ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Solid-State Photon Upconversion Materials: Structural Integrity and Triplet–Singlet Dual Energy Migration

Cite this: J. Phys. Chem. Lett. 2018, 9, 16, 4613–4624
Publication Date (Web):July 30, 2018
https://doi.org/10.1021/acs.jpclett.8b02172
Copyright © 2018 American Chemical Society

    Article Views

    2997

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Triplet–triplet annihilation-based photon upconversion (TTA-UC) is a process wherein longer-wavelength light (lower-energy photons) is converted into shorter-wavelength light (higher-energy photons) under low excitation intensity in multichromophore systems. There have been many reports on highly efficient TTA-UC in solution; however, significant challenges remain in the development of solid-state upconverters in order to explore real-world applications. In this Perspective, we discuss the advantages and challenges of different approaches for TTA-UC in solvent-free solid systems. We consider that the energy migration-based TTA-UC has the potential to achieve ideal materials with high UC efficiency at weak solar irradiance. While the UC performance of such systems is still limited at this moment, we introduce recently developed important concepts to improve it, including kinetic/thermodynamic donor dispersion in acceptor assemblies, defectless crystals, and triplet–singlet dual energy migration. Future integration of these concepts into a single material would realize the ideal TTA-UC system.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 62 publications.

    1. Risa Fukuuchi, Yuto Toyoshima, Takumi Yoshinami, Neeti Tripathi, Claire Heck, Kenji Kobayashi, Kenji Kamada. Solution to the Host–Guest Compatibility Problem of Solid Triplet–Triplet Annihilation Photon Upconversion by a Molecular-Anchor Sensitizer Approach. The Journal of Physical Chemistry C 2024, 128 (6) , 2604-2617. https://doi.org/10.1021/acs.jpcc.3c06608
    2. Anwesha Banerjee, Kheyali De, Ujjal Bhattacharjee. Aggregation-Induced Fluorescence Upconversion of Pyrene under Low Fluence: In Solutions and Polymeric Nanoparticles. The Journal of Physical Chemistry B 2024, 128 (3) , 849-856. https://doi.org/10.1021/acs.jpcb.3c06349
    3. Hongliang Chen, Indranil Roy, Michele S. Myong, James S. W. Seale, Kang Cai, Yang Jiao, Wenqi Liu, Bo Song, Long Zhang, Xingang Zhao, Yuanning Feng, Fangjun Liu, Ryan M. Young, Michael R. Wasielewski, J. Fraser Stoddart. Triplet–Triplet Annihilation Upconversion in a Porphyrinic Molecular Container. Journal of the American Chemical Society 2023, 145 (18) , 10061-10070. https://doi.org/10.1021/jacs.2c13846
    4. Tsubasa Kashino, Rena Haruki, Masanori Uji, Naoyuki Harada, Masanori Hosoyamada, Nobuhiro Yanai, Nobuo Kimizuka. Design Guidelines for Rigid Epoxy Resins with High Photon Upconversion Efficiency: Critical Role of Emitter Concentration. ACS Applied Materials & Interfaces 2022, 14 (20) , 22771-22780. https://doi.org/10.1021/acsami.1c17021
    5. Yuming Deng, Lan Jiang, Libai Huang, Tong Zhu. Energy Flow in Hybrid Organic/Inorganic Systems for Triplet–Triplet Annihilation Upconversion. ACS Energy Letters 2022, 7 (2) , 847-861. https://doi.org/10.1021/acsenergylett.1c02648
    6. Haklae Lee, Myung-Soo Lee, Masanori Uji, Naoyuki Harada, Jeong-Min Park, Jiyeon Lee, Sung Eun Seo, Chul Soon Park, Jinyeong Kim, Seon Joo Park, Suk Ho Bhang, Nobuhiro Yanai, Nobuo Kimizuka, Oh Seok Kwon, Jae-Hyuk Kim. Nanoencapsulated Phase-Change Materials: Versatile and Air-Tolerant Platforms for Triplet–Triplet Annihilation Upconversion. ACS Applied Materials & Interfaces 2022, 14 (3) , 4132-4143. https://doi.org/10.1021/acsami.1c21080
    7. Guiwen Luo, Yeqin Chen, Yi Zeng, Tianjun Yu, Jinping Chen, Rui Hu, Guoqiang Yang, Yi Li. Funneling and Enhancing Upconversion Emission by Light-Harvesting Molecular Wires. The Journal of Physical Chemistry Letters 2021, 12 (39) , 9525-9530. https://doi.org/10.1021/acs.jpclett.1c02717
    8. Drake Beery, Timothy W. Schmidt, Kenneth Hanson. Harnessing Sunlight via Molecular Photon Upconversion. ACS Applied Materials & Interfaces 2021, 13 (28) , 32601-32605. https://doi.org/10.1021/acsami.1c08159
    9. Michael J. Bennison, Abigail R. Collins, Bolong Zhang, Rachel C. Evans. Organic Polymer Hosts for Triplet–Triplet Annihilation Upconversion Systems. Macromolecules 2021, 54 (12) , 5287-5303. https://doi.org/10.1021/acs.macromol.1c00133
    10. Tsubasa Kashino, Masanori Hosoyamada, Rena Haruki, Naoyuki Harada, Nobuhiro Yanai, Nobuo Kimizuka. Bulk Transparent Photon Upconverting Films by Dispersing High-Concentration Ionic Emitters in Epoxy Resins. ACS Applied Materials & Interfaces 2021, 13 (11) , 13676-13683. https://doi.org/10.1021/acsami.0c23121
    11. Zachary A. VanOrman, Carl R. Conti, III, Geoffrey F. Strouse, Lea Nienhaus. Red-to-Blue Photon Upconversion Enabled by One-Dimensional CdTe Nanorods. Chemistry of Materials 2021, 33 (1) , 452-458. https://doi.org/10.1021/acs.chemmater.0c04468
    12. Alexander M. Oddo, Tomoyasu Mani, Challa V. Kumar. Micelles Embedded in Multiphasic Protein Hydrogel Enable Efficient and Air-Tolerant Triplet Fusion Upconversion with Heavy-Atom and Spin–Orbit Charge-Transfer Sensitizers. ACS Applied Materials & Interfaces 2020, 12 (35) , 39293-39303. https://doi.org/10.1021/acsami.0c11202
    13. Yan Zhou, Felix N. Castellano, Timothy W. Schmidt, Kenneth Hanson. On the Quantum Yield of Photon Upconversion via Triplet–Triplet Annihilation. ACS Energy Letters 2020, 5 (7) , 2322-2326. https://doi.org/10.1021/acsenergylett.0c01150
    14. Zachary A. VanOrman, Alexander S. Bieber, Sarah Wieghold, Lea Nienhaus. Green-to-Blue Triplet Fusion Upconversion Sensitized by Anisotropic CdSe Nanoplatelets. Chemistry of Materials 2020, 32 (11) , 4734-4742. https://doi.org/10.1021/acs.chemmater.0c01354
    15. Vakayil K. Praveen, Balaraman Vedhanarayanan, Arindam Mal, Rakesh K. Mishra, Ayyappanpillai Ajayaghosh. Self-Assembled Extended π-Systems for Sensing and Security Applications. Accounts of Chemical Research 2020, 53 (2) , 496-507. https://doi.org/10.1021/acs.accounts.9b00580
    16. Kevin M. Felter, Maria C. Fravventura, Emma Koster, Ruben D. Abellon, Tom J. Savenije, Ferdinand C. Grozema. Solid-State Infrared Upconversion in Perylene Diimides Followed by Direct Electron Injection. ACS Energy Letters 2020, 5 (1) , 124-129. https://doi.org/10.1021/acsenergylett.9b02361
    17. Ayako Tokunaga, Lucas Martinez Uriarte, Katsuya Mutoh, Eduard Fron, Johan Hofkens, Michel Sliwa, Jiro Abe. Photochromic Reaction by Red Light via Triplet Fusion Upconversion. Journal of the American Chemical Society 2019, 141 (44) , 17744-17753. https://doi.org/10.1021/jacs.9b08219
    18. Li Li, Yi Zeng, Jinping Chen, Tianjun Yu, Rui Hu, Guoqiang Yang, Yi Li. Thermally Activated Delayed Fluorescence via Triplet Fusion. The Journal of Physical Chemistry Letters 2019, 10 (20) , 6239-6245. https://doi.org/10.1021/acs.jpclett.9b02393
    19. Yaoyao Han, Xiao Luo, Runchen Lai, Yulu Li, Guijie Liang, Kaifeng Wu. Visible-Light-Driven Sensitization of Naphthalene Triplets Using Quantum-Confined CsPbBr3 Nanocrystals. The Journal of Physical Chemistry Letters 2019, 10 (7) , 1457-1463. https://doi.org/10.1021/acs.jpclett.9b00597
    20. Ryuma Sato, Hirotaka Kitoh-Nishioka, Kenji Kamada, Toshiko Mizokuro, Kenji Kobayashi, Yasuteru Shigeta. Synergetic Effects of Triplet–Triplet Annihilation and Directional Triplet Exciton Migration in Organic Crystals for Photon Upconversion. The Journal of Physical Chemistry Letters 2018, 9 (22) , 6638-6643. https://doi.org/10.1021/acs.jpclett.8b02887
    21. Riku Enomoto, Yoichi Murakami. Absorption bandwidth broadening of photon upconversion solid-solution organic crystals by co-dissolution of multiple sensitizers. Applied Physics Express 2023, 16 (9) , 092001. https://doi.org/10.35848/1882-0786/acf6a7
    22. Yoichi Murakami, Riku Enomoto. Stable and low-threshold photon upconversion in nondegassed water by organic crystals. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1217260
    23. Riku Enomoto, Yoichi Murakami. Solvent-free temperature gradient melt formation of efficient visible-to-UV photon upconversion organic films with subsolar threshold and over 100 h photostability in air. Journal of Materials Chemistry C 2023, 11 (5) , 1678-1683. https://doi.org/10.1039/D2TC04578H
    24. Lukas Naimovičius, Pankaj Bharmoria, Kasper Moth-Poulsen. Triplet–triplet annihilation mediated photon upconversion solar energy systems. Materials Chemistry Frontiers 2023, 154 https://doi.org/10.1039/D3QM00069A
    25. Yasunari Tamai. What's Next for Organic Solar Cells? The Frontiers and Challenges. Advanced Energy and Sustainability Research 2023, 4 (1) https://doi.org/10.1002/aesr.202200149
    26. Yuji Sakamoto, Seiichiro Izawa, Hideo Ohkita, Masahiro Hiramoto, Yasunari Tamai. Triplet sensitization via charge recombination at organic heterojunction for efficient near-infrared to visible solid-state photon upconversion. Communications Materials 2022, 3 (1) https://doi.org/10.1038/s43246-022-00300-z
    27. Yuji Sakamoto, YaSunari Tamai. Unlocking the Full Potential of Polymer-Based Solid-State Photon Upconversion. ECS Journal of Solid State Science and Technology 2022, 11 (12) , 121005. https://doi.org/10.1149/2162-8777/acab84
    28. Hyeongyu Bae, Eunsang Lee, Sungyoung Ahn, Young Gwon Jung, Sang-Youp Yim, Joo-Hyoung Lee, Kang Taek Lee. Oxygen vacancy levels mediated photophysical pathways of NIR-II responsive broadband upconversion. Applied Physics Letters 2022, 121 (18) https://doi.org/10.1063/5.0108049
    29. Pankaj Bharmoria, Fredrik Edhborg, Hakan Bildirir, Yoichi Sasaki, Shima Ghasemi, Anders Mårtensson, Nobuhiro Yanai, Nobuo Kimizuka, Bo Albinsson, Karl Börjesson, Kasper Moth-Poulsen. Recyclable optical bioplastics platform for solid state red light harvesting via triplet–triplet annihilation photon upconversion. Journal of Materials Chemistry A 2022, 10 (40) , 21279-21290. https://doi.org/10.1039/D2TA04810H
    30. Seiichiro Izawa, Masahiro Morimoto, Shigeki Naka, Masahiro Hiramoto. Spatial distribution of triplet excitons formed from charge transfer states at the donor/acceptor interface. Journal of Materials Chemistry A 2022, 10 (37) , 19935-19940. https://doi.org/10.1039/D2TA02068H
    31. Bin Yao, Hongfei Sun, Youzhou He, Song Wang, Xingyan Liu. Recent Advances in the Photoreactions Triggered by Porphyrin-Based Triplet–Triplet Annihilation Upconversion Systems: Molecular Innovations and Nanoarchitectonics. International Journal of Molecular Sciences 2022, 23 (14) , 8041. https://doi.org/10.3390/ijms23148041
    32. Guiwen Luo, Yanpeng Liu, Yi Zeng, Tianjun Yu, Jinping Chen, Rui Hu, Guoqiang Yang, Yi Li. Enhancing photon upconversion with thermally activated sensitization and singlet energy collection. Journal of Materials Chemistry C 2022, 10 (22) , 8596-8601. https://doi.org/10.1039/D2TC00766E
    33. Jiulong Zhang, Jiuyang Li, Xun Li, Shou Yuan, Yan Sun, Yunlong Zou, Yingtong Pan, Kaka Zhang. Boosting organic afterglow efficiency via triplet–triplet annihilation and thermally-activated delayed fluorescence. Journal of Materials Chemistry C 2022, 10 (12) , 4795-4804. https://doi.org/10.1039/D1TC04903H
    34. Sung Eun Seo, Hyun-Seok Choe, Haein Cho, Hyoung-il Kim, Jae-Hyuk Kim, Oh Seok Kwon. Recent advances in materials for and applications of triplet–triplet annihilation-based upconversion. Journal of Materials Chemistry C 2022, 10 (12) , 4483-4496. https://doi.org/10.1039/D1TC03551G
    35. Shanshan Liu, Heyuan Liu, Li Shen, Zuoxu Xiao, Yujia Hu, Jun Zhou, Xiangyang Wang, Zhaobin Liu, Zhi Li, Xiyou Li. Applying triplet-triplet annihilation upconversion in degradation of oxidized lignin model with good selectivity. Chemical Engineering Journal 2022, 431 , 133377. https://doi.org/10.1016/j.cej.2021.133377
    36. Nobuo KIMIZUKA. Chemistry of Photon Upconversion Based on Molecular Assembly. Oleoscience 2022, 22 (5) , 195-201. https://doi.org/10.5650/oleoscience.22.195
    37. Chia-Hsun Chen, Bo-Yen Lin, Nathan T. Tierce, Man-kit Leung, Tien-Lung Chiu, Christopher J. Bardeen, Jiun-Haw Lee. Efficient Solid-State triplet-triplet annihilation up-conversion electroluminescence device by incorporating intermolecular intersystem-crossing dark sensitizer. Chemical Engineering Journal 2022, 427 , 130889. https://doi.org/10.1016/j.cej.2021.130889
    38. Seiichiro Izawa, Masahiro Hiramoto. Efficient solid-state photon upconversion enabled by triplet formation at an organic semiconductor interface. Nature Photonics 2021, 15 (12) , 895-900. https://doi.org/10.1038/s41566-021-00904-w
    39. Riku Enomoto, Megumi Hoshi, Hironaga Oyama, Hideki Agata, Shinichi Kurokawa, Hitoshi Kuma, Hidehiro Uekusa, Yoichi Murakami. van der Waals solid solution crystals for highly efficient in-air photon upconversion under subsolar irradiance. Materials Horizons 2021, 8 (12) , 3449-3456. https://doi.org/10.1039/D1MH01542G
    40. Can Gao, Wallace W. H. Wong, Zhengsheng Qin, Shih‐Chun Lo, Ebinazar B. Namdas, Huanli Dong, Wenping Hu. Application of Triplet–Triplet Annihilation Upconversion in Organic Optoelectronic Devices: Advances and Perspectives. Advanced Materials 2021, 33 (45) https://doi.org/10.1002/adma.202100704
    41. Pankaj Bharmoria, Shota Hisamitsu, Yoichi Sasaki, Tejwant Singh Kang, Masa-aki Morikawa, Biplab Joarder, Kasper Moth-Poulsen, Hakan Bildirir, Anders Mårtensson, Nobuhiro Yanai, Nobuo Kimizuka. Photon upconverting bioplastics with high efficiency and in-air durability. Journal of Materials Chemistry C 2021, 9 (35) , 11655-11661. https://doi.org/10.1039/D1TC00287B
    42. Emily M. Rigsby, Tsumugi Miyashita, Dmitry A. Fishman, Sean T. Roberts, Ming L. Tang. CdSe nanocrystal sensitized photon upconverting film. RSC Advances 2021, 11 (49) , 31042-31046. https://doi.org/10.1039/D1RA06562A
    43. Victor Gray, Jesse R. Allardice, Zhilong Zhang, Akshay Rao. Organic-quantum dot hybrid interfaces and their role in photon fission/fusion applications. Chemical Physics Reviews 2021, 2 (3) , 031305. https://doi.org/10.1063/5.0050464
    44. Taichi Sotani, Toshiko Mizokuro, Tatsuo Yajima, Hiromitsu Sogawa, Fumio Sanda. Highly photoluminescent poly(norbornene)s carrying platinum–acetylide complex moieties in their side chains: evaluation of oxygen sensing and TTA–UC. Polymer Chemistry 2021, 12 (33) , 4829-4837. https://doi.org/10.1039/D1PY00665G
    45. Yaxiong Wei, Haitao Xian, Xialei Lv, Fan Ni, Xiaosong Cao, Chuluo Yang. Triplet–triplet annihilation upconversion with reversible emission-tunability induced by chemical-stimuli: a remote modulator for photocontrol isomerization. Materials Horizons 2021, 8 (2) , 606-611. https://doi.org/10.1039/D0MH01590C
    46. Khuzaimah Arifin, Rozan Mohamad Yunus, Lorna Jeffery Minggu, Mohammad B. Kassim. Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review. International Journal of Hydrogen Energy 2021, 46 (7) , 4998-5024. https://doi.org/10.1016/j.ijhydene.2020.11.063
    47. Deise F. Barbosa de Mattos, Ambra Dreos, Mark D. Johnstone, August Runemark, Claire Sauvée, Victor Gray, Kasper Moth-Poulsen, Henrik Sundén, Maria Abrahamsson. Covalent incorporation of diphenylanthracene in oxotriphenylhexanoate organogels as a quasi-solid photon upconversion matrix. The Journal of Chemical Physics 2020, 153 (21) https://doi.org/10.1063/5.0029307
    48. Martin H. C. van Son, Anton M. Berghuis, Fabian Eisenreich, Bas de Waal, Ghislaine Vantomme, Jaime Gómez Rivas, E. W. Meijer. Highly Ordered 2D‐Assemblies of Phase‐Segregated Block Molecules for Upconverted Linearly Polarized Emission. Advanced Materials 2020, 32 (48) https://doi.org/10.1002/adma.202004775
    49. Yuji Sakamoto, Yasunari Tamai, Hideo Ohkita. Sensitizer–host–annihilator ternary-cascaded triplet energy landscape for efficient photon upconversion in the solid state. The Journal of Chemical Physics 2020, 153 (16) https://doi.org/10.1063/5.0025438
    50. Sarah Wieghold, Alexander S. Bieber, Jens Lackner, Karin Nienhaus, G. Ulrich Nienhaus, Lea Nienhaus. One‐Step Fabrication of Perovskite‐Based Upconversion Devices. ChemPhotoChem 2020, 4 (9) , 704-712. https://doi.org/10.1002/cptc.202000068
    51. Ting‐An Lin, Collin F. Perkinson, Marc A. Baldo. Strategies for High‐Performance Solid‐State Triplet–Triplet‐Annihilation‐Based Photon Upconversion. Advanced Materials 2020, 32 (26) https://doi.org/10.1002/adma.201908175
    52. Timothy T. Koh, Tingting Huang, Joseph Schwan, Pan Xia, Sean T. Roberts, Lorenzo Mangolini, Ming L. Tang. Low temperature radical initiated hydrosilylation of silicon quantum dots. Faraday Discussions 2020, 222 , 190-200. https://doi.org/10.1039/C9FD00144A
    53. Edvinas Radiunas, Manvydas Dapkevičius, Steponas Raišys, Saulius Juršėnas, Augustina Jozeliūnaitė, Tomas Javorskis, Ugnė Šinkevičiūtė, Edvinas Orentas, Karolis Kazlauskas. Impact of t -butyl substitution in a rubrene emitter for solid state NIR-to-visible photon upconversion. Physical Chemistry Chemical Physics 2020, 22 (14) , 7392-7403. https://doi.org/10.1039/D0CP00144A
    54. Can Gao, Bolong Zhang, Christopher R. Hall, Li Li, Yeqin Chen, Yi Zeng, Trevor A. Smith, Wallace W. H. Wong. Triplet fusion upconversion using sterically protected 9,10-diphenylanthracene as the emitter. Physical Chemistry Chemical Physics 2020, 22 (11) , 6300-6307. https://doi.org/10.1039/C9CP06311K
    55. Shanshan Liu, Xiangyang Wang, Heyuan Liu, Li Shen, Dezhi Zhao, Xiyou Li. Enhancing triplet sensitization ability of donor–acceptor dyads via intramolecular triplet energy transfer. Journal of Materials Chemistry C 2020, 8 (10) , 3536-3544. https://doi.org/10.1039/C9TC06337D
    56. S P Madsen, J Christiansen, R E Christiansen, J Vester-Petersen, S H Møller, H Lakhotiya, A Nazir, E Eriksen, S Roesgaard, O Sigmund, J S Lissau, E Destouesse, M Madsen, B Julsgaard, P Balling. Improving the efficiency of upconversion by light concentration using nanoparticle design. Journal of Physics D: Applied Physics 2020, 53 (7) , 073001. https://doi.org/10.1088/1361-6463/ab5553
    57. Tadashi Mori. Synergetic Photon Upconversion Realized by a Controlled Toroidal Interaction in Hexaarylbenzene Derivatives. 2020, 287-300. https://doi.org/10.1007/978-981-15-5451-3_17
    58. Xianfeng Qiao, Dongge Ma. Nonlinear optoelectronic processes in organic optoelectronic devices: Triplet-triplet annihilation and singlet fission. Materials Science and Engineering: R: Reports 2020, 139 , 100519. https://doi.org/10.1016/j.mser.2019.100519
    59. Shota Hisamitsu, Junji Miyano, Keisuke Okumura, Joseph Ka‐Ho Hui, Nobuhiro Yanai, Nobuo Kimizuka. Visible‐to‐UV Photon Upconversion in Nanostructured Chromophoric Ionic Liquids. ChemistryOpen 2020, 9 (1) , 14-17. https://doi.org/10.1002/open.201900304
    60. Mohammad Asadi, Mehdi Ghahari, S A Hassanzadeh-Tabrizi, Amir Masoud Arabi, Rozita Nasiri. Studying the toxicity effects of coated and uncoated NaLuF 4 : Yb 3+ , Tm 3+ upconversion nanoparticles on blood factors and histopathology for Balb/C mice’s tissue. Materials Research Express 2019, 6 (12) , 125421. https://doi.org/10.1088/2053-1591/ab6199
    61. Hironori Kouno, Yoichi Sasaki, Nobuhiro Yanai, Nobuo Kimizuka. Supramolecular Crowding Can Avoid Oxygen Quenching of Photon Upconversion in Water. Chemistry – A European Journal 2019, 25 (24) , 6124-6130. https://doi.org/10.1002/chem.201806076
    62. Pankaj Bharmoria, Sónia P. M. Ventura. Optical Applications of Nanomaterials. 2019, 1-29. https://doi.org/10.1007/978-981-13-9833-9_1

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect