4-Assisted Hexagonal/Monoclinic WO3 Phase Junction for Efficient Photocatalytic Degradation of RhB. ACS Applied Energy Materials 2018, 1 (5) , 2067-2077. https://doi.org/10.1021/acsaem.8b00168
    35. Jian Zhu, Shan Pang, Thomas Dittrich, Yuying Gao, Wei Nie, Junyan Cui, Ruotian Chen, Hongyu An, Fengtao Fan, and Can Li . Visualizing the Nano Cocatalyst Aligned Electric Fields on Single Photocatalyst Particles. Nano Letters 2017, 17 (11) , 6735-6741. https://doi.org/10.1021/acs.nanolett.7b02799
    36. Ossama Elbanna, Mamoru Fujitsuka, and Tetsuro Majima . g-C3N4/TiO2 Mesocrystals Composite for H2 Evolution under Visible-Light Irradiation and Its Charge Carrier Dynamics. ACS Applied Materials & Interfaces 2017, 9 (40) , 34844-34854. https://doi.org/10.1021/acsami.7b08548
    37. Yoshio Nosaka and Atsuko Y. Nosaka . Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews 2017, 117 (17) , 11302-11336. https://doi.org/10.1021/acs.chemrev.7b00161
    38. Shengyang Wang, Yuying Gao, Shu Miao, Taifeng Liu, Linchao Mu, Rengui Li, Fengtao Fan, and Can Li . Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts. Journal of the American Chemical Society 2017, 139 (34) , 11771-11778. https://doi.org/10.1021/jacs.7b04470
    39. Shuo Wang, Chenyang Li, Yu Qi, Jiaming Zhang, Ningning Wang, Meng Liu, Boyang Zhang, Xuefen Cai, Hongbo Zhang, Su-huai Wei, Guijun Ma, Jingxiu Yang, Shanshan Chen, Fuxiang Zhang. Etched BiVO4 photocatalyst with charge separation efficiency exceeding 90%. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-025-59076-8
    40. Yuying Gao, Qianhong Zhu, Jianfeng Zhao, Yuxin Xie, Fengtao Fan, Can Li. Regulating Charge Separation Via Periodic Array Nanostructures for Plasmon‐Enhanced Water Oxidation. Advanced Materials 2025, 37 (6) https://doi.org/10.1002/adma.202414959
    41. Siyuan Zhang, Xiaosong Li, Aimin Zhu, Jungang Hou. Gliding Arc Plasma Induced One‐Step Millisecond Synthesis of Highly Crystalline Mesoporous TiO 2 Homojunctions for Robust Photocatalytic H 2 Production. Small 2025, 21 (5) https://doi.org/10.1002/smll.202410603
    42. Tobias Fox, Fabian Kay Bonner, Christoph Pauly, Guido Kickelbick, Frank Mücklich. Influence of Heat Treatments on the Photocatalytic Activity of TiO 2 Surfaces Produced by Direct Laser Interference Patterning. Advanced Materials Interfaces 2025, https://doi.org/10.1002/admi.202400786
    43. Ijaz Ali, Jian-An Liu, Li-Chang Yin, Lianzhou Wang, Gang Liu. Water adsorption on ferroelectric PbTiO3 (0 0 1) surface: A density functional theory study. Journal of Colloid and Interface Science 2025, 678 , 984-991. https://doi.org/10.1016/j.jcis.2024.09.079
    44. Caiyu Luo, Chunping Yang, Jun Xie, Xiang Li, Yan Lin, Shehua Tong, Shanying He. Role of polarized and interfacial built-in electric fields in photocatalysts for enhanced photocatalytic performance. Chemical Engineering Journal 2024, 497 , 155514. https://doi.org/10.1016/j.cej.2024.155514
    45. Xiaoying Shang, Danyu Zhang, Zhiwei Li, Li Fu. Photoelectrochemical enhancement for TiO2-based photoanodes: In-situ electrochemical analysis, modification strategies and mechanism studies. Electrochimica Acta 2024, 502 , 144859. https://doi.org/10.1016/j.electacta.2024.144859
    46. Xiaoying Shang, Rongzi Xv, Zhiwei Li, Ying Zheng, Li Fu. Heterophase homojunction construction by amorphous TiOx and N–TiO2 photoanode for oxygen evolution reaction kinetics and charge carriers’ transportation enhancement. International Journal of Hydrogen Energy 2024, 87 , 595-605. https://doi.org/10.1016/j.ijhydene.2024.09.051
    47. Jiaqi Liu, Hefeng Zhang, Junhui Wang, Yuxin Xie, Yuying Gao, Chenghua Sun, Lianzhou Wang, Xu Zong. Boosting the internal electron transfer of two-dimensional hybrid perovskites via fluorination of organic cation towards enhanced photocatalytic hydrogen production. Applied Catalysis B: Environment and Energy 2024, 352 , 124018. https://doi.org/10.1016/j.apcatb.2024.124018
    48. Kaja Spilarewicz, Krystian Mróz, Marcin Kobielusz, Wojciech Macyk. When the fate of electrons matters — strategies for correct heterojunction classification in photocatalysis. Current Opinion in Chemical Engineering 2024, 45 , 101041. https://doi.org/10.1016/j.coche.2024.101041
    49. Jieqiong Li, Shiyu Wei, Ying Dong, Yongya Zhang, Li Wang. Theoretical Study on Photocatalytic Reduction of CO2 on Anatase/Rutile Mixed-Phase TiO2. Molecules 2024, 29 (17) , 4105. https://doi.org/10.3390/molecules29174105
    50. Xiaoqing Liu, Yu Zhang, Cong Wang, Lei Shen. Polar materials for photocatalytic applications: A critical review. Interdisciplinary Materials 2024, 3 (4) , 530-564. https://doi.org/10.1002/idm2.12176
    51. Rongge Yang, Shuang Xiao, Jingnan Zhang, Songtao Tang, Ruimei Xu, Yexiang Tong. Hematite Hollow‐Sphere‐Array Photoanodes for Efficient Photoelectrochemical Water Splitting. Small 2024, 20 (28) https://doi.org/10.1002/smll.202310752
    52. Zhenzhen Zhang, Chaoying Xu, Qianlu Sun, Yufan Zhu, Wenlong Yan, Guilong Cai, Yawen Li, Wenqin Si, Xinhui Lu, Weigao Xu, Ye Yang, Yuze Lin. Delocalizing Excitation for Highly‐Active Organic Photovoltaic Catalysts. Angewandte Chemie 2024, 136 (26) https://doi.org/10.1002/ange.202402343
    53. Zhenzhen Zhang, Chaoying Xu, Qianlu Sun, Yufan Zhu, Wenlong Yan, Guilong Cai, Yawen Li, Wenqin Si, Xinhui Lu, Weigao Xu, Ye Yang, Yuze Lin. Delocalizing Excitation for Highly‐Active Organic Photovoltaic Catalysts. Angewandte Chemie International Edition 2024, 63 (26) https://doi.org/10.1002/anie.202402343
    54. Zhe Zhang, Zhenpeng Cui, Yinghao Xu, Mohamed Nawfal Ghazzal, Christophe Colbeau-Justin, Duoqiang Pan, Wangsuo Wu. A Facile Strategy for the Preparation of N-Doped TiO2 with Oxygen Vacancy via the Annealing Treatment with Urea. Nanomaterials 2024, 14 (10) , 818. https://doi.org/10.3390/nano14100818
    55. Lijuan Han, Le Zhao, Huichun Kang, Huilong Wang, Yingying Hu, Ping Zhang, Xingcai An, Bitao Su. Biomass derived graphene like material supported Fe2O3 heterophase junction and the removal performance for phenol. Vacuum 2024, 222 , 113041. https://doi.org/10.1016/j.vacuum.2024.113041
    56. Guojing Wang, Shasha Lv, Yuanhua Shen, Wei Li, Linhan Lin, Zhengcao Li. Advancements in heterojunction, cocatalyst, defect and morphology engineering of semiconductor oxide photocatalysts. Journal of Materiomics 2024, 10 (2) , 315-338. https://doi.org/10.1016/j.jmat.2023.05.014
    57. Xiaoping Tao, Takashi Hisatomi, Kazunari Domen. Photogenerated charge separation and transfer across interfaces during photocatalytic water splitting. 2024, 53-64. https://doi.org/10.1016/B978-0-323-85669-0.00020-9
    58. Weilong Feng, Dongyan Ding, Wei Li. Photoelectrochemical hydrogen generation with CdS/Ti–Si–O composite photoanode. International Journal of Hydrogen Energy 2024, 51 , 334-344. https://doi.org/10.1016/j.ijhydene.2023.06.174
    59. Xiaoxuan Wang, Jiangzhou Xie, Shuyuan Li, Zhi Yuan, Yanfei Sun, Xueying Gao, Zheng Tang, Huiying Zhang, Jingxian Li, Shiyu Wang, Zhiyu Yang, Yi-Ming Yan. Enhancing interfacial electric field in WO3-C3N4 through fermi level modulation for electrocatalytic nitrogen reduction. Applied Catalysis B: Environmental 2023, 339 , 123126. https://doi.org/10.1016/j.apcatb.2023.123126
    60. Fang Li, Xiaoyang Yue, Yulong Liao, Liang Qiao, Kangle Lv, Quanjun Xiang. Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-39578-z
    61. Yang Wang, Wenhang Wang, Ruosong He, Meng Li, Jinqiang Zhang, Fengliang Cao, Jianxin Liu, Shiyuan Lin, Xinhua Gao, Guohui Yang, Mingqing Wang, Tao Xing, Tao Liu, Qiang Liu, Han Hu, Noritatsu Tsubaki, Mingbo Wu. Carbon‐Based Electron Buffer Layer on ZnO x −Fe 5 C 2 −Fe 3 O 4 Boosts Ethanol Synthesis from CO 2 Hydrogenation. Angewandte Chemie 2023, 135 (46) https://doi.org/10.1002/ange.202311786
    62. Yang Wang, Wenhang Wang, Ruosong He, Meng Li, Jinqiang Zhang, Fengliang Cao, Jianxin Liu, Shiyuan Lin, Xinhua Gao, Guohui Yang, Mingqing Wang, Tao Xing, Tao Liu, Qiang Liu, Han Hu, Noritatsu Tsubaki, Mingbo Wu. Carbon‐Based Electron Buffer Layer on ZnO x −Fe 5 C 2 −Fe 3 O 4 Boosts Ethanol Synthesis from CO 2 Hydrogenation. Angewandte Chemie International Edition 2023, 62 (46) https://doi.org/10.1002/anie.202311786
    63. Wenming Chai, Weidong Zhu, Dazheng Chen, Long Zhou, He Xi, Jincheng Zhang, Chunfu Zhang, Yue Hao. Low-temperature preparation of titanium dioxide thin layer for highly efficient CsPbI3 perovskite solar cells. Materials Today Energy 2023, 37 , 101410. https://doi.org/10.1016/j.mtener.2023.101410
    64. Peiren Ding, Jiayi Li, Ming Guo, Haodong Ji, Peishen Li, Wen Liu, John Tressel, Shuai Gao, Qiang Wang, Shaowei Chen. Visible light-driven degradation of ofloxacin by graphene oxide-supported titania/zirconia ternary nanocomposites. Inorganic Chemistry Communications 2023, 155 , 111001. https://doi.org/10.1016/j.inoche.2023.111001
    65. Venkata Seshaiah Katta, Reshma K. Dileep, Easwaramoorthi Ramasamy, Ganapathy Veerappan, Sai Santosh Kumar Raavi. Deciphering the role of (Er3+/Nd3+) co-doping effect on TiO2 as an improved electron transport layer in perovskite solar cells. Solar Energy 2023, 262 , 111801. https://doi.org/10.1016/j.solener.2023.111801
    66. Solmaz Feizpoor, Shima Rahim Pouran, Aziz Habibi-Yangjeh. Recent progress on photocatalytic evolution of hydrogen gas over TiO2-x-based emerging nanostructures. Materials Science in Semiconductor Processing 2023, 162 , 107444. https://doi.org/10.1016/j.mssp.2023.107444
    67. Mohd Jahir Khan, Ankesh Ahirwar, Vandana Sirotiya, Anshuman Rai, Sunita Varjani, Vandana Vinayak. Nanoengineering TiO 2 for evaluating performance in dye sensitized solar cells with natural dyes. RSC Advances 2023, 13 (32) , 22630-22638. https://doi.org/10.1039/D3RA02927A
    68. Xiaoxuan Wang, Shuyuan Li, Zhi Yuan, Yanfei Sun, Zheng Tang, Xueying Gao, Huiying Zhang, Jingxian Li, Shiyu Wang, Dongchun Yang, Jiangzhou Xie, Zhiyu Yang, Yi‐Ming Yan. Optimizing Electrocatalytic Nitrogen Reduction via Interfacial Electric Field Modulation: Elevating d‐Band Center in WS 2 ‐WO 3 for Enhanced Intermediate Adsorption. Angewandte Chemie 2023, 135 (29) https://doi.org/10.1002/ange.202303794
    69. Xiaoxuan Wang, Shuyuan Li, Zhi Yuan, Yanfei Sun, Zheng Tang, Xueying Gao, Huiying Zhang, Jingxian Li, Shiyu Wang, Dongchun Yang, Jiangzhou Xie, Zhiyu Yang, Yi‐Ming Yan. Optimizing Electrocatalytic Nitrogen Reduction via Interfacial Electric Field Modulation: Elevating d‐Band Center in WS 2 ‐WO 3 for Enhanced Intermediate Adsorption. Angewandte Chemie International Edition 2023, 62 (29) https://doi.org/10.1002/anie.202303794
    70. Tianhui Su, Chunlei Yang, Fushuang Niu, Yanbo Hua, Qinshang Xu, Ke Hu, Liming Zhang. Spatial separation of photogenerated charges on the anisotropic facets of cuprous oxide. Inorganic Chemistry Frontiers 2023, 10 (12) , 3550-3557. https://doi.org/10.1039/D3QI00455D
    71. Emerson Coy, Igor Iatsunskyi, Mikhael Bechelany. Perspectives and Current Trends on Hybrid Nanocomposite Materials for Photocatalytic Applications. Solar RRL 2023, 7 (7) https://doi.org/10.1002/solr.202201069
    72. Chunlei Yang, Tianhui Su, Yanbo Hua, Liming Zhang. Electrochemical scanning probe microscopies for artificial photosynthesis. Nano Research 2023, 16 (3) , 4013-4028. https://doi.org/10.1007/s12274-022-5326-y
    73. Xiaoxuan Wang, Xinyue Chi, Zhenzhen Fu, Yuanyuan Xiong, Shuyuan Li, Yebo Yao, Kaixin Zhang, Yongjia Li, Shiyu Wang, Rui Zhao, Zhiyu Yang, Yi-Ming Yan. Interfacial electric field triggered N2 activation for efficient electrochemical synthesis of ammonia. Applied Catalysis B: Environmental 2023, 322 , 122130. https://doi.org/10.1016/j.apcatb.2022.122130
    74. Ming Meng, Chunyang Li, Jitao Li, Juan Wu, Yamin Feng, Lingling Sun, Honglei Yuan, Kuili Liu. 3D TiO 2 nanotube arrays with anatase-rutile phase junction and oxygen vacancies for promoted photoelectrochemical water splitting. Journal of Physics D: Applied Physics 2023, 56 (5) , 055502. https://doi.org/10.1088/1361-6463/acade9
    75. Zicheng Li, Bolong Zhang, Zhihao Zhang, Jean-Claude Bünzli, Abd. Rashid bin Mohd Yusoff, Yong-Young Noh, Peng Gao. Vitamin needed: Lanthanides in optoelectronic applications of metal halide perovskites. Materials Science and Engineering: R: Reports 2023, 152 , 100710. https://doi.org/10.1016/j.mser.2022.100710
    76. Chunxia Mu, Chongyang Lv, Xiangchao Meng, Jianhua Sun, Zhangfa Tong, Kelei Huang. In Situ Characterization Techniques Applied in Photocatalysis: A Review. Advanced Materials Interfaces 2023, 10 (3) https://doi.org/10.1002/admi.202201842
    77. Ming Ma, Jiang Li, Zhe Zhang, De Ning, Zhenghao Liu, Weimin Li, Gaokuo Zhong, Xinyao Yang, DCC Lam, Zheng Xing. Regulation of surface oxygen species to boost charge steering for solar water oxidation. Applied Surface Science 2023, 609 , 155241. https://doi.org/10.1016/j.apsusc.2022.155241
    78. Huiqiang Liang, Ziyuan Yan, Guosong Zeng. Recent Advances in In Situ/Operando Surface/Interface Characterization Techniques for the Study of Artificial Photosynthesis. Inorganics 2023, 11 (1) , 16. https://doi.org/10.3390/inorganics11010016
    79. Jian Zhang, Ying Zhang, Lutao Li, Wei Yan, Haiyun Wang, Weiwei Mao, Yan Cui, Yonghua Li, Xinbao Zhu. Synergizing the internal electric field and ferroelectric polarization of the BiFeO 3 /ZnIn 2 S 4 Z-scheme heterojunction for photocatalytic overall water splitting. Journal of Materials Chemistry A 2022, 11 (1) , 434-446. https://doi.org/10.1039/D2TA07976C
    80. Xiaoxuan Wang, Liang Zhao, Rui Zhao, Yixiang Zhou, Shiyu Wang, Xinyue Chi, Yuanyuan Xiong, Yebo Yao, Kaixin Zhang, Yongjia Li, Zhiyu Yang, Yi-Ming Yan. Enhanced electrocatalytic nitrogen reduction inspired by a lightning rod effect on urchin-like Co3O4 catalyst. Chemical Engineering Journal 2022, 450 , 138316. https://doi.org/10.1016/j.cej.2022.138316
    81. Zhishan Luo, Xiaoyuan Ye, Shijia Zhang, Sikang Xue, Can Yang, Yidong Hou, Wandong Xing, Rong Yu, Jie Sun, Zhiyang Yu, Xinchen Wang. Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29825-0
    82. Yong Liu, Mingjian Zhang, Zhuan Wang, Jiandong He, Jie Zhang, Sheng Ye, Xiuli Wang, Dongfeng Li, Heng Yin, Qianhong Zhu, Huanwang Jing, Yuxiang Weng, Feng Pan, Ruotian Chen, Can Li, Fengtao Fan. Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32002-y
    83. Mingli Lu, Xinyan Xiao, Yu Xiao, Jingjing Li, Feihu Zhang. One-pot hydrothermal fabrication of 2D/2D BiOIO3/BiOBr Z-scheme heterostructure with enhanced photocatalytic activity. Journal of Colloid and Interface Science 2022, 625 , 664-679. https://doi.org/10.1016/j.jcis.2022.06.081
    84. Xiaorong Cai, Yaning Wang, Shuting Tang, Liuye Mo, Zhe Leng, Yixian Zang, Fei Jing, Shaohong Zang. Rhombohedral/Cubic In2O3 Phase Junction Hybridized with Polymeric Carbon Nitride for Photodegradation of Organic Pollutants. International Journal of Molecular Sciences 2022, 23 (22) , 14293. https://doi.org/10.3390/ijms232214293
    85. Xinyu Zhang, Pengpeng Tang, Guangyao Zhai, Xiu Lin, Qiang Zhang, Jiesheng Chen, Xiao Wei. Regulating Phase Junction and Oxygen Vacancies of TiO2 Nanoarrays for Boosted Photoelectrochemical Water Oxidation. Chemical Research in Chinese Universities 2022, 38 (5) , 1292-1300. https://doi.org/10.1007/s40242-022-2076-z
    86. Wenchao Jiang, Chenwei Ni, Lingcong Zhang, Ming Shi, Jiangshan Qu, Hongpeng Zhou, Chengbo Zhang, Ruotian Chen, Xiuli Wang, Can Li, Rengui Li. Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation. Angewandte Chemie 2022, 134 (37) https://doi.org/10.1002/ange.202207161
    87. Wenchao Jiang, Chenwei Ni, Lingcong Zhang, Ming Shi, Jiangshan Qu, Hongpeng Zhou, Chengbo Zhang, Ruotian Chen, Xiuli Wang, Can Li, Rengui Li. Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation. Angewandte Chemie International Edition 2022, 61 (37) https://doi.org/10.1002/anie.202207161
    88. Yanpeng Liu, Yunhe Gong, Xue Cui, Hongbin Yu, Weichao Qin, Xiaochun Cui, Mingxin Huo. Synthesis of O-doped C3N4 decorated with C3N4 quantum dots: Construction of a homo junction photocatalyst for the enhanced photocatalytic degradation of tetracycline. Journal of the Taiwan Institute of Chemical Engineers 2022, 138 , 104457. https://doi.org/10.1016/j.jtice.2022.104457
    89. Qixin Zhou, Yang Guo, Zhiqiang Ye, Yunzhi Fu, Yan Guo, Yongfa Zhu. Carbon nitride photocatalyst with internal electric field induced photogenerated carriers spatial enrichment for enhanced photocatalytic water splitting. Materials Today 2022, 58 , 100-109. https://doi.org/10.1016/j.mattod.2022.06.009
    90. Konstantina Chalastara, George P. Demopoulos. Selenate Se(VI) reduction to elemental selenium on heterojunctioned rutile/brookite nano-photocatalysts with enhanced charge utilization. Chemical Engineering Journal 2022, 437 , 135470. https://doi.org/10.1016/j.cej.2022.135470
    91. Rui Cao, Jiajun Gao, Huijin Tao. One-step hydrothermal synthesis of multiphase nano TiO2. Materials Letters 2022, 317 , 132121. https://doi.org/10.1016/j.matlet.2022.132121
    92. Xiaoping Tao, Yue Zhao, Shengyang Wang, Can Li, Rengui Li. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chemical Society Reviews 2022, 51 (9) , 3561-3608. https://doi.org/10.1039/D1CS01182K
    93. Lianwei Shan, Junchen Li, Ze Wu, Limin Dong, Hongtao Chen, Dan Li, Jagadeesh Suriyaprakash, Xiaoliang Zhang. Unveiling the intrinsic band alignment and robust water oxidation features of hierarchical BiVO4 phase junction. Chemical Engineering Journal 2022, 436 , 131516. https://doi.org/10.1016/j.cej.2021.131516
    94. Dehui Wu, Dongyan Ding, Cheekiang Yew. Photoelectrochemical hydrogen generation with nanostructured CdS/Ti–Ni–O composite photoanode. International Journal of Hydrogen Energy 2022, 47 (42) , 18357-18369. https://doi.org/10.1016/j.ijhydene.2022.04.051
    95. Ruotian Chen, Fengtao Fan, Can Li. Unraveling Charge‐Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques. Angewandte Chemie 2022, 134 (16) https://doi.org/10.1002/ange.202117567
    96. Ruotian Chen, Fengtao Fan, Can Li. Unraveling Charge‐Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques. Angewandte Chemie International Edition 2022, 61 (16) https://doi.org/10.1002/anie.202117567
    97. Shi‐Nan Zhang, Peng Gao, Lu‐Han Sun, Jie‐Sheng Chen, Xin‐Hao Li. Tunable Surface Electric Field of Electrocatalysts via Constructing Schottky Heterojunctions for Selective Conversion of Trash Ions to Treasures. Chemistry – A European Journal 2022, 28 (14) https://doi.org/10.1002/chem.202103918
    98. Limin Cang, Zongyao Qian, Jinpei Wang, Libao Chen, Zhigang Wan, Ke Yang, Hui Zhang, Yonghua Chen. Applications and functions of rare-earth ions in perovskite solar cells. Chinese Physics B 2022, 31 (3) , 038402. https://doi.org/10.1088/1674-1056/ac373a
    99. Xi Chen, Tian-Song Deng, Ming Zhou, Zhihua Dong, Zhiqun Cheng. Mixed-Phase TiO 2 with Oxygen Vacancies for Enhanced Visible Light Photocatalysis Performance. Nano 2022, 17 (03) https://doi.org/10.1142/S1793292022500254
    100. Xiaoyi Zhan, Yaling Luo, Ziyu Wang, Yao Xiang, Zheng Peng, Yong Han, Hui Zhang, Ruotian Chen, Qin Zhou, Hongru Peng, Hao Huang, Weimin Liu, Xin Ou, Guijun Ma, Fengtao Fan, Fan Yang, Can Li, Zhi Liu. Formation of multifaceted nano-groove structure on rutile TiO2 photoanode for efficient electron-hole separation and water splitting. Journal of Energy Chemistry 2022, 65 , 19-25. https://doi.org/10.1016/j.jechem.2021.05.007
    Load all citations

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2017, 8, 7, 1419–1423
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.7b00285
    Published March 14, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    5169

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.