ACS Publications. Most Trusted. Most Cited. Most Read
Bacillus subtilis Lipid Extract, A Branched-Chain Fatty Acid Model Membrane
My Activity

Figure 1Loading Img
    Letter

    Bacillus subtilis Lipid Extract, A Branched-Chain Fatty Acid Model Membrane
    Click to copy article linkArticle link copied!

    View Author Information
    † ‡ Shull Wollan Center: A Joint Institute for Neutron Sciences, Biology and Soft Matter Division, §Center for Molecular Biophysics, and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States of America
    Department of Physics & Astronomy, #Department of Biochemistry & Cellular and Molecular Biology, and Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States of America
    Jülich Center for Neutron Science, Forschungszentrum Juelich GmbH, Outstation at SNS, Oak Ridge, Tennessee 37831, United States
    Intel Corporation, Hillsboro, Oregon 97124, United States of America
    *E-mail: [email protected]. Address: Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221 (J.D.N.).
    *E-mail:[email protected]. Address: Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (X.C.).
    Other Access OptionsSupporting Information (3)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2017, 8, 17, 4214–4217
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.7b01877
    Published August 21, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Lipid extracts are an excellent choice of model biomembrane; however at present, there are no commercially available lipid extracts or computational models that mimic microbial membranes containing the branched-chain fatty acids found in many pathogenic and industrially relevant bacteria. We advance the extract of Bacillus subtilis as a standard model for these diverse systems, providing a detailed experimental description and equilibrated atomistic bilayer model included as Supporting Information to this Letter and at (http://cmb.ornl.gov/members/cheng). The development and validation of this model represents an advance that enables more realistic simulations and experiments on bacterial membranes and reconstituted bacterial membrane proteins.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.7b01877.

    • Materials and Methods, four supporting figures showing the GC/MS analysis, melting temperature, structural decomposition of B. subtilis lipid extract, and a time course demonstrating convergence of the simulations at 37 °C; three supporting tables providing structural parameters, the fatty acid content, and the head group and water content, and extended discussion of the experimental data treatment (PDF)

    • File needed to employ the computational model of the B. subtilis lipid extract (PDB)

    • File needed to employ the computational model of the B. subtilis lipid extract (ZIP)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 43 publications.

    1. De’Shovon M. Shenault, Kimberly C. Fabijanczuk, Rayan Murtada, Shane Finn, L. Edwin Gonzalez, Jinshan Gao, Scott A. McLuckey. Gas-Phase Ion/Ion Reactions to Enable Radical-Directed Dissociation of Fatty Acid Ions: Application to Localization of Methyl Branching. Analytical Chemistry 2024, 96 (8) , 3389-3401. https://doi.org/10.1021/acs.analchem.3c04510
    2. Archita Maiti, Abhay Kumar, Snehasis Daschakraborty. How Do Cyclopropane Fatty Acids Protect the Cell Membrane of Escherichia coli in Cold Shock?. The Journal of Physical Chemistry B 2023, 127 (7) , 1607-1617. https://doi.org/10.1021/acs.jpcb.3c00541
    3. Caitlin E. Randolph, Connor H. Beveridge, Sanjay Iyer, Stephen J. Blanksby, Scott A. McLuckey, Gaurav Chopra. Identification of Monomethyl Branched-Chain Lipids by a Combination of Liquid Chromatography Tandem Mass Spectrometry and Charge-Switching Chemistries. Journal of the American Society for Mass Spectrometry 2022, 33 (11) , 2156-2164. https://doi.org/10.1021/jasms.2c00225
    4. Qiaohong Lin, Pengyun Li, Ruijun Jian, Yu Xia. Localization of Intrachain Modifications in Bacterial Lipids Via Radical-Directed Dissociation. Journal of the American Society for Mass Spectrometry 2022, 33 (4) , 714-721. https://doi.org/10.1021/jasms.2c00011
    5. Barmak Mostofian, Tony Zhuang, Xiaolin Cheng, Jonathan D. Nickels. Branched-Chain Fatty Acid Content Modulates Structure, Fluidity, and Phase in Model Microbial Cell Membranes. The Journal of Physical Chemistry B 2019, 123 (27) , 5814-5821. https://doi.org/10.1021/acs.jpcb.9b04326
    6. Xiaolin Cheng, Jeremy C. Smith. Biological Membrane Organization and Cellular Signaling. Chemical Reviews 2019, 119 (9) , 5849-5880. https://doi.org/10.1021/acs.chemrev.8b00439
    7. Jonathan D. Nickels, Micholas Dean Smith, Richard J. Alsop, Sebastian Himbert, Ahmad Yahya, Destini Cordner, Piotr Zolnierczuk, Christopher B. Stanley, John Katsaras, Xiaolin Cheng, Maikel C. Rheinstädter. Lipid Rafts: Buffers of Cell Membrane Physical Properties. The Journal of Physical Chemistry B 2019, 123 (9) , 2050-2056. https://doi.org/10.1021/acs.jpcb.8b12126
    8. Rina Aoki, Eri Kumagawa, Kazuaki Kamata, Hideo Ago, Naoki Sakai, Tomohisa Hasunuma, Naoaki Taoka, Yukari Ohta, Shingo Kobayashi. Engineering of acyl ligase domain in non-ribosomal peptide synthetases to change fatty acid moieties of lipopeptides. Communications Chemistry 2025, 8 (1) https://doi.org/10.1038/s42004-024-01379-w
    9. Riccardo Pepino, Hamed Tari, Alessandro Bile, Arif Nabizada, Eugenio Fazio. Optical Bacteria Recognition: Cross-Polarized Scattering. Symmetry 2025, 17 (3) , 396. https://doi.org/10.3390/sym17030396
    10. Angelika Gründling, Anna P. Brogan, Michael J. James, Fernando H. Ramirez-Guadiana, Ian J. Roney, Thomas G. Bernhardt, David Z. Rudner. PgpP is a broadly conserved phosphatase required for phosphatidylglycerol lipid synthesis. Proceedings of the National Academy of Sciences 2025, 122 (5) https://doi.org/10.1073/pnas.2418775122
    11. Pragyansree Machhua, Vignesh Gopalakrishnan Unnithan, Yu Liu, Yiping Jiang, Lingfeng Zhang, Zhihong Guo. Daptomycin forms a stable complex with phosphatidylglycerol for selective uptake to bacterial membrane. 2024https://doi.org/10.7554/eLife.93267
    12. Pragyansree Machhua, Vignesh Gopalakrishnan Unnithan, Yu Liu, Yiping Jiang, Lingfeng Zhang, Zhihong Guo. Daptomycin forms a stable complex with phosphatidylglycerol for selective uptake to bacterial membrane. 2024https://doi.org/10.7554/eLife.93267.2
    13. Melanie A. Orlando, Hunter J. T. Pouillon, Saikat Mandal, Lee Kroos, Benjamin J. Orlando. Substrate engagement by the intramembrane metalloprotease SpoIVFB. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-52634-6
    14. Abraham O. Oluwole, Neha V. Kalmankar, Michela Guida, Jack L. Bennett, Giovanna Poce, Jani R. Bolla, Carol V. Robinson. Lipopeptide antibiotics disrupt interactions of undecaprenyl phosphate with UptA. Proceedings of the National Academy of Sciences 2024, 121 (41) https://doi.org/10.1073/pnas.2408315121
    15. Shingo Kobayashi, Rina Aoki, Eri Kumagawa, Kazuaki Kamata, Hideo Ago, Naoki Sakai, Tomohisa Hasunuma, Naoaki Taoka, Yukari Ohta. Engineering of acyl ligase domain in NRPS to design fatty acid moieties of lipopeptides. 2024https://doi.org/10.21203/rs.3.rs-4561998/v1
    16. Margareth Sidarta, Ana I. Lorente Martín, Anuntxi Monsalve, Gabriela Marinho Righetto, Ann-Britt Schäfer, Michaela Wenzel, . Lipid phase separation impairs membrane thickness sensing by the Bacillus subtilis sensor kinase DesK. Microbiology Spectrum 2024, 12 (6) https://doi.org/10.1128/spectrum.03925-23
    17. Laura-Roxana Stingaciu, Hugh O’Neill, Chung-Hao Liu, Barbara R. Evans, Gergely Nagy. Neutrons reveal the dynamics of leaf thylakoids in living plants. 2024https://doi.org/10.21203/rs.3.rs-4437351/v1
    18. Abraham O. Oluwole, Neha Kalmankar, Michela Guida, Jack L. Bennett, Giovanna Poce, Jani R. Bolla, Carol V. Robinson. Lipopeptide antibiotics disrupt interactions of undecaprenyl phosphate with UptA. 2024https://doi.org/10.1101/2024.04.02.587717
    19. Pragyansree Machhua, Vignesh Gopalakrishnan Unnithan, Yu Liu, Yiping Jiang, Lingfeng Zhang, Zhihong Guo. Daptomycin forms a stable complex with phosphatidylglycerol for selective uptake to bacterial membrane. 2024https://doi.org/10.7554/eLife.93267.1
    20. Huayong Xie, Yongxiang Zhao, Weijing Zhao, Yanke Chen, Maili Liu, Jun Yang. Solid-state NMR structure determination of a membrane protein in E. coli cellular inner membrane. Science Advances 2023, 9 (44) https://doi.org/10.1126/sciadv.adh4168
    21. Rocío Rivera Sánchez, Siva Bandi, Marie‐Désirée Scheidt, Hanna Laaroussi, Bennett William Fox, Yojiro Ishida, Gaétan Glauser, Sylvain Sutour, Stephan H. von Reuss. iso‐Fatty Acid Metabolism in Caenorhabditis elegans’ Ceramide Biosynthesis. Helvetica Chimica Acta 2023, 106 (11) https://doi.org/10.1002/hlca.202300131
    22. Wei Mao, Lars D Renner, Charlène Cornilleau, Ines Li de la Sierra-Gallay, Sana Afensiss, Sarah Benlamara, Yoan Ah-Seng, Herman Van Tilbeurgh, Sylvie Nessler, Aurélie Bertin, Arnaud Chastanet, Rut Carballido-Lopez. On the role of nucleotides and lipids in the polymerization of the actin homolog MreB from a Gram-positive bacterium. eLife 2023, 12 https://doi.org/10.7554/eLife.84505
    23. Pragyansree Machhua, Vignesh Gopalakrishnan Unnithan, Yu Liu, Yiping Jiang, Lingfeng Zhang, Zhihong Guo. Daptomycin forms a stable complex with phosphatidylglycerol for selective uptake to bacterial membrane. 2023https://doi.org/10.1101/2023.10.01.560395
    24. Yunxin Yi, Xiaofan Jin, Moutong Chen, Teodora Emilia Coldea, Huirong Yang, Haifeng Zhao. Brij-58 supplementation enhances menaquinone-7 biosynthesis and secretion in Bacillus natto. Applied Microbiology and Biotechnology 2023, 107 (16) , 5051-5062. https://doi.org/10.1007/s00253-023-12640-y
    25. Michihiro Nagao, Hideki Seto. Neutron scattering studies on dynamics of lipid membranes. Biophysics Reviews 2023, 4 (2) https://doi.org/10.1063/5.0144544
    26. Marea J. Blake, Hannah B. Castillo, Anna E. Curtis, Tessa R. Calhoun. Facilitating flip-flop: Structural tuning of molecule-membrane interactions in living bacteria. Biophysical Journal 2023, 122 (10) , 1735-1747. https://doi.org/10.1016/j.bpj.2023.04.003
    27. Ya‐Fei Jing, Hao‐Xun Wei, Fang‐Fang Liu, Yi‐Fan Liu, Lei Zhou, Jin‐Feng Liu, Shi‐Zhong Yang, Hui‐Zhan Zhang, Bo‐Zhong Mu. Genetic engineering of the branched‐chain fatty acid biosynthesis pathway to enhance surfactin production from Bacillus subtilis. Biotechnology and Applied Biochemistry 2023, 70 (1) , 238-248. https://doi.org/10.1002/bab.2346
    28. Tengfei Zhan, Xin Guo, Lu Ma, Shengyong Mao, Dengpan Bu. Biotin and Leucine Alone or in Combination Promoted the Synthesis of Odd- and Branched-Chain Fatty Acids in the Rumen In Vitro. Agriculture 2023, 13 (1) , 145. https://doi.org/10.3390/agriculture13010145
    29. Luoxi Tan, Micholas Dean Smith, Haden L. Scott, Ahmad Yahya, James G. Elkins, John Katsaras, Hugh M. O'Neill, Sai Venkatesh Pingali, Jeremy C. Smith, Brian H. Davison, Jonathan D. Nickels. Modeling the partitioning of amphiphilic molecules and co-solvents in biomembranes. Journal of Applied Crystallography 2022, 55 (6) , 1401-1412. https://doi.org/10.1107/S1600576722008998
    30. Jonathan D. Nickels, Kyle S. Bonifer, Rachel R. Tindall, Ahmad Yahya, Luoxi Tan, Changwoo Do, Brian H. Davison, James G. Elkins. Improved chemical and isotopic labeling of biomembranes in Bacillus subtilis by leveraging CRISPRi inhibition of beta-ketoacyl-ACP synthase (fabF). Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.1011981
    31. Wei Mao, Lars D. Renner, Charlène Cornilleau, Ines Li de la Sierra-Gallay, Sarah Benlamara, Yoan Ah-Seng, Herman Van Tilbeurgh, Sylvie Nessler, Aurélie Bertin, Arnaud Chastanet, Rut Carballido-López. Polymerization cycle of actin homolog MreB from a Gram-positive bacterium. 2022https://doi.org/10.1101/2022.10.19.512861
    32. Sabrina I. Giacometti, Mark R. MacRae, Kristen Dancel-Manning, Gira Bhabha, Damian C. Ekiert. Lipid Transport Across Bacterial Membranes. Annual Review of Cell and Developmental Biology 2022, 38 (1) , 125-153. https://doi.org/10.1146/annurev-cellbio-120420-022914
    33. V.K. Sharma, E. Mamontov. Multiscale lipid membrane dynamics as revealed by neutron spectroscopy. Progress in Lipid Research 2022, 87 , 101179. https://doi.org/10.1016/j.plipres.2022.101179
    34. Konstantina Karathanou, Ana-Nicoleta Bondar. Algorithm to catalogue topologies of dynamic lipid hydrogen-bond networks. Biochimica et Biophysica Acta (BBA) - Biomembranes 2022, 1864 (4) , 183859. https://doi.org/10.1016/j.bbamem.2022.183859
    35. Marvin Gohrbandt, André Lipski, James W Grimshaw, Jessica A Buttress, Zunera Baig, Brigitte Herkenhoff, Stefan Walter, Rainer Kurre, Gabriele Deckers‐Hebestreit, Henrik Strahl. Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria. The EMBO Journal 2022, 41 (5) https://doi.org/10.15252/embj.2021109800
    36. Fangxiang Hu, Weijie Cai, Junzhang Lin, Weidong Wang, Shuang Li. Genetic engineering of the precursor supply pathway for the overproduction of the nC14-surfactin isoform with promising MEOR applications. Microbial Cell Factories 2021, 20 (1) https://doi.org/10.1186/s12934-021-01585-4
    37. Tomasz Róg, Mykhailo Girych, Alex Bunker. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals 2021, 14 (10) , 1062. https://doi.org/10.3390/ph14101062
    38. Jessica R. Willdigg, John D. Helmann. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Frontiers in Molecular Biosciences 2021, 8 https://doi.org/10.3389/fmolb.2021.634438
    39. Luoxi Tan, James G. Elkins, Brian H. Davison, Elizabeth G. Kelley, Jonathan Nickels. Implementation of a self-consistent slab model of bilayer structure in the SasView suite. Journal of Applied Crystallography 2021, 54 (1) , 363-370. https://doi.org/10.1107/S1600576720015526
    40. Sabrin Mahfouz, Ghaytha Mansour, Denis J. Murphy, Abdulsamie Hanano. Dioxin impacts on lipid metabolism of soil microbes: towards effective detection and bioassessment strategies. Bioresources and Bioprocessing 2020, 7 (1) https://doi.org/10.1186/s40643-020-00347-1
    41. Jonathan D. Nickels, Suresh Poudel, Sneha Chatterjee, Abigail Farmer, Destini Cordner, Shawn R. Campagna, Richard J. Giannone, Robert L. Hettich, Dean A. A. Myles, Robert F. Standaert, John Katsaras, James G. Elkins. Impact of Fatty-Acid Labeling of Bacillus subtilis Membranes on the Cellular Lipidome and Proteome. Frontiers in Microbiology 2020, 11 https://doi.org/10.3389/fmicb.2020.00914
    42. Christian Wölk, Hala Youssef, Thomas Guttenberg, Helene Marbach, Gema Vizcay‐Barrena, Chen Shen, Gerald Brezesinski, Richard D. Harvey. Phase Diagram for a Lysyl‐Phosphatidylglycerol Analogue in Biomimetic Mixed Monolayers with Phosphatidylglycerol: Insights into the Tunable Properties of Bacterial Membranes. ChemPhysChem 2020, 21 (8) , 702-706. https://doi.org/10.1002/cphc.202000026
    43. Jason S. Gardner, Georg Ehlers, Antonio Faraone, Victoria García Sakai. High-resolution neutron spectroscopy using backscattering and neutron spin-echo spectrometers in soft and hard condensed matter. Nature Reviews Physics 2020, 2 (2) , 103-116. https://doi.org/10.1038/s42254-019-0128-1
    44. Jonathan D. Nickels, Jacob Hogg, Destini Cordner, John Katsaras. Lipid Rafts in Bacteria: Structure and Function. 2020, 3-32. https://doi.org/10.1007/978-3-030-15147-8_3
    45. Yiping Jiang, Xin Dai, Mingming Qin, Zhihong Guo. Identification of an amphipathic peptide sensor of the Bacillus subtilis fluid membrane microdomains. Communications Biology 2019, 2 (1) https://doi.org/10.1038/s42003-019-0562-8
    46. Fangxiang Hu, Yuyue Liu, Shuang Li. Rational strain improvement for surfactin production: enhancing the yield and generating novel structures. Microbial Cell Factories 2019, 18 (1) https://doi.org/10.1186/s12934-019-1089-x
    47. Marvin Gohrbandt, André Lipski, James W. Grimshaw, Jessica A. Buttress, Zunera Baig, Brigitte Herkenhoff, Stefan Walter, Rainer Kurre, Gabriele Deckers-Hebestreit, Henrik Strahl. Low membrane fluidity triggers lipid phase separation and protein segregation in vivo. 2019https://doi.org/10.1101/852160
    48. Qun Wu, Yan Zhi, Yan Xu. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metabolic Engineering 2019, 52 , 87-97. https://doi.org/10.1016/j.ymben.2018.11.004
    49. Abdulsamie Hanano, Mouhnad Shaban, Douaa Almutlk, Ibrahem Almousally. The cytochrome P450BM-1 of Bacillus megaterium A14K is induced by 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin: Biophysical, molecular and biochemical determinants. Chemosphere 2019, 216 , 258-270. https://doi.org/10.1016/j.chemosphere.2018.10.103
    50. Jonathan D. Nickels, Jacob Hogg, Destini Cordner, John Katsaras. Lipid Rafts in Bacteria: Structure and Function. 2019, 1-30. https://doi.org/10.1007/978-3-319-72473-7_3-1
    51. Ada Sedova, John D. Eblen, Reuben Budiardja, Arnold Tharrington, Jeremy C. Smith. High-Performance Molecular Dynamics Simulation for Biological and Materials Sciences: Challenges of Performance Portability. 2018, 1-13. https://doi.org/10.1109/P3HPC.2018.00004
    52. Liliana Mora, Saravuth Ngo, Soumaya Laalami, Harald Putzer. In Vitro Study of the Major Bacillus subtilis Ribonucleases Y and J. 2018, 343-359. https://doi.org/10.1016/bs.mie.2018.08.004

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2017, 8, 17, 4214–4217
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.7b01877
    Published August 21, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    2077

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.