Structure-Dependent Dissociation of Water on Cobalt Oxide
- Matthias SchwarzMatthias SchwarzLehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, GermanyMore by Matthias Schwarz
- ,
- Firas FaisalFiras FaisalLehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, GermanyMore by Firas Faisal
- ,
- Susanne MohrSusanne MohrLehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, GermanyMore by Susanne Mohr
- ,
- Chantal HohnerChantal HohnerLehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, GermanyMore by Chantal Hohner
- ,
- Kristin WernerKristin WernerLehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, GermanyMore by Kristin Werner
- ,
- Tao XuTao XuLehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, GermanyMore by Tao Xu
- ,
- Tomáš SkálaTomáš SkálaDepartment of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague, Czech RepublicMore by Tomáš Skála
- ,
- Nataliya TsudNataliya TsudDepartment of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague, Czech RepublicMore by Nataliya Tsud
- ,
- Kevin C. PrinceKevin C. PrinceElettra-Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5, 34149 Basovizza-Trieste, ItalyMore by Kevin C. Prince
- ,
- Vladimír MatolínVladimír MatolínDepartment of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague, Czech RepublicMore by Vladimír Matolín
- ,
- Yaroslava Lykhach*Yaroslava Lykhach*E-mail: [email protected] (Y.L.).Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, GermanyMore by Yaroslava Lykhach
- , and
- Jörg Libuda*Jörg Libuda*E-mail: [email protected] (J.L.).Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, GermanyErlangen Catalysis Resource Center and Interdisciplinary Center Interface Controlled Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, GermanyMore by Jörg Libuda
Abstract

Understanding the correlation between structure and reactivity of oxide surfaces is vital for the rational design of catalytic materials. In this work, we demonstrate the exceptional degree of structure sensitivity of the water dissociation reaction for one of the most important materials in catalysis and electrocatalysis. We studied H2O on two atomically defined cobalt oxide surfaces, CoO(100) and Co3O4(111). Both surfaces are terminated by O2– and Co2+ in different coordination. By infrared reflection absorption spectroscopy and synchrotron radiation photoelectron spectroscopy we show that H2O adsorbs molecularly on CoO(100), while it dissociates and forms very strongly bound OH and partially dissociated (H2O)n(OH)m clusters on Co3O4(111). We rationalize this structure dependence by the coordination number of surface Co2+. Our results show that specific well-ordered cobalt oxide surfaces interact very strongly with H2O whereas others do not. We propose that this structure dependence plays a key role in catalysis with cobalt oxide nanomaterials.
Cited By
This article is cited by 34 publications.
- Georg Fickenscher, Lukas Fromm, Andreas Görling, Jörg Libuda. Atomic Layer Deposition of HfS2 on Oxide Interfaces: A Model Study on the Initial Nucleation Processes. The Journal of Physical Chemistry C 2022, 126 (51) , 21596-21605. https://doi.org/10.1021/acs.jpcc.2c06293
- Neeraj Kumar Pandit, Diptendu Roy, Shyama Charan Mandal, Biswarup Pathak. Rational Designing of Bimetallic/Trimetallic Hydrogen Evolution Reaction Catalysts Using Supervised Machine Learning. The Journal of Physical Chemistry Letters 2022, 13 (32) , 7583-7593. https://doi.org/10.1021/acs.jpclett.2c01401
- Georg Fickenscher, Chantal Hohner, Tao Xu, Jörg Libuda. Adsorption of D2O and CO on Co3O4(111): Water Stabilizes Coadsorbed CO. The Journal of Physical Chemistry C 2021, 125 (48) , 26785-26792. https://doi.org/10.1021/acs.jpcc.1c07393
- Binbin Xin, Arnaud Le Febvrier, Rui Shu, Anna Elsukova, Venkat Venkataramani, Yunfeng Shi, Ganpati Ramanath, Biplab Paul, Per Eklund. Engineering Faceted Nanoporosity by Reactions in Thin-Film Oxide Multilayers in Crystallographically Layered Calcium Cobaltate for Thermoelectrics. ACS Applied Nano Materials 2021, 4 (9) , 9904-9911. https://doi.org/10.1021/acsanm.1c02468
- Christian Schuschke, Lukáš Fusek, Vitalii Uvarov, Mykhailo Vorokhta, Břetislav Šmíd, Viktor Johánek, Yaroslava Lykhach, Jörg Libuda, Josef Mysliveček, Olaf Brummel. Stability of the Pd/Co3O4(111) Model Catalysts in Oxidizing and Humid Environments. The Journal of Physical Chemistry C 2021, 125 (5) , 2907-2917. https://doi.org/10.1021/acs.jpcc.0c08915
- Zhenhua Zhang, Xiaoxing Ke, Bin Zhang, Jiguang Deng, Yuxi Liu, Weiwei Liu, Hongxing Dai, Fu-Rong Chen, Manling Sui. Facet-Dependent Cobalt Ion Distribution on the Co3O4 Nanocatalyst Surface. The Journal of Physical Chemistry Letters 2020, 11 (22) , 9913-9919. https://doi.org/10.1021/acs.jpclett.0c02901
- Jihyun Kim, Florian Buchner, R. Jürgen Behm. Interaction between Li, Ultrathin Adsorbed Ethylene Carbonate Films, and CoO(111) Thin Films: A Model Study of the Solid Electrolyte Interphase Formation at CoO Anodes. The Journal of Physical Chemistry C 2020, 124 (39) , 21476-21490. https://doi.org/10.1021/acs.jpcc.0c06015
- Florian Buchner, Katrin Forster-Tonigold, Jihyun Kim, Joachim Bansmann, Axel Groß, R. Jürgen Behm. Interaction between Li, Ultrathin Adsorbed Ionic Liquid Films, and CoO(111) Thin Films: A Model Study of the Solid|Electrolyte Interphase Formation. Chemistry of Materials 2019, 31 (15) , 5537-5549. https://doi.org/10.1021/acs.chemmater.9b01253
- George Yan, Philippe Sautet. Surface Structure of Co3O4 (111) under Reactive Gas-Phase Environments. ACS Catalysis 2019, 9 (7) , 6380-6392. https://doi.org/10.1021/acscatal.9b01485
- Olaf Brummel, Yaroslava Lykhach, Mykhailo Vorokhta, Břetislav Šmíd, Corinna Stumm, Firas Faisal, Tomáš Skála, Nataliya Tsud, Armin Neitzel, Klára Beranová, Kevin C. Prince, Vladimír Matolín, Jörg Libuda. Redox Behavior of Pt/Co3O4(111) Model Electrocatalyst Studied by X-ray Photoelectron Spectroscopy Coupled with an Electrochemical Cell. The Journal of Physical Chemistry C 2019, 123 (14) , 8746-8758. https://doi.org/10.1021/acs.jpcc.8b08890
- George Yan, Tobias Wähler, Ralf Schuster, Matthias Schwarz, Chantal Hohner, Kristin Werner, Jörg Libuda, Philippe Sautet. Water on Oxide Surfaces: A Triaqua Surface Coordination Complex on Co3O4(111). Journal of the American Chemical Society 2019, 141 (14) , 5623-5627. https://doi.org/10.1021/jacs.9b00898
- M. Schwarz, S. Mohr, C. Hohner, K. Werner, T. Xu, J. Libuda. Water on Atomically-Defined Cobalt Oxide Surfaces Studied by Temperature-Programmed IR Reflection Absorption Spectroscopy and Steady State Isotopic Exchange. The Journal of Physical Chemistry C 2019, 123 (13) , 7673-7681. https://doi.org/10.1021/acs.jpcc.8b04611
- Michael Hollerer, David Prochinig, Peter Puschnig, Esther Carrasco, Hans-Joachim Freund, Martin Sterrer. Scanning Tunneling Microscopy of the Ordered Water Monolayer on MgO(001)/Ag(001) Ultrathin Films. The Journal of Physical Chemistry C 2019, 123 (6) , 3711-3718. https://doi.org/10.1021/acs.jpcc.8b12256
- Earl Matthew Davis, Arno Bergmann, Chao Zhan, Helmut Kuhlenbeck, Beatriz Roldan Cuenya. Comparative study of Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film electrocatalysts for the oxygen evolution reaction. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40461-0
- Ziwei Liu, Yanli Zhuang, Limin Dong, Hongxu Mu, Dan Li, Leiming Wang, Shuo Tian. Construction of CeO2/CdS Heterostructure and Study on Photocatalytic Mechanism of Rhodamine B Degradation. Journal of Inorganic and Organometallic Polymers and Materials 2023, 378 https://doi.org/10.1007/s10904-023-02815-5
- M.A. Yewale, A.A. Jadhvar, R.B. Kharade, R.A. Kadam, V. Kumar, U.T. Nakate, P.B. Shelke, D.H. Bobade, A.M. Teli, S.D. Dhas, D.K. Shin. Hydrothermally synthesized Ni3V2O8 nanoparticles with horny surfaces for HER and supercapacitor application. Materials Letters 2023, 338 , 134033. https://doi.org/10.1016/j.matlet.2023.134033
- Jinxian Feng, Lulu Qiao, Pengfei Zhou, Haoyun Bai, Chunfa Liu, Chon Chio Leong, Yu-Yun Chen, Weng Fai Ip, Jun Ni, Hui Pan. Nanocrystalline CoO x glass for highly-efficient alkaline hydrogen evolution reaction. Journal of Materials Chemistry A 2022, 11 (1) , 316-329. https://doi.org/10.1039/D2TA08073G
- Jingyi Yang, Yike Huang, Haifeng Qi, Chaobin Zeng, Qike Jiang, Yitao Cui, Yang Su, Xiaorui Du, Xiaoli Pan, Xiaoyan Liu, Weizhen Li, Botao Qiao, Aiqin Wang, Tao Zhang. Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31966-1
- Ha Huu Do, Mahider Asmare Tekalgne, Vy Anh Tran, Quyet Van Le, Jin Hyuk Cho, Sang Hyun Ahn, Soo Young Kim. MOF-derived Co/Co3O4/C hollow structural composite as an efficient electrocatalyst for hydrogen evolution reaction. Fuel 2022, 329 , 125468. https://doi.org/10.1016/j.fuel.2022.125468
- Hanna Kierzkowska-Pawlak, Ewelina Kruszczak, Jacek Tyczkowski. Catalytic activity of plasma-deposited Co3O4-based thin films for CO2 hydration – A new approach to carbon capture applications. Applied Catalysis B: Environmental 2022, 304 , 120961. https://doi.org/10.1016/j.apcatb.2021.120961
- Abraham Atour Zigla, Tim Kox, Daniel Mevoa, Hypolite Todou Assaouka, Issah Njiawouo Nsangou, Daniel Manhouli Daawe, Stephane Kenmoe, Patrick Mountapmbeme Kouotou. Magnesium-Modified Co3O4 Catalyst with Remarkable Performance for Toluene Low Temperature Deep Oxidation. Catalysts 2022, 12 (4) , 411. https://doi.org/10.3390/catal12040411
- Ziyi Feng, Xingwang Zhu, Jinman Yang, Kang Zhong, Zhifeng Jiang, Qing Yu, Yanhua Song, Yingjie Hua, Huaming Li, Hui Xu. Inherent Facet-Dominant effect for cobalt oxide nanosheets to enhance photocatalytic CO2 reduction. Applied Surface Science 2022, 578 , 151848. https://doi.org/10.1016/j.apsusc.2021.151848
- Chantal Hohner, Michal Ronovský, Olaf Brummel, Tomáš Skála, Břetislav Šmíd, Nataliya Tsud, Mykhailo Vorokhta, Kevin C. Prince, Josef Mysliveček, Viktor Johánek, Yaroslava Lykhach, Jörg Libuda. Reactive interaction of isopropanol with Co3O4(1 1 1) and Pt/Co3O4(1 1 1) model catalysts. Journal of Catalysis 2021, 398 , 171-184. https://doi.org/10.1016/j.jcat.2021.04.005
- Lichen Liu, Avelino Corma. Structural transformations of solid electrocatalysts and photocatalysts. Nature Reviews Chemistry 2021, 5 (4) , 256-276. https://doi.org/10.1038/s41570-021-00255-8
- Kseniya Prikhodko, Abulkosim Nasriddinov, Svetlana Vladimirova, Marina Rumyantseva, Alexander Gaskov. Nanocrystalline Oxides NixCo3−xO4: Sub-ppm H2S Sensing and Humidity Effect. Chemosensors 2021, 9 (2) , 34. https://doi.org/10.3390/chemosensors9020034
- Yuanyuan Cao, Tobias Wähler, Hyoungwon Park, Johannes Will, Annemarie Prihoda, Narine Moses Badlyan, Lukas Fromm, Tadahiro Yokosawa, Bingzhe Wang, Dirk M. Guldi, Andreas Görling, Janina Maultzsch, Tobias Unruh, Erdmann Spiecker, Marcus Halik, Jörg Libuda, Julien Bachmann. Area‐Selective Growth of HfS 2 Thin Films via Atomic Layer Deposition at Low Temperature. Advanced Materials Interfaces 2020, 7 (23) , 2001493. https://doi.org/10.1002/admi.202001493
- Tobias Wähler, Ralf Schuster, Jörg Libuda. Self‐Metalation of Anchored Porphyrins on Atomically Defined Cobalt Oxide Surfaces: In situ Studies by Surface Vibrational Spectroscopy. Chemistry – A European Journal 2020, 26 (54) , 12445-12453. https://doi.org/10.1002/chem.202001331
- Steven L. Suib, Jan Přech, Jiří Čejka, Yasutaka Kuwahara, Kohsuke Mori, Hiromi Yamashita. Some novel porous materials for selective catalytic oxidations. Materials Today 2020, 32 , 244-259. https://doi.org/10.1016/j.mattod.2019.06.008
- Tanja Bauer, Friederike Agel, Dominik Blaumeiser, Sven Maisel, Andreas Görling, Peter Wasserscheid, Jörg Libuda. Low‐Temperature Synthesis of Oxides in Ionic Liquids: Ozone‐Mediated Formation of Co 3 O 4 Nanoparticles Monitored by In Situ Infrared Spectroscopy. Advanced Materials Interfaces 2019, 6 (20) https://doi.org/10.1002/admi.201900890
- Chien-Hong Chen, Tzung-Wen Chiou, Han-Chun Chang, Wei-Liang Li, Chi-Yen Tung, Wen-Feng Liaw. An organic ligand promoting the electrocatalytic activity of cobalt oxide for the hydrogen evolution reaction. Sustainable Energy & Fuels 2019, 3 (9) , 2205-2210. https://doi.org/10.1039/C9SE00371A
- Tobias Wähler, Chantal Hohner, Zhaozong Sun, Ralf Schuster, Jonathan Rodríguez-Fernández, Jeppe Vang Lauritsen, Jörg Libuda. Dissociation of water on atomically-defined cobalt oxide nanoislands on Pt(111) and its effect on the adsorption of CO. Journal of Materials Research 2019, 34 (3) , 379-393. https://doi.org/10.1557/jmr.2018.388
- Martin Sterrer, Niklas Nilius, Shamil Shaikhutdinov, Markus Heyde, Thomas Schmidt, Hans-Joachim Freund. Interaction of water with oxide thin film model systems. Journal of Materials Research 2019, 34 (3) , 360-378. https://doi.org/10.1557/jmr.2018.454
- Tomi Iivonen, Mikko Kaipio, Timo Hatanpää, Kenichiro Mizohata, Kristoffer Meinander, Jyrki Räisänen, Jiyeon Kim, Mikko Ritala, Markku Leskelä. Atomic layer deposition of cobalt(II) oxide thin films from Co(BTSA)2(THF) and H2O. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2019, 37 (1) https://doi.org/10.1116/1.5066638
- Minhua Zhang, Heyuan Huang, Yingzhe Yu. Water Adsorption and Decomposition on Co(0001) Surface: A Computational Study. Catalysis Letters 2018, 148 (10) , 3126-3133. https://doi.org/10.1007/s10562-018-2508-z