ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Oxide Analogs of Halide Perovskites and the New Semiconductor Ba2AgIO6

Cite this: J. Phys. Chem. Lett. 2019, 10, 8, 1722–1728
Publication Date (Web):March 28, 2019
https://doi.org/10.1021/acs.jpclett.9b00193
Copyright © 2019 American Chemical Society

    Article Views

    2377

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The past few years witnessed the rise of halide perovskites as prominent materials for a wide range of optoelectronic applications. However, oxide perovskites have a much longer history and are pivotal in many technological applications. As of today, a rational connection between these important materials is missing. Here, we explore this missing link and develop a novel concept of perovskite analogs, which led us to identify a new semiconductor, Ba2AgIO6. It exhibits an electronic band structure remarkably similar to that of our recently discovered halide double perovskite Cs2AgInCl6, but with a band gap in the visible range at 1.9 eV. We show that Ba2AgIO6 and Cs2AgInCl6 are analogs of the well-known transparent conductor BaSnO3. We synthesize Ba2AgIO6 following a low-temperature solution process, and we perform crystallographic and optical characterizations. Ba2AgIO6 is a cubic oxide double perovskite with a direct low gap, opening new opportunities in perovskite-based electronics optoelectronics and energy applications.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.9b00193.

    • Details on the computational methods, synthesis of Ba2AgIO6, and experimental methods; supporting figures showing the band structure of Ba2AgIO6 resolved by atomic orbitals, the square modulus of the valence band top wave function at the X high symmetry point of the Brillouin zone, and the XRD pattern for AgIO4 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 31 publications.

    1. Sajad Bazrafshan, Jiangang He, S. Shahab Naghavi. Charting Ba-Based Double Perovskite Oxides for Visible-Light-Driven Photocatalytic Water Splitting. The Journal of Physical Chemistry C 2023, 127 (8) , 3968-3976. https://doi.org/10.1021/acs.jpcc.2c08568
    2. Xiaowei Jiang, Beida Jiang, Yi Liu, Jinlian Lu, Chengyong Zhong. Comprehensive Screening of Halogen-Containing Oxide Double Perovskites A2BXO6 (X = Cl, Br, and I) for Photovoltaic Applications. The Journal of Physical Chemistry Letters 2022, 13 (31) , 7306-7313. https://doi.org/10.1021/acs.jpclett.2c01735
    3. Elizabeth A. Pogue, Jack Bond, Cassandra Imperato, John B. S. Abraham, Natalia Drichko, Tyrel M. McQueen. A Gold(I) Oxide Double Perovskite: Ba2AuIO6. Journal of the American Chemical Society 2021, 143 (45) , 19033-19042. https://doi.org/10.1021/jacs.1c08241
    4. Viet-Anh Ha, George Volonakis, Hyungjun Lee, Marios Zacharias, Feliciano Giustino. Quasiparticle Band Structure and Phonon-Induced Band Gap Renormalization of the Lead-Free Halide Double Perovskite Cs2InAgCl6. The Journal of Physical Chemistry C 2021, 125 (39) , 21689-21700. https://doi.org/10.1021/acs.jpcc.1c06542
    5. Joshua Leveillee, George Volonakis, Feliciano Giustino. Phonon-Limited Mobility and Electron–Phonon Coupling in Lead-Free Halide Double Perovskites. The Journal of Physical Chemistry Letters 2021, 12 (18) , 4474-4482. https://doi.org/10.1021/acs.jpclett.1c00841
    6. Hui Li, Wei Zhang. Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews 2020, 120 (18) , 9835-9950. https://doi.org/10.1021/acs.chemrev.9b00780
    7. Jiban Kangsabanik, Aftab Alam. Ab Initio Discovery of Stable Double Perovskite Oxides Na2BIO6 (B = Bi, In) with Promising Optoelectronic Properties. The Journal of Physical Chemistry Letters 2020, 11 (13) , 5148-5155. https://doi.org/10.1021/acs.jpclett.0c01256
    8. Edoardo Ruggeri, Samuel D. Stranks, Emmanouil Manidakis, Constantinos C. Stoumpos, Claudine Katan. Halide Perovskites: Low Dimensions for Devices. ACS Energy Letters 2019, 4 (12) , 2902-2904. https://doi.org/10.1021/acsenergylett.9b02263
    9. Senthilkumar C, Winfred Shashikanth F. Synthesis and Characterization of Bi2CoCrO6: A Double Perovskite Material With Promising Optical and Magnetic Properties. Brazilian Journal of Physics 2023, 53 (5) https://doi.org/10.1007/s13538-023-01347-0
    10. Saif M H Qaid, Muhammad Jamil, Junaid Munir, Hamid M Ghaithan, Abdullah Ahmed Ali Ahmed, Qurat ul Ain. A computational insight into Rb 2 ASbX 6 (A=Tl, Cu & X=I, Cl) double perovskites for energy storage and optoelectronic applications. Physica Scripta 2023, 98 (10) , 105910. https://doi.org/10.1088/1402-4896/acf3a9
    11. Agung Imaduddin, Satrio Herbirowo, Heri Nugraha, Hendrik Hendrik, Aisatun Aisatun, Anastasia Ruth Giovanni, Mukhtar Effendi, Kartika Sari, Andika Widya Pramono, Akhmad Herman Yuwono. Evolution of morphological, crystal structure, and electrical properties of Ba-Pb-Bi-O superconducting materials. South African Journal of Chemical Engineering 2023, 46 , 112-121. https://doi.org/10.1016/j.sajce.2023.07.014
    12. G. Krishnamurthy Grandhi, Lethy Krishnan Jagadamma, Vipinraj Sugathan, Basheer Al-Anesi, Debjit Manna, Paola Vivo. Lead-free perovskite-inspired semiconductors for indoor light-harvesting – the present and the future. Chemical Communications 2023, 59 (56) , 8616-8625. https://doi.org/10.1039/D3CC01881D
    13. Hansraj Karwasara, Karina Khan, Nirajan Pant, Rabin Acharya, Rajendra Adhikari, Shaimaa A M Abdelmohsen, Ashraf M M Abdelbacki, Amit Soni, Jagrati Sahariya. A first principle investigations for electronic, optical and mechanical response of novel Ba 2 AgIO 6 perovskite. Physica Scripta 2023, 98 (7) , 075803. https://doi.org/10.1088/1402-4896/acdeb5
    14. Papiya Saha, R. Nithya, Sujoy Sen. Lead-Free Stable Wide-Band-Gap Double Perovskite with Absorption in the Visible Region. Journal of Electronic Materials 2023, 52 (5) , 2971-2976. https://doi.org/10.1007/s11664-023-10262-8
    15. S. Mishra, R. N. P. Choudhary, S. K. Parida. Microstructure, dielectric relaxation, optical, and ferroelectric studies of a lead-free double perovskite: BaLiFeMoO6. Journal of the Korean Ceramic Society 2023, 60 (2) , 310-330. https://doi.org/10.1007/s43207-022-00264-3
    16. Muhammad Zafarullah Kazim, Muhammad Yaseen, Abdul Ghaffar, Ijaz Ahmad Bhatti. Physical Properties of Ba2XIO6 (X = Ag, Na) Double Perovskite Oxides for Energy Harvesting Devices. Arabian Journal for Science and Engineering 2023, 48 (1) , 779-787. https://doi.org/10.1007/s13369-022-06985-1
    17. S.L. Choon, H.N. Lim, I. Ibrahim, Z. Zainal, K.B. Tan, C.Y. Foo, C.H. Ng. New potential materials in advancement of photovoltaic and optoelectronic applications: Metal halide perovskite nanorods. Renewable and Sustainable Energy Reviews 2023, 171 , 113037. https://doi.org/10.1016/j.rser.2022.113037
    18. Seong Hoon Yu, Syed Zahid Hassan, Chan So, Mingyun Kang, Dae Sung Chung. Molecular‐Switch‐Embedded Solution‐Processed Semiconductors. Advanced Materials 2023, 35 (4) https://doi.org/10.1002/adma.202203401
    19. Nasarullah, Muhammad Zakyas Choudary, Shatha A Aldaghfag, Misbah, Muhammad Yaseen, Mubashar Nazar, R Neffati. Study of elastic, structural, thermoelectric and optoelectronics characteristics of Na 2 YCuX 6 (X = Br, Cl) halide double perovskites. Physica Scripta 2022, 97 (10) , 105705. https://doi.org/10.1088/1402-4896/ac8c6e
    20. Minu Kim, Graham M. McNally, Hun-Ho Kim, Mohamed Oudah, Alexandra S. Gibbs, Pascal Manuel, Robert J. Green, Ronny Sutarto, Tomohiro Takayama, Alexander Yaresko, Ulrich Wedig, Masahiko Isobe, Reinhard K. Kremer, D. A. Bonn, Bernhard Keimer, Hidenori Takagi. Superconductivity in (Ba,K)SbO3. Nature Materials 2022, 21 (6) , 627-633. https://doi.org/10.1038/s41563-022-01203-7
    21. Pingping Jiang, Debdipto Acharya, George Volonakis, Marios Zacharias, Mikaël Kepenekian, Laurent Pedesseau, Claudine Katan, Jacky Even. Pb-free halide perovskites for solar cells, light-emitting diodes, and photocatalysts. APL Materials 2022, 10 (6) https://doi.org/10.1063/5.0095515
    22. Asima Aziz, Shatha A. Aldaghfag, Muhammad Zahid, Javed Iqbal, Misbah, Muhammad Yaseen, H.H. Somaily. Theoretical investigation of X2NaIO6 (X= Pb,Sr) double perovskites for thermoelectric and optoelectronic applications. Physica B: Condensed Matter 2022, 630 , 413694. https://doi.org/10.1016/j.physb.2022.413694
    23. Hansraj Karwasara, K.C. Bhamu, Sung Gu Kang, A.K. Kushwaha, D.P. Rai, Subrahmanyam Sappati, J. Sahariya, Amit Soni. Ab-initio investigations for structural, mechanical, optoelectronic, and thermoelectric properties of Ba2SbXO6 (X Nb, Ta) compounds. Journal of Alloys and Compounds 2022, 893 , 162332. https://doi.org/10.1016/j.jallcom.2021.162332
    24. L. Boudad, M. Taibi, A. Belayachi, M. Abd-lefdil. Structural, morphological, dielectric and optical properties of double perovskites RBaFeTiO 6 (R = La, Eu). RSC Advances 2021, 11 (63) , 40205-40215. https://doi.org/10.1039/D1RA06793A
    25. Longbo Yang, Jincong Pang, Zhifang Tan, Qi Xiao, Tong Jin, Jiajun Luo, Guangda Niu, Jiang Tang. Oxide perovskite Ba2AgIO6 wafers for X-ray detection. Frontiers of Optoelectronics 2021, 14 (4) , 473-481. https://doi.org/10.1007/s12200-021-1236-y
    26. B. Cucco, G. Bouder, L. Pedesseau, C. Katan, J. Even, M. Kepenekian, G. Volonakis. Electronic structure and stability of Cs2TiX6 and Cs2ZrX6 (X = Br, I) vacancy ordered double perovskites. Applied Physics Letters 2021, 119 (18) https://doi.org/10.1063/5.0070104
    27. Xiaowei Jiang, Wan-Jian Yin. High-throughput computational screening of oxide double perovskites for optoelectronic and photocatalysis applications. Journal of Energy Chemistry 2021, 57 , 351-358. https://doi.org/10.1016/j.jechem.2020.08.046
    28. Kazushige Ueda, Takuma Yoshino, Yuhei Shimizu, Tetsuo Honma, Florian Massuyeau, Stéphane Jobic. Site-Dependent Eu3+ Photoluminescence in Double Perovskite-Type Alkaline Earth Lanthanum Tantalates. Journal of Luminescence 2021, 229 , 117683. https://doi.org/10.1016/j.jlumin.2020.117683
    29. Kumari Naveen, Tanmay Rom, Shams Sohel Islam, Manfred Reehuis, Peter Adler, Claudia Felser, Andreas Hoser, Ramesh Chandra Nath, Ashok Kumar Yadav, Shambhu Nath Jha, Dibyendu Bhattacharyya, Marcus Schmidt, Avijit Kumar Paul. Evolution of transition metal charge states in correlation with the structural and magnetic properties in disordered double perovskites Ca 2− x La x FeRuO 6 (0.5 ≤ x ≤ 2). Physical Chemistry Chemical Physics 2021, 6 https://doi.org/10.1039/D1CP02318G
    30. Nadja Glück, Thomas Bein. Prospects of lead-free perovskite-inspired materials for photovoltaic applications. Energy & Environmental Science 2020, 13 (12) , 4691-4716. https://doi.org/10.1039/D0EE01651A
    31. M. Houari, B. Bouadjemi, M. Matougui, S. Haid, T. Lantri, Z. Aziz, S. Bentata, B. Bouhafs. Optoelectronic properties of germanium iodide perovskites AGeI3 (A = K, Rb and Cs): first principles investigations. Optical and Quantum Electronics 2019, 51 (7) https://doi.org/10.1007/s11082-019-1949-y

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect