ACS Publications. Most Trusted. Most Cited. Most Read
Structure-Dependent Dissociation of Water on Cobalt Oxide
My Activity

Figure 1Loading Img
    Letter

    Structure-Dependent Dissociation of Water on Cobalt Oxide
    Click to copy article linkArticle link copied!

    • Matthias Schwarz
      Matthias Schwarz
      Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
    • Firas Faisal
      Firas Faisal
      Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
      More by Firas Faisal
    • Susanne Mohr
      Susanne Mohr
      Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
      More by Susanne Mohr
    • Chantal Hohner
      Chantal Hohner
      Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
    • Kristin Werner
      Kristin Werner
      Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
    • Tao Xu
      Tao Xu
      Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
      More by Tao Xu
    • Tomáš Skála
      Tomáš Skála
      Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
    • Nataliya Tsud
      Nataliya Tsud
      Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
    • Kevin C. Prince
      Kevin C. Prince
      Elettra-Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5, 34149 Basovizza-Trieste, Italy
    • Vladimír Matolín
      Vladimír Matolín
      Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
    • Yaroslava Lykhach*
      Yaroslava Lykhach
      Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
      *E-mail: [email protected] (Y.L.).
    • Jörg Libuda*
      Jörg Libuda
      Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
      Erlangen Catalysis Resource Center and Interdisciplinary Center Interface Controlled Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
      *E-mail: [email protected] (J.L.).
      More by Jörg Libuda
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2018, 9, 11, 2763–2769
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.8b01033
    Published May 9, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Understanding the correlation between structure and reactivity of oxide surfaces is vital for the rational design of catalytic materials. In this work, we demonstrate the exceptional degree of structure sensitivity of the water dissociation reaction for one of the most important materials in catalysis and electrocatalysis. We studied H2O on two atomically defined cobalt oxide surfaces, CoO(100) and Co3O4(111). Both surfaces are terminated by O2– and Co2+ in different coordination. By infrared reflection absorption spectroscopy and synchrotron radiation photoelectron spectroscopy we show that H2O adsorbs molecularly on CoO(100), while it dissociates and forms very strongly bound OH and partially dissociated (H2O)n(OH)m clusters on Co3O4(111). We rationalize this structure dependence by the coordination number of surface Co2+. Our results show that specific well-ordered cobalt oxide surfaces interact very strongly with H2O whereas others do not. We propose that this structure dependence plays a key role in catalysis with cobalt oxide nanomaterials.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.8b01033.

    • Experimental details and synchrotron radiation photoelectron spectroscopy data for water adsorption at 200 K (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 54 publications.

    1. Camilla Codeço, Jade Barreto, Rubem Caetano, Georg Fickenscher, Guilherme Felix, Jörg Libuda, Fernando Stavale. Insights into the Reactivity of the Mn3O4(001) Thin Film with Water. The Journal of Physical Chemistry C 2024, 128 (46) , 19630-19637. https://doi.org/10.1021/acs.jpcc.4c05880
    2. Ahreum Min, Jueun Park, Talshyn Begildayeva, Jayaraman Theerthagiri, Deepak Arumugam, Cheol Joo Moon, Shankar Ramasamy, Myong Yong Choi. Intraphase Switching of Hollow CoCuFe Nanocubes for Efficient Electrochemical Nitrite Reduction to Ammonia. ACS Applied Materials & Interfaces 2024, 16 (40) , 53718-53728. https://doi.org/10.1021/acsami.4c09663
    3. Yun Xie, Guang-Jie Xia, Wei-Ping Gong, Fang-Long Zhu, Zhen-Ting Zhao, Yang-Gang Wang. Mechanistic Insight into the Superior Catalytic Activity of Au/Co3O4 Interface in Glucose Sensors. ACS Catalysis 2024, 14 (17) , 12956-12969. https://doi.org/10.1021/acscatal.4c03419
    4. Dongqing Wang, Rongtan Li, Xiaoyuan Sun, Le Lin, Kun Li, Rankun Zhang, Rentao Mu, Qiang Fu. Hydroxide Structure-Dependent OH Promotion Mechanism over a Hydroxylated CoOx/Pt(111) Catalyst toward CO Oxidation. ACS Catalysis 2024, 14 (7) , 5147-5155. https://doi.org/10.1021/acscatal.4c01084
    5. Georg Fickenscher, Julien Steffen, Andreas Görling, Jörg Libuda. Atomic Layer Deposition of HfS2 on Functionalized Self-Assembled Monolayers on Ordered Oxide Surfaces: A Model Study under UHV Conditions. The Journal of Physical Chemistry C 2024, 128 (2) , 798-809. https://doi.org/10.1021/acs.jpcc.3c06772
    6. Georg Fickenscher, Lukas Fromm, Andreas Görling, Jörg Libuda. Atomic Layer Deposition of HfS2 on Oxide Interfaces: A Model Study on the Initial Nucleation Processes. The Journal of Physical Chemistry C 2022, 126 (51) , 21596-21605. https://doi.org/10.1021/acs.jpcc.2c06293
    7. Neeraj Kumar Pandit, Diptendu Roy, Shyama Charan Mandal, Biswarup Pathak. Rational Designing of Bimetallic/Trimetallic Hydrogen Evolution Reaction Catalysts Using Supervised Machine Learning. The Journal of Physical Chemistry Letters 2022, 13 (32) , 7583-7593. https://doi.org/10.1021/acs.jpclett.2c01401
    8. Georg Fickenscher, Chantal Hohner, Tao Xu, Jörg Libuda. Adsorption of D2O and CO on Co3O4(111): Water Stabilizes Coadsorbed CO. The Journal of Physical Chemistry C 2021, 125 (48) , 26785-26792. https://doi.org/10.1021/acs.jpcc.1c07393
    9. Binbin Xin, Arnaud Le Febvrier, Rui Shu, Anna Elsukova, Venkat Venkataramani, Yunfeng Shi, Ganpati Ramanath, Biplab Paul, Per Eklund. Engineering Faceted Nanoporosity by Reactions in Thin-Film Oxide Multilayers in Crystallographically Layered Calcium Cobaltate for Thermoelectrics. ACS Applied Nano Materials 2021, 4 (9) , 9904-9911. https://doi.org/10.1021/acsanm.1c02468
    10. Christian Schuschke, Lukáš Fusek, Vitalii Uvarov, Mykhailo Vorokhta, Břetislav Šmíd, Viktor Johánek, Yaroslava Lykhach, Jörg Libuda, Josef Mysliveček, Olaf Brummel. Stability of the Pd/Co3O4(111) Model Catalysts in Oxidizing and Humid Environments. The Journal of Physical Chemistry C 2021, 125 (5) , 2907-2917. https://doi.org/10.1021/acs.jpcc.0c08915
    11. Zhenhua Zhang, Xiaoxing Ke, Bin Zhang, Jiguang Deng, Yuxi Liu, Weiwei Liu, Hongxing Dai, Fu-Rong Chen, Manling Sui. Facet-Dependent Cobalt Ion Distribution on the Co3O4 Nanocatalyst Surface. The Journal of Physical Chemistry Letters 2020, 11 (22) , 9913-9919. https://doi.org/10.1021/acs.jpclett.0c02901
    12. Jihyun Kim, Florian Buchner, R. Jürgen Behm. Interaction between Li, Ultrathin Adsorbed Ethylene Carbonate Films, and CoO(111) Thin Films: A Model Study of the Solid Electrolyte Interphase Formation at CoO Anodes. The Journal of Physical Chemistry C 2020, 124 (39) , 21476-21490. https://doi.org/10.1021/acs.jpcc.0c06015
    13. Florian Buchner, Katrin Forster-Tonigold, Jihyun Kim, Joachim Bansmann, Axel Groß, R. Jürgen Behm. Interaction between Li, Ultrathin Adsorbed Ionic Liquid Films, and CoO(111) Thin Films: A Model Study of the Solid|Electrolyte Interphase Formation. Chemistry of Materials 2019, 31 (15) , 5537-5549. https://doi.org/10.1021/acs.chemmater.9b01253
    14. George Yan, Philippe Sautet. Surface Structure of Co3O4 (111) under Reactive Gas-Phase Environments. ACS Catalysis 2019, 9 (7) , 6380-6392. https://doi.org/10.1021/acscatal.9b01485
    15. Olaf Brummel, Yaroslava Lykhach, Mykhailo Vorokhta, Břetislav Šmíd, Corinna Stumm, Firas Faisal, Tomáš Skála, Nataliya Tsud, Armin Neitzel, Klára Beranová, Kevin C. Prince, Vladimír Matolín, Jörg Libuda. Redox Behavior of Pt/Co3O4(111) Model Electrocatalyst Studied by X-ray Photoelectron Spectroscopy Coupled with an Electrochemical Cell. The Journal of Physical Chemistry C 2019, 123 (14) , 8746-8758. https://doi.org/10.1021/acs.jpcc.8b08890
    16. George Yan, Tobias Wähler, Ralf Schuster, Matthias Schwarz, Chantal Hohner, Kristin Werner, Jörg Libuda, Philippe Sautet. Water on Oxide Surfaces: A Triaqua Surface Coordination Complex on Co3O4(111). Journal of the American Chemical Society 2019, 141 (14) , 5623-5627. https://doi.org/10.1021/jacs.9b00898
    17. M. Schwarz, S. Mohr, C. Hohner, K. Werner, T. Xu, J. Libuda. Water on Atomically-Defined Cobalt Oxide Surfaces Studied by Temperature-Programmed IR Reflection Absorption Spectroscopy and Steady State Isotopic Exchange. The Journal of Physical Chemistry C 2019, 123 (13) , 7673-7681. https://doi.org/10.1021/acs.jpcc.8b04611
    18. Michael Hollerer, David Prochinig, Peter Puschnig, Esther Carrasco, Hans-Joachim Freund, Martin Sterrer. Scanning Tunneling Microscopy of the Ordered Water Monolayer on MgO(001)/Ag(001) Ultrathin Films. The Journal of Physical Chemistry C 2019, 123 (6) , 3711-3718. https://doi.org/10.1021/acs.jpcc.8b12256
    19. Georg Fickenscher, Nikolai Sidorenko, Kira Mikulinskaya, Jörg Libuda. Different Nucleation Mechanisms during Atomic Layer Deposition of HfS 2 on Cobalt Oxide Surfaces. Advanced Materials Interfaces 2025, 12 (1) https://doi.org/10.1002/admi.202400371
    20. Thomas Haunold, Krešimir Anić, Alexander Genest, Christoph Rameshan, Matteo Roiaz, Hao Li, Thomas Wicht, Jan Knudsen, Günther Rupprechter. Hydroxylation of an ultrathin Co3O4(111) film on Ir(100) studied by in situ ambient pressure XPS and DFT. Surface Science 2025, 751 , 122618. https://doi.org/10.1016/j.susc.2024.122618
    21. Jin-Yuan Hu, Yong-Bin Zhuang, Jun Cheng. Band alignment of CoO(100)–water and CoO(111)–water interfaces accelerated by machine learning potentials. The Journal of Chemical Physics 2024, 161 (13) https://doi.org/10.1063/5.0224137
    22. Hao Zhang, Lei Chen, Feng Dong, Zhiwen Lu, Enmin Lv, Xinglong Dong, Huanxin Li, Zhongyong Yuan, Xinwen Peng, Shihe Yang, Jieshan Qiu, Zhengxiao Guo, Zhenhai Wen. Dynamic transformation of active sites in energy and environmental catalysis. Energy & Environmental Science 2024, 17 (18) , 6435-6481. https://doi.org/10.1039/D4EE02365J
    23. Ha Huu Do, Quyet Van Le, Hai Bang Truong. Recent Advances in Co3O4-Based Hybrid Structures for Water Electrolysis. Korean Journal of Chemical Engineering 2024, 41 (8) , 2227-2237. https://doi.org/10.1007/s11814-024-00183-5
    24. Ali Akbarisehat, Giovanni Zangari. Electricity generation via metal oxide-air moist interaction. Materials Today Communications 2024, 40 , 109744. https://doi.org/10.1016/j.mtcomm.2024.109744
    25. Talshyn Begildayeva, Jayaraman Theerthagiri, Wanwisa Limphirat, Ahreum Min, Soorathep Kheawhom, Myong Yong Choi. Deciphering Indirect Nitrite Reduction to Ammonia in High‐Entropy Electrocatalysts Using In Situ Raman and X‐ray Absorption Spectroscopies. Small 2024, 20 (29) https://doi.org/10.1002/smll.202400538
    26. David Rath, Vojtěch Mikerásek, Chunlei Wang, Moritz Eder, Michael Schmid, Ulrike Diebold, Gareth S. Parkinson, Jiří Pavelec. Infrared reflection absorption spectroscopy setup with incidence angle selection for surfaces of non-metals. Review of Scientific Instruments 2024, 95 (6) https://doi.org/10.1063/5.0210860
    27. Wenhai Xu, Zhuang Zhang, Hao Sun, Yaning Zhang, Anuj Kumar, Yun Kuang, Yaping Li. First-Principles Study of Oxygen Evolution Reaction on Ir with Different Coordination Numbers Anchoring at Specific Sites of Co3O4 (111) Surface. Catalysis Letters 2024, 154 (5) , 2488-2502. https://doi.org/10.1007/s10562-023-04486-w
    28. Talshyn Begildayeva, Jayaraman Theerthagiri, Ahreum Min, Cheol Joo Moon, Myong Yong Choi. Electrocatalytic ammonia production from nitrite via dual-site Co3O4/NiO catalysts derived from laser-induced cyanonickelate frameworks. Chemical Engineering Journal 2024, 485 , 150041. https://doi.org/10.1016/j.cej.2024.150041
    29. Sascha Saddeler, Ulrich Hagemann, Georg Bendt, Stephan Schulz. Core‐shell Co 3 O 4 @CoO Nanoparticles for Enhanced OER Activity. ChemCatChem 2024, 16 (6) https://doi.org/10.1002/cctc.202301327
    30. James Paterson, Mark Peacock, Hendrik Van Rensburg, Zhuoran Xu. Fischer-Tropsch cobalt activations: The role of water on catalyst reduction. Catalysis Today 2024, 430 , 114559. https://doi.org/10.1016/j.cattod.2024.114559
    31. Lukáš Fusek, Matteo Farnesi Camellone, Michal Ronovský, Maximilian Kastenmeier, Tomáš Skála, Pankaj Kumar Samal, Nataliya Tsud, Sascha Mehl, Jan Škvára, Tomáš Dolák, Vitalii Uvarov, Martin Setvín, Viktor Johánek, Stefano Fabris, Olaf Brummel, Jörg Libuda, Josef Mysliveček, Simone Piccinin, Yaroslava Lykhach. Atomistic picture of electronic metal support interaction and the role of water. Journal of Materials Chemistry A 2024, 12 (6) , 3258-3264. https://doi.org/10.1039/D3TA06595B
    32. Ziwei Liu, Yanli Zhuang, Limin Dong, Hongxu Mu, Dan Li, Leiming Wang, Shuo Tian. Construction of CeO2/CdS Heterostructure and Study on Photocatalytic Mechanism of Rhodamine B Degradation. Journal of Inorganic and Organometallic Polymers and Materials 2024, 34 (1) , 175-189. https://doi.org/10.1007/s10904-023-02815-5
    33. Earl Matthew Davis, Arno Bergmann, Chao Zhan, Helmut Kuhlenbeck, Beatriz Roldan Cuenya. Comparative study of Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film electrocatalysts for the oxygen evolution reaction. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40461-0
    34. Jade Barreto, Niklas Nilius, Heloise Tissot, Shamil Shaikhutdinov, Hans Joachim Freund, Fernando Stavale. Interaction of water and carbon monoxide with MnO(001) thin films on Au(111). Physical Chemistry Chemical Physics 2023, 25 (43) , 29808-29815. https://doi.org/10.1039/D3CP04038K
    35. M.A. Yewale, A.A. Jadhvar, R.B. Kharade, R.A. Kadam, V. Kumar, U.T. Nakate, P.B. Shelke, D.H. Bobade, A.M. Teli, S.D. Dhas, D.K. Shin. Hydrothermally synthesized Ni3V2O8 nanoparticles with horny surfaces for HER and supercapacitor application. Materials Letters 2023, 338 , 134033. https://doi.org/10.1016/j.matlet.2023.134033
    36. James Paterson, Mark Peacock, Zhuoran Xu, Hendrik van Rensberg. Fischer-Tropsch Cobalt Activations: The Role of Water on Catalyst Reduction. 2023https://doi.org/10.2139/ssrn.4633121
    37. Jinxian Feng, Lulu Qiao, Pengfei Zhou, Haoyun Bai, Chunfa Liu, Chon Chio Leong, Yu-Yun Chen, Weng Fai Ip, Jun Ni, Hui Pan. Nanocrystalline CoO x glass for highly-efficient alkaline hydrogen evolution reaction. Journal of Materials Chemistry A 2022, 11 (1) , 316-329. https://doi.org/10.1039/D2TA08073G
    38. Ha Huu Do, Mahider Asmare Tekalgne, Vy Anh Tran, Quyet Van Le, Jin Hyuk Cho, Sang Hyun Ahn, Soo Young Kim. MOF-derived Co/Co3O4/C hollow structural composite as an efficient electrocatalyst for hydrogen evolution reaction. Fuel 2022, 329 , 125468. https://doi.org/10.1016/j.fuel.2022.125468
    39. Jingyi Yang, Yike Huang, Haifeng Qi, Chaobin Zeng, Qike Jiang, Yitao Cui, Yang Su, Xiaorui Du, Xiaoli Pan, Xiaoyan Liu, Weizhen Li, Botao Qiao, Aiqin Wang, Tao Zhang. Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31966-1
    40. Hanna Kierzkowska-Pawlak, Ewelina Kruszczak, Jacek Tyczkowski. Catalytic activity of plasma-deposited Co3O4-based thin films for CO2 hydration – A new approach to carbon capture applications. Applied Catalysis B: Environmental 2022, 304 , 120961. https://doi.org/10.1016/j.apcatb.2021.120961
    41. Abraham Atour Zigla, Tim Kox, Daniel Mevoa, Hypolite Todou Assaouka, Issah Njiawouo Nsangou, Daniel Manhouli Daawe, Stephane Kenmoe, Patrick Mountapmbeme Kouotou. Magnesium-Modified Co3O4 Catalyst with Remarkable Performance for Toluene Low Temperature Deep Oxidation. Catalysts 2022, 12 (4) , 411. https://doi.org/10.3390/catal12040411
    42. Ziyi Feng, Xingwang Zhu, Jinman Yang, Kang Zhong, Zhifeng Jiang, Qing Yu, Yanhua Song, Yingjie Hua, Huaming Li, Hui Xu. Inherent Facet-Dominant effect for cobalt oxide nanosheets to enhance photocatalytic CO2 reduction. Applied Surface Science 2022, 578 , 151848. https://doi.org/10.1016/j.apsusc.2021.151848
    43. Chantal Hohner, Michal Ronovský, Olaf Brummel, Tomáš Skála, Břetislav Šmíd, Nataliya Tsud, Mykhailo Vorokhta, Kevin C. Prince, Josef Mysliveček, Viktor Johánek, Yaroslava Lykhach, Jörg Libuda. Reactive interaction of isopropanol with Co3O4(1 1 1) and Pt/Co3O4(1 1 1) model catalysts. Journal of Catalysis 2021, 398 , 171-184. https://doi.org/10.1016/j.jcat.2021.04.005
    44. Lichen Liu, Avelino Corma. Structural transformations of solid electrocatalysts and photocatalysts. Nature Reviews Chemistry 2021, 5 (4) , 256-276. https://doi.org/10.1038/s41570-021-00255-8
    45. Kseniya Prikhodko, Abulkosim Nasriddinov, Svetlana Vladimirova, Marina Rumyantseva, Alexander Gaskov. Nanocrystalline Oxides NixCo3−xO4: Sub-ppm H2S Sensing and Humidity Effect. Chemosensors 2021, 9 (2) , 34. https://doi.org/10.3390/chemosensors9020034
    46. Jiayuan Chen, Beibei Zhang, Lizhi Qian, Haicheng Wan, Tingli Yu, Zhiqiang Wei, Zhiyuan Wang, Shaohua Luo, Hamidreza Arandiyan, Yanguo Liu, Hongyu Sun. Crystalline Planes templated engineering of defect chemistry in Cobalt(II, III) oxide anodes for lithium ion batteries. Journal of Alloys and Compounds 2021, 850 , 156858. https://doi.org/10.1016/j.jallcom.2020.156858
    47. Yuanyuan Cao, Tobias Wähler, Hyoungwon Park, Johannes Will, Annemarie Prihoda, Narine Moses Badlyan, Lukas Fromm, Tadahiro Yokosawa, Bingzhe Wang, Dirk M. Guldi, Andreas Görling, Janina Maultzsch, Tobias Unruh, Erdmann Spiecker, Marcus Halik, Jörg Libuda, Julien Bachmann. Area‐Selective Growth of HfS 2 Thin Films via Atomic Layer Deposition at Low Temperature. Advanced Materials Interfaces 2020, 7 (23) https://doi.org/10.1002/admi.202001493
    48. Tobias Wähler, Ralf Schuster, Jörg Libuda. Self‐Metalation of Anchored Porphyrins on Atomically Defined Cobalt Oxide Surfaces: In situ Studies by Surface Vibrational Spectroscopy. Chemistry – A European Journal 2020, 26 (54) , 12445-12453. https://doi.org/10.1002/chem.202001331
    49. Steven L. Suib, Jan Přech, Jiří Čejka, Yasutaka Kuwahara, Kohsuke Mori, Hiromi Yamashita. Some novel porous materials for selective catalytic oxidations. Materials Today 2020, 32 , 244-259. https://doi.org/10.1016/j.mattod.2019.06.008
    50. Tanja Bauer, Friederike Agel, Dominik Blaumeiser, Sven Maisel, Andreas Görling, Peter Wasserscheid, Jörg Libuda. Low‐Temperature Synthesis of Oxides in Ionic Liquids: Ozone‐Mediated Formation of Co 3 O 4 Nanoparticles Monitored by In Situ Infrared Spectroscopy. Advanced Materials Interfaces 2019, 6 (20) https://doi.org/10.1002/admi.201900890
    51. Chien-Hong Chen, Tzung-Wen Chiou, Han-Chun Chang, Wei-Liang Li, Chi-Yen Tung, Wen-Feng Liaw. An organic ligand promoting the electrocatalytic activity of cobalt oxide for the hydrogen evolution reaction. Sustainable Energy & Fuels 2019, 3 (9) , 2205-2210. https://doi.org/10.1039/C9SE00371A
    52. Tobias Wähler, Chantal Hohner, Zhaozong Sun, Ralf Schuster, Jonathan Rodríguez-Fernández, Jeppe Vang Lauritsen, Jörg Libuda. Dissociation of water on atomically-defined cobalt oxide nanoislands on Pt(111) and its effect on the adsorption of CO. Journal of Materials Research 2019, 34 (3) , 379-393. https://doi.org/10.1557/jmr.2018.388
    53. Martin Sterrer, Niklas Nilius, Shamil Shaikhutdinov, Markus Heyde, Thomas Schmidt, Hans-Joachim Freund. Interaction of water with oxide thin film model systems. Journal of Materials Research 2019, 34 (3) , 360-378. https://doi.org/10.1557/jmr.2018.454
    54. Tomi Iivonen, Mikko Kaipio, Timo Hatanpää, Kenichiro Mizohata, Kristoffer Meinander, Jyrki Räisänen, Jiyeon Kim, Mikko Ritala, Markku Leskelä. Atomic layer deposition of cobalt(II) oxide thin films from Co(BTSA)2(THF) and H2O. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2019, 37 (1) https://doi.org/10.1116/1.5066638
    55. Minhua Zhang, Heyuan Huang, Yingzhe Yu. Water Adsorption and Decomposition on Co(0001) Surface: A Computational Study. Catalysis Letters 2018, 148 (10) , 3126-3133. https://doi.org/10.1007/s10562-018-2508-z

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2018, 9, 11, 2763–2769
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.8b01033
    Published May 9, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    2036

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.