ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Bacillus subtilis Lipid Extract, A Branched-Chain Fatty Acid Model Membrane

View Author Information
† ‡ Shull Wollan Center: A Joint Institute for Neutron Sciences, Biology and Soft Matter Division, §Center for Molecular Biophysics, and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States of America
Department of Physics & Astronomy, #Department of Biochemistry & Cellular and Molecular Biology, and Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States of America
Jülich Center for Neutron Science, Forschungszentrum Juelich GmbH, Outstation at SNS, Oak Ridge, Tennessee 37831, United States
Intel Corporation, Hillsboro, Oregon 97124, United States of America
*E-mail: [email protected]. Address: Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221 (J.D.N.).
*E-mail:[email protected]. Address: Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (X.C.).
Cite this: J. Phys. Chem. Lett. 2017, 8, 17, 4214–4217
Publication Date (Web):August 21, 2017
https://doi.org/10.1021/acs.jpclett.7b01877
Copyright © 2017 American Chemical Society

    Article Views

    1854

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    Lipid extracts are an excellent choice of model biomembrane; however at present, there are no commercially available lipid extracts or computational models that mimic microbial membranes containing the branched-chain fatty acids found in many pathogenic and industrially relevant bacteria. We advance the extract of Bacillus subtilis as a standard model for these diverse systems, providing a detailed experimental description and equilibrated atomistic bilayer model included as Supporting Information to this Letter and at (http://cmb.ornl.gov/members/cheng). The development and validation of this model represents an advance that enables more realistic simulations and experiments on bacterial membranes and reconstituted bacterial membrane proteins.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.7b01877.

    • Materials and Methods, four supporting figures showing the GC/MS analysis, melting temperature, structural decomposition of B. subtilis lipid extract, and a time course demonstrating convergence of the simulations at 37 °C; three supporting tables providing structural parameters, the fatty acid content, and the head group and water content, and extended discussion of the experimental data treatment (PDF)

    • File needed to employ the computational model of the B. subtilis lipid extract (PDB)

    • File needed to employ the computational model of the B. subtilis lipid extract (ZIP)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 40 publications.

    1. De’Shovon M. Shenault, Kimberly C. Fabijanczuk, Rayan Murtada, Shane Finn, L. Edwin Gonzalez, Jinshan Gao, Scott A. McLuckey. Gas-Phase Ion/Ion Reactions to Enable Radical-Directed Dissociation of Fatty Acid Ions: Application to Localization of Methyl Branching. Analytical Chemistry 2024, 96 (8) , 3389-3401. https://doi.org/10.1021/acs.analchem.3c04510
    2. Archita Maiti, Abhay Kumar, Snehasis Daschakraborty. How Do Cyclopropane Fatty Acids Protect the Cell Membrane of Escherichia coli in Cold Shock?. The Journal of Physical Chemistry B 2023, 127 (7) , 1607-1617. https://doi.org/10.1021/acs.jpcb.3c00541
    3. Caitlin E. Randolph, Connor H. Beveridge, Sanjay Iyer, Stephen J. Blanksby, Scott A. McLuckey, Gaurav Chopra. Identification of Monomethyl Branched-Chain Lipids by a Combination of Liquid Chromatography Tandem Mass Spectrometry and Charge-Switching Chemistries. Journal of the American Society for Mass Spectrometry 2022, 33 (11) , 2156-2164. https://doi.org/10.1021/jasms.2c00225
    4. Qiaohong Lin, Pengyun Li, Ruijun Jian, Yu Xia. Localization of Intrachain Modifications in Bacterial Lipids Via Radical-Directed Dissociation. Journal of the American Society for Mass Spectrometry 2022, 33 (4) , 714-721. https://doi.org/10.1021/jasms.2c00011
    5. Barmak Mostofian, Tony Zhuang, Xiaolin Cheng, Jonathan D. Nickels. Branched-Chain Fatty Acid Content Modulates Structure, Fluidity, and Phase in Model Microbial Cell Membranes. The Journal of Physical Chemistry B 2019, 123 (27) , 5814-5821. https://doi.org/10.1021/acs.jpcb.9b04326
    6. Xiaolin Cheng, Jeremy C. Smith. Biological Membrane Organization and Cellular Signaling. Chemical Reviews 2019, 119 (9) , 5849-5880. https://doi.org/10.1021/acs.chemrev.8b00439
    7. Jonathan D. Nickels, Micholas Dean Smith, Richard J. Alsop, Sebastian Himbert, Ahmad Yahya, Destini Cordner, Piotr Zolnierczuk, Christopher B. Stanley, John Katsaras, Xiaolin Cheng, Maikel C. Rheinstädter. Lipid Rafts: Buffers of Cell Membrane Physical Properties. The Journal of Physical Chemistry B 2019, 123 (9) , 2050-2056. https://doi.org/10.1021/acs.jpcb.8b12126
    8. Margareth Sidarta, Ana I. Lorente Martín, Anuntxi Monsalve, Gabriela Marinho Righetto, Ann-Britt Schäfer, Michaela Wenzel, . Lipid phase separation impairs membrane thickness sensing by the Bacillus subtilis sensor kinase DesK. Microbiology Spectrum 2024, https://doi.org/10.1128/spectrum.03925-23
    9. Pragyansree Machhua, Vignesh Gopalakrishnan Unnithan, Yu Liu, Yiping Jiang, Lingfeng Zhang, Zhihong Guo. Daptomycin forms a stable complex with phosphatidylglycerol for selective uptake to bacterial membrane. 2024https://doi.org/10.7554/eLife.93267
    10. Pragyansree Machhua, Vignesh Gopalakrishnan Unnithan, Yu Liu, Yiping Jiang, Lingfeng Zhang, Zhihong Guo. Daptomycin forms a stable complex with phosphatidylglycerol for selective uptake to bacterial membrane. 2024https://doi.org/10.7554/eLife.93267.1
    11. Huayong Xie, Yongxiang Zhao, Weijing Zhao, Yanke Chen, Maili Liu, Jun Yang. Solid-state NMR structure determination of a membrane protein in E. coli cellular inner membrane. Science Advances 2023, 9 (44) https://doi.org/10.1126/sciadv.adh4168
    12. Rocío Rivera Sánchez, Siva Bandi, Marie‐Désirée Scheidt, Hanna Laaroussi, Bennett William Fox, Yojiro Ishida, Gaétan Glauser, Sylvain Sutour, Stephan H. von Reuss. iso‐Fatty Acid Metabolism in Caenorhabditis elegans’ Ceramide Biosynthesis. Helvetica Chimica Acta 2023, 106 (11) https://doi.org/10.1002/hlca.202300131
    13. Wei Mao, Lars D Renner, Charlène Cornilleau, Ines Li de la Sierra-Gallay, Sana Afensiss, Sarah Benlamara, Yoan Ah-Seng, Herman Van Tilbeurgh, Sylvie Nessler, Aurélie Bertin, Arnaud Chastanet, Rut Carballido-Lopez. On the role of nucleotides and lipids in the polymerization of the actin homolog MreB from a Gram-positive bacterium. eLife 2023, 12 https://doi.org/10.7554/eLife.84505
    14. Yunxin Yi, Xiaofan Jin, Moutong Chen, Teodora Emilia Coldea, Huirong Yang, Haifeng Zhao. Brij-58 supplementation enhances menaquinone-7 biosynthesis and secretion in Bacillus natto. Applied Microbiology and Biotechnology 2023, 107 (16) , 5051-5062. https://doi.org/10.1007/s00253-023-12640-y
    15. Michihiro Nagao, Hideki Seto. Neutron scattering studies on dynamics of lipid membranes. Biophysics Reviews 2023, 4 (2) https://doi.org/10.1063/5.0144544
    16. Marea J. Blake, Hannah B. Castillo, Anna E. Curtis, Tessa R. Calhoun. Facilitating flip-flop: Structural tuning of molecule-membrane interactions in living bacteria. Biophysical Journal 2023, 122 (10) , 1735-1747. https://doi.org/10.1016/j.bpj.2023.04.003
    17. Ya‐Fei Jing, Hao‐Xun Wei, Fang‐Fang Liu, Yi‐Fan Liu, Lei Zhou, Jin‐Feng Liu, Shi‐Zhong Yang, Hui‐Zhan Zhang, Bo‐Zhong Mu. Genetic engineering of the branched‐chain fatty acid biosynthesis pathway to enhance surfactin production from Bacillus subtilis. Biotechnology and Applied Biochemistry 2023, 70 (1) , 238-248. https://doi.org/10.1002/bab.2346
    18. Tengfei Zhan, Xin Guo, Lu Ma, Shengyong Mao, Dengpan Bu. Biotin and Leucine Alone or in Combination Promoted the Synthesis of Odd- and Branched-Chain Fatty Acids in the Rumen In Vitro. Agriculture 2023, 13 (1) , 145. https://doi.org/10.3390/agriculture13010145
    19. Luoxi Tan, Micholas Dean Smith, Haden L. Scott, Ahmad Yahya, James G. Elkins, John Katsaras, Hugh M. O'Neill, Sai Venkatesh Pingali, Jeremy C. Smith, Brian H. Davison, Jonathan D. Nickels. Modeling the partitioning of amphiphilic molecules and co-solvents in biomembranes. Journal of Applied Crystallography 2022, 55 (6) , 1401-1412. https://doi.org/10.1107/S1600576722008998
    20. Jonathan D. Nickels, Kyle S. Bonifer, Rachel R. Tindall, Ahmad Yahya, Luoxi Tan, Changwoo Do, Brian H. Davison, James G. Elkins. Improved chemical and isotopic labeling of biomembranes in Bacillus subtilis by leveraging CRISPRi inhibition of beta-ketoacyl-ACP synthase (fabF). Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.1011981
    21. Sabrina I. Giacometti, Mark R. MacRae, Kristen Dancel-Manning, Gira Bhabha, Damian C. Ekiert. Lipid Transport Across Bacterial Membranes. Annual Review of Cell and Developmental Biology 2022, 38 (1) , 125-153. https://doi.org/10.1146/annurev-cellbio-120420-022914
    22. V.K. Sharma, E. Mamontov. Multiscale lipid membrane dynamics as revealed by neutron spectroscopy. Progress in Lipid Research 2022, 87 , 101179. https://doi.org/10.1016/j.plipres.2022.101179
    23. Konstantina Karathanou, Ana-Nicoleta Bondar. Algorithm to catalogue topologies of dynamic lipid hydrogen-bond networks. Biochimica et Biophysica Acta (BBA) - Biomembranes 2022, 1864 (4) , 183859. https://doi.org/10.1016/j.bbamem.2022.183859
    24. Marvin Gohrbandt, André Lipski, James W Grimshaw, Jessica A Buttress, Zunera Baig, Brigitte Herkenhoff, Stefan Walter, Rainer Kurre, Gabriele Deckers‐Hebestreit, Henrik Strahl. Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria. The EMBO Journal 2022, 41 (5) https://doi.org/10.15252/embj.2021109800
    25. Fangxiang Hu, Weijie Cai, Junzhang Lin, Weidong Wang, Shuang Li. Genetic engineering of the precursor supply pathway for the overproduction of the nC14-surfactin isoform with promising MEOR applications. Microbial Cell Factories 2021, 20 (1) https://doi.org/10.1186/s12934-021-01585-4
    26. Tomasz Róg, Mykhailo Girych, Alex Bunker. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals 2021, 14 (10) , 1062. https://doi.org/10.3390/ph14101062
    27. Jessica R. Willdigg, John D. Helmann. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Frontiers in Molecular Biosciences 2021, 8 https://doi.org/10.3389/fmolb.2021.634438
    28. Luoxi Tan, James G. Elkins, Brian H. Davison, Elizabeth G. Kelley, Jonathan Nickels. Implementation of a self-consistent slab model of bilayer structure in the SasView suite. Journal of Applied Crystallography 2021, 54 (1) , 363-370. https://doi.org/10.1107/S1600576720015526
    29. Sabrin Mahfouz, Ghaytha Mansour, Denis J. Murphy, Abdulsamie Hanano. Dioxin impacts on lipid metabolism of soil microbes: towards effective detection and bioassessment strategies. Bioresources and Bioprocessing 2020, 7 (1) https://doi.org/10.1186/s40643-020-00347-1
    30. Jonathan D. Nickels, Suresh Poudel, Sneha Chatterjee, Abigail Farmer, Destini Cordner, Shawn R. Campagna, Richard J. Giannone, Robert L. Hettich, Dean A. A. Myles, Robert F. Standaert, John Katsaras, James G. Elkins. Impact of Fatty-Acid Labeling of Bacillus subtilis Membranes on the Cellular Lipidome and Proteome. Frontiers in Microbiology 2020, 11 https://doi.org/10.3389/fmicb.2020.00914
    31. Christian Wölk, Hala Youssef, Thomas Guttenberg, Helene Marbach, Gema Vizcay‐Barrena, Chen Shen, Gerald Brezesinski, Richard D. Harvey. Phase Diagram for a Lysyl‐Phosphatidylglycerol Analogue in Biomimetic Mixed Monolayers with Phosphatidylglycerol: Insights into the Tunable Properties of Bacterial Membranes. ChemPhysChem 2020, 21 (8) , 702-706. https://doi.org/10.1002/cphc.202000026
    32. Jason S. Gardner, Georg Ehlers, Antonio Faraone, Victoria García Sakai. High-resolution neutron spectroscopy using backscattering and neutron spin-echo spectrometers in soft and hard condensed matter. Nature Reviews Physics 2020, 2 (2) , 103-116. https://doi.org/10.1038/s42254-019-0128-1
    33. Jonathan D. Nickels, Jacob Hogg, Destini Cordner, John Katsaras. Lipid Rafts in Bacteria: Structure and Function. 2020, 3-32. https://doi.org/10.1007/978-3-030-15147-8_3
    34. Fangxiang Hu, Yuyue Liu, Shuang Li. Rational strain improvement for surfactin production: enhancing the yield and generating novel structures. Microbial Cell Factories 2019, 18 (1) https://doi.org/10.1186/s12934-019-1089-x
    35. Yiping Jiang, Xin Dai, Mingming Qin, Zhihong Guo. Identification of an amphipathic peptide sensor of the Bacillus subtilis fluid membrane microdomains. Communications Biology 2019, 2 (1) https://doi.org/10.1038/s42003-019-0562-8
    36. Qun Wu, Yan Zhi, Yan Xu. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metabolic Engineering 2019, 52 , 87-97. https://doi.org/10.1016/j.ymben.2018.11.004
    37. Abdulsamie Hanano, Mouhnad Shaban, Douaa Almutlk, Ibrahem Almousally. The cytochrome P450BM-1 of Bacillus megaterium A14K is induced by 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin: Biophysical, molecular and biochemical determinants. Chemosphere 2019, 216 , 258-270. https://doi.org/10.1016/j.chemosphere.2018.10.103
    38. Jonathan D. Nickels, Jacob Hogg, Destini Cordner, John Katsaras. Lipid Rafts in Bacteria: Structure and Function. 2019, 1-30. https://doi.org/10.1007/978-3-319-72473-7_3-1
    39. Ada Sedova, John D. Eblen, Reuben Budiardja, Arnold Tharrington, Jeremy C. Smith. High-Performance Molecular Dynamics Simulation for Biological and Materials Sciences: Challenges of Performance Portability. 2018, 1-13. https://doi.org/10.1109/P3HPC.2018.00004
    40. Liliana Mora, Saravuth Ngo, Soumaya Laalami, Harald Putzer. In Vitro Study of the Major Bacillus subtilis Ribonucleases Y and J. 2018, 343-359. https://doi.org/10.1016/bs.mie.2018.08.004

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect