Utilization of Temperature-Sweeping Capacitive Techniques to Evaluate Band Gap Defect Densities in Photovoltaic Perovskites
- Osbel Almora*Osbel Almora*E-mail: [email protected] (O.A.).Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, SpainInstitute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, GermanyErlangen Graduate School in Advanced Optical Technologies (SAOT), FAU, 91052 Erlangen, GermanyMore by Osbel Almora
- ,
- Marisé García-BatlleMarisé García-BatlleInstitute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, SpainMore by Marisé García-Batlle
- , and
- Germà Garcia-Belmonte*Germà Garcia-Belmonte*E-mail: [email protected] (G.G.-B.).Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, SpainMore by Germà Garcia-Belmonte
Abstract

Capacitive techniques, routinely used for solar cell parameter extraction, probe the voltage-modulation of the depletion layer capacitance isothermally as well as under varying temperature. In addition, defect states within the semiconductor band gap respond to such stimuli. Although extensively used, capacitive methods have found difficulties when applied to elucidating bulk defect bands in photovoltaic perovskites. This is because perovskite solar cells (PSCs) actually exhibit some intriguing capacitive features hardly connected to electronic defect dynamics. The commonly reported excess capacitance observed at low frequencies is originated by outer interface mechanisms and has a direct repercussion on the evaluation of band gap defect levels. Starting by updating previous observations on Mott–Schottky analysis in PSCs, it is discussed how the thermal admittance spectroscopy and the deep level transient spectroscopy characterization techniques present spectra with overlapping or even “fake” peaks caused by the mobile ion-related, interfacial excess capacitance. These capacitive techniques, when used uncritically, may be misleading and produce wrong outcomes.
Cited By
This article is cited by 40 publications.
- Zihao Zhai, Jieyi Chen, Qi Liu, Shuangshuang Jiang, Yufang Li. Defect Regulation of Efficient Dion–Jacobson Quasi-2D Perovskite Solar Cells via a Polyaspartic Acid Interlayer. ACS Applied Materials & Interfaces 2023, 15 (31) , 38068-38079. https://doi.org/10.1021/acsami.3c07093
- Kaicheng Zhang, Andreas Späth, Osbel Almora, Vincent M. Le Corre, Jonas Wortmann, Jiyun Zhang, Zhiqiang Xie, Anastasia Barabash, Maria S. Hammer, Thomas Heumüller, Jie Min, Rainer Fink, Larry Lüer, Ning Li, Christoph J. Brabec. Suppressing Nonradiative Recombination in Lead–Tin Perovskite Solar Cells through Bulk and Surface Passivation to Reduce Open Circuit Voltage Losses. ACS Energy Letters 2022, 7 (10) , 3235-3243. https://doi.org/10.1021/acsenergylett.2c01605
- Osbel Almora, Gebhard J. Matt, Albert These, Andrii Kanak, Ievgen Levchuk, Shreetu Shrestha, Andres Osvet, Christoph J. Brabec, Germà Garcia-Belmonte. Surface versus Bulk Currents and Ionic Space-Charge Effects in CsPbBr3 Single Crystals. The Journal of Physical Chemistry Letters 2022, 13 (17) , 3824-3830. https://doi.org/10.1021/acs.jpclett.2c00804
- Moritz H. Futscher, Carsten Deibel. Defect Spectroscopy in Halide Perovskites Is Dominated by Ionic Rather than Electronic Defects. ACS Energy Letters 2022, 7 (1) , 140-144. https://doi.org/10.1021/acsenergylett.1c02076
- Antonio Guerrero, Juan Bisquert, Germà Garcia-Belmonte. Impedance Spectroscopy of Metal Halide Perovskite Solar Cells from the Perspective of Equivalent Circuits. Chemical Reviews 2021, 121 (23) , 14430-14484. https://doi.org/10.1021/acs.chemrev.1c00214
- Xue Zheng, Xiao Wang, Weimin Li, Zhenghao Liu, Wenjie Ming, Huan Wang, Han Wang, Da Li, Bo Liu, Chunlei Yang. Correlations of Ionic Migration and Deep-Level Traps Leads to Surface Defect Formation in Perovskite Solar Cells. The Journal of Physical Chemistry C 2021, 125 (35) , 19551-19559. https://doi.org/10.1021/acs.jpcc.1c05519
- Jialin Dang, Zhi Yang, Wei Guo, Jinjuan Dou, Hui Wang, Minqiang Wang. Revealing Energy Loss and Nonradiative Recombination Pathway in Mixed-Ion Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2020, 11 (19) , 8100-8107. https://doi.org/10.1021/acs.jpclett.0c02232
- Abul Kalam, Rashmi Runjhun, Apurba Mahapatra, Mohammad Mahdi Tavakoli, Suverna Trivedi, Hadi Tavakoli Dastjerdi, Pawan Kumar, Janusz Lewiński, Manoj Pandey, Daniel Prochowicz, Pankaj Yadav. Interpretation of Resistance, Capacitance, Defect Density, and Activation Energy Levels in Single-Crystalline MAPbI3. The Journal of Physical Chemistry C 2020, 124 (6) , 3496-3502. https://doi.org/10.1021/acs.jpcc.9b11343
- Alexandria R. C. Bredar, Amanda L. Chown, Andricus R. Burton, Byron H. Farnum. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials 2020, 3 (1) , 66-98. https://doi.org/10.1021/acsaem.9b01965
- Junwei Shi, Ben Cohen-Kleinstein, Xuliang Zhang, Chenyu Zhao, Yong Zhang, Xufeng Ling, Junjun Guo, Doo-Hyun Ko, Baomin Xu, Jianyu Yuan, Wanli Ma. In Situ Iodide Passivation Toward Efficient CsPbI3 Perovskite Quantum Dot Solar Cells. Nano-Micro Letters 2023, 15 (1) https://doi.org/10.1007/s40820-023-01134-1
- Donguk Kim, Tae Jun Yang, Woo Sik Choi, Hee Jun Lee, Jun Tae Jang, Eunryeong Hong, Woo Young Yang, Minwoo Choi, Ki Yeon Yang, Chang Seung Lee, Jiyong Woo, Dae Hwan Kim. Understanding ovonic threshold switching of GeSe chalcogenide materials using electrical methodologies for extracting density of states. Applied Physics Letters 2023, 123 (7) https://doi.org/10.1063/5.0153403
- Elnaz Ghahremanirad, Osbel Almora, Sunil Suresh, Amandine A. Drew, Towhid H. Chowdhury, Alexander R. Uhl. Beyond Protocols: Understanding the Electrical Behavior of Perovskite Solar Cells by Impedance Spectroscopy. Advanced Energy Materials 2023, 1 https://doi.org/10.1002/aenm.202204370
- Yinyi Ma, Chengsong Zeng, Peng Zeng, Yuchao Hu, Faming Li, Zhonghao Zheng, Minchao Qin, Xinhui Lu, Mingzhen Liu. How Do Surface Polar Molecules Contribute to High Open‐Circuit Voltage in Perovskite Solar Cells?. Advanced Science 2023, 10 (17) https://doi.org/10.1002/advs.202205072
- Xiangyang Liu, Xinsheng Liu, Zhaohua Ma, Siyang Liang, Chaoran Qin, Guolin Zhi, Weikun Li. Enhanced carrier management via optimized SnO2 preparation and film coverage for improved device performance. Applied Physics Letters 2023, 122 (4) https://doi.org/10.1063/5.0135197
- Jiashun FAN, Donglin XIA, Baoshun LIU. Temperature Dependent Transient Photoconductive Response of CsPbBr 3 NCs. Journal of Inorganic Materials 2023, 38 (8) , 893. https://doi.org/10.15541/jim20230008
- Bas T. van Gorkom, Tom P. A. van der Pol, Kunal Datta, Martijn M. Wienk, René A. J. Janssen. Revealing defective interfaces in perovskite solar cells from highly sensitive sub-bandgap photocurrent spectroscopy using optical cavities. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-021-27560-6
- Raneen Zahran, Zafer Hawash. Fullerene‐Based Inverted Perovskite Solar Cell: A Key to Achieve Promising, Stable, and Efficient Photovoltaics. Advanced Materials Interfaces 2022, 9 (35) https://doi.org/10.1002/admi.202201438
- Mohd Taukeer Khan, Firoz Khan, Amir Al‐Ahmed, Shahzada Ahmad, Fahad Al‐Sulaiman. Evaluating the Capacitive Response in Metal Halide Perovskite Solar Cells. The Chemical Record 2022, 22 (7) https://doi.org/10.1002/tcr.202100330
- Ganga R. Neupane, Matthew Bamidele, Vishal Yeddu, Do Young Kim, Parameswar Hari. Negative capacitance and hysteresis in encapsulated MAPbI3 and lead–tin (Pb–Sn) perovskite solar cells. Journal of Materials Research 2022, 37 (7) , 1357-1372. https://doi.org/10.1557/s43578-022-00540-2
- Sandheep Ravishankar, Zhifa Liu, Uwe Rau, Thomas Kirchartz. Multilayer Capacitances: How Selective Contacts Affect Capacitance Measurements of Perovskite Solar Cells. PRX Energy 2022, 1 (1) https://doi.org/10.1103/PRXEnergy.1.013003
- Xue Zheng, Wenjie Ming, Pingping Liu, Jie Zhang, Hongfei Zhou, Ming Chen, Weimin Li, Boyuan Huang, Huan Wang, Chunlei Yang. Ionic migration induced loss analysis of perovskite solar cells: a poling study. Physical Chemistry Chemical Physics 2022, 24 (13) , 7805-7814. https://doi.org/10.1039/D1CP05450C
- Juan Bisquert, Germà Garcia‐Belmonte, Antonio Guerrero. Ionic/Electronic Conduction and Capacitance of Halide Perovskite Materials. 2022, 173-213. https://doi.org/10.1002/9783527826391.ch6
- Elizabeth von Hauff, Dino Klotz. Impedance spectroscopy for perovskite solar cells: characterisation, analysis, and diagnosis. Journal of Materials Chemistry C 2022, 10 (2) , 742-761. https://doi.org/10.1039/D1TC04727B
- Mohd T. Khan, Abdullah Almohammedi, Samrana Kazim, Shahzada Ahmad. Charge Carrier Dynamics in Perovskite Solar Cells. 2021, 389-429. https://doi.org/10.1002/9783527825790.ch12
- Mohd Taukeer Khan, Naveen Harindu Hemasiri, Samrana Kazim, Shahzada Ahmad. Decoding the charge carrier dynamics in triple cation-based perovskite solar cells. Sustainable Energy & Fuels 2021, 5 (24) , 6352-6360. https://doi.org/10.1039/D1SE01398J
- Chang Liu, Lei Huang, Xianyong Zhou, Xingzhu Wang, Jianxi Yao, Zhike Liu, Shengzhong Frank Liu, Wanli Ma, Baomin Xu. An in-situ defect passivation through a green anti-solvent approach for high-efficiency and stable perovskite solar cells. Science Bulletin 2021, 66 (14) , 1419-1428. https://doi.org/10.1016/j.scib.2021.03.018
- Vincenzo Pecunia, Jing Zhao, Chaewon Kim, Blair R. Tuttle, Jianjun Mei, Fengzhu Li, Yueheng Peng, Tahmida N. Huq, Robert L. Z. Hoye, Nicola D. Kelly, Siân E. Dutton, Kai Xia, Judith L. MacManus‐Driscoll, Henning Sirringhaus. Assessing the Impact of Defects on Lead‐Free Perovskite‐Inspired Photovoltaics via Photoinduced Current Transient Spectroscopy. Advanced Energy Materials 2021, 11 (22) , 2003968. https://doi.org/10.1002/aenm.202003968
- Osbel Almora, Julius Wiegand, Pilar López-Varo, Gebhard J. Matt, Christoph J. Brabec. Degradation through Directional Self‐Doping and Homogeneous Density of Recombination Centers Hindered by 1,8‐Diiodooctane Additive in Non‐Fullerene Organic Solar Cells. Solar RRL 2021, 5 (4) https://doi.org/10.1002/solr.202100024
- Moritz H. Futscher, Jovana V. Milić. Mixed Conductivity of Hybrid Halide Perovskites: Emerging Opportunities and Challenges. Frontiers in Energy Research 2021, 9 https://doi.org/10.3389/fenrg.2021.629074
- A. S. Shikoh, A. Y. Polyakov, P. Gostishchev, D. S. Saranin, I. V. Shchemerov, S. I. Didenko, A. Di Carlo. On the relation between mobile ion kinetics, device design, and doping in double-cation perovskite solar cells. Applied Physics Letters 2021, 118 (9) https://doi.org/10.1063/5.0037776
- Vincenzo Pecunia, Yue Yuan, Jing Zhao, Kai Xia, Yan Wang, Steffen Duhm, Luis Portilla, Fengzhu Li. Perovskite-Inspired Lead-Free Ag2BiI5 for Self-Powered NIR-Blind Visible Light Photodetection. Nano-Micro Letters 2020, 12 (1) https://doi.org/10.1007/s40820-020-0371-0
- Osbel Almora, Yicheng Zhao, Xiaoyan Du, Thomas Heumueller, Gebhard J. Matt, Germà Garcia-Belmonte, Christoph J. Brabec. Light intensity modulated impedance spectroscopy (LIMIS) in all-solid-state solar cells at open-circuit. Nano Energy 2020, 75 , 104982. https://doi.org/10.1016/j.nanoen.2020.104982
- Osbel Almora, Alfredo González-Lezcano, Antonio Guerrero, Christoph J. Brabec, Germà Garcia-Belmonte. Ion-mediated hopping electrode polarization model for impedance spectra of CH3NH3PbI3. Journal of Applied Physics 2020, 128 (7) https://doi.org/10.1063/5.0020554
- Kenjiro Miyano, Masatoshi Yanagida, Yasuhiro Shirai. Impedance Spectroscopy Revisited. Advanced Energy Materials 2020, 10 (26) , 1903097. https://doi.org/10.1002/aenm.201903097
- Chris Dreessen, Daniel Pérez-del-Rey, Pablo P. Boix, Henk J. Bolink. Radiative and non-radiative losses by voltage-dependent in-situ photoluminescence in perovskite solar cell current-voltage curves. Journal of Luminescence 2020, 222 , 117106. https://doi.org/10.1016/j.jlumin.2020.117106
- Xiaoyan Du, Thomas Heumueller, Wolfgang Gruber, Osbel Almora, Andrej Classen, Jianfei Qu, Feng He, Tobias Unruh, Ning Li, Christoph J. Brabec. Unraveling the Microstructure‐Related Device Stability for Polymer Solar Cells Based on Nonfullerene Small‐Molecular Acceptors. Advanced Materials 2020, 32 (16) https://doi.org/10.1002/adma.201908305
- Rasha A. Awni, Zhaoning Song, Cong Chen, Chongwen Li, Changlei Wang, Mohammed A. Razooqi, Lei Chen, Xiaoming Wang, Randy J. Ellingson, Jian V. Li, Yanfa Yan. Influence of Charge Transport Layers on Capacitance Measured in Halide Perovskite Solar Cells. Joule 2020, 4 (3) , 644-657. https://doi.org/10.1016/j.joule.2020.01.012
- Moritz H. Futscher, Mahesh K. Gangishetty, Daniel N. Congreve, Bruno Ehrler. Quantifying mobile ions and electronic defects in perovskite-based devices with temperature-dependent capacitance measurements: Frequency vs time domain. The Journal of Chemical Physics 2020, 152 (4) , 044202. https://doi.org/10.1063/1.5132754
- Osbel Almora, Daniel Miravet, Gebhard J. Matt, Germà Garcia-Belmonte, Christoph J. Brabec. Analytical model for light modulating impedance spectroscopy (LIMIS) in all-solid-state p-n junction solar cells at open-circuit. Applied Physics Letters 2020, 116 (1) https://doi.org/10.1063/1.5139571
- Osbel Almora, Germà Garcia-Belmonte. Light capacitances in silicon and perovskite solar cells. Solar Energy 2019, 189 , 103-110. https://doi.org/10.1016/j.solener.2019.07.048