ACS Publications. Most Trusted. Most Cited. Most Read
Charge Separation, Band-Bending, and Recombination in WO3 Photoanodes
My Activity

Figure 1Loading Img
    Letter

    Charge Separation, Band-Bending, and Recombination in WO3 Photoanodes
    Click to copy article linkArticle link copied!

    • Sacha Corby
      Sacha Corby
      Department of Chemistry and Centre for Plastic Electronics, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
      More by Sacha Corby
    • Ernest Pastor
      Ernest Pastor
      Department of Chemistry and Centre for Plastic Electronics, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
    • Yifan Dong
      Yifan Dong
      Department of Chemistry and Centre for Plastic Electronics, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
      More by Yifan Dong
    • Xijia Zheng
      Xijia Zheng
      Department of Chemistry and Centre for Plastic Electronics, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
      More by Xijia Zheng
    • Laia Francàs
      Laia Francàs
      Department of Chemistry and Centre for Plastic Electronics, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
    • Michael Sachs
      Michael Sachs
      Department of Chemistry and Centre for Plastic Electronics, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
    • Shababa Selim
      Shababa Selim
      Department of Chemistry and Centre for Plastic Electronics, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
    • Andreas Kafizas
      Andreas Kafizas
      Department of Chemistry and Centre for Plastic Electronics, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
      Grantham Institute for Climate Change, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
    • Artem A. Bakulin
      Artem A. Bakulin
      Department of Chemistry and Centre for Plastic Electronics, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
    • James R. Durrant*
      James R. Durrant
      Department of Chemistry and Centre for Plastic Electronics, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (2)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2019, 10, 18, 5395–5401
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.9b01935
    Published August 16, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In metal oxide-based photoelectrochemical devices, the spatial separation of photogenerated electrons and holes is typically attributed to band-bending at the oxide/electrolyte interface. However, direct evidence of such band-bending impacting upon charge carrier lifetimes has been very limited to date. Herein we use ultrafast spectroscopy to track the rapid relaxation of holes in the space-charge layer and their recombination with trapped electrons in WO3 photoanodes. We observe that applied bias can significantly increase carrier lifetimes on all time scales from picoseconds to seconds and attribute this to enhanced band-bending correlated with changes in oxygen vacancy state occupancy. We show that analogous enhancements in carrier lifetimes can be obtained by changes in electrolyte composition, even in the absence of applied bias, highlighting routes to improve photoconversion yields/performance, through changes in band-bending. This study thus demonstrates the direct connection between carrier lifetime enhancement, increased band-bending, and oxygen vacancy defect state occupancy.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.9b01935.

    • Sample preparation, details of the experimental setup, and additional data on bias dependence of photogenerated electron kinetics (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 54 publications.

    1. Jun Ma, Keke Mao, Jiayi Li, Guangyao Zhai, Di Wu, Dong Liu, Ran Long, Yujie Xiong. Modulating Chloride Adsorption for Efficient Chloride-Mediated Methane Conversion over Tungsten Oxide Photoanode. ACS Catalysis 2025, 15 (8) , 6058-6066. https://doi.org/10.1021/acscatal.4c07046
    2. Kehinde D. Jayeola, Dimpo S. Sipuka, Tsholofelo I. Sebokolodi, Jonathan O. Babalola, Minghua Zhou, Frank Marken, Omotayo A. Arotiba. Interfacial Engineering of a Z-Scheme Bi2O2S/NiTiO3 Heterojunction Photoanode for the Degradation of Sulfamethoxazole in Water. ACS Applied Materials & Interfaces 2025, 17 (1) , 1385-1398. https://doi.org/10.1021/acsami.4c20102
    3. Svenja Speldrich, Michael Wark, Gunther Wittstock. Metal Oxide Protection Layers for Enhanced Stability and Activity of WO3 Photoanodes in Alkaline Media. ACS Applied Energy Materials 2023, 6 (18) , 9602-9614. https://doi.org/10.1021/acsaem.3c01642
    4. Cheng Cheng, Qiu Fang, S. Fernandez-Alberti, Run Long. Depleted Oxygen Defect State Enhancing Tungsten Trioxide Photocatalysis: A Quantum Dynamics Perspective. The Journal of Physical Chemistry Letters 2022, 13 (24) , 5571-5580. https://doi.org/10.1021/acs.jpclett.2c01541
    5. Kosaku Kato, Yohei Uemura, Kiyotaka Asakura, Akira Yamakata. Role of Oxygen Vacancy in the Photocarrier Dynamics of WO3 Photocatalysts: The Case of Recombination Centers. The Journal of Physical Chemistry C 2022, 126 (22) , 9257-9263. https://doi.org/10.1021/acs.jpcc.2c01662
    6. Tong Zhang, Zhi-Chao Huang-Fu, Yuqin Qian, Hong Gao, Jesse B. Brown, Yi Rao. Photoinduced Surface Electric Fields and Surface Population Dynamics of GaP(100) Photoelectrodes. The Journal of Physical Chemistry C 2022, 126 (14) , 6531-6541. https://doi.org/10.1021/acs.jpcc.2c01806
    7. Xin-Ping Zhai, Lin-Feng Gao, Hong Zhang, Yong Peng, Xiao-Dong Zhang, Qiang Wang, Hao-Li Zhang. Defect Engineering of Ultrathin WO3 Nanosheets: Implications for Nonlinear Optoelectronic Devices. ACS Applied Nano Materials 2022, 5 (1) , 1169-1177. https://doi.org/10.1021/acsanm.1c03791
    8. Tae Hwa Jeon, Seungmok Han, Bupmo Kim, Cheolwoo Park, Wooyul Kim, Hyunwoong Park, Wonyong Choi. High-Valent Iron Redox-Mediated Photoelectrochemical Water Oxidation. ACS Energy Letters 2022, 7 (1) , 59-66. https://doi.org/10.1021/acsenergylett.1c02430
    9. Lorean Madriz, Mariano Parra, Fernando S. García Einschlag, Oswaldo Núñez, Franco M. Cabrerizo, Ronald Vargas. Photocatalytic Oxidation of Urea on Surface-Modified Bi2WO6 with trans-4-Stilbenecarboxaldehyde. The Journal of Physical Chemistry C 2021, 125 (23) , 12682-12689. https://doi.org/10.1021/acs.jpcc.1c03063
    10. Asif Iqbal, Andreas Kafizas, Carlos Sotelo-Vazquez, Rachel Wilson, Min Ling, Alaric Taylor, Chris Blackman, Kirk Bevan, Ivan Parkin, Raul Quesada-Cabrera. Charge Transport Phenomena in Heterojunction Photocatalysts: The WO3/TiO2 System as an Archetypical Model. ACS Applied Materials & Interfaces 2021, 13 (8) , 9781-9793. https://doi.org/10.1021/acsami.0c19692
    11. Can Lu, Zili Ma, Jakob Jäger, Tetyana M. Budnyak, Richard Dronskowski, Anna Rokicińska, Piotr Kuśtrowski, Frank Pammer, Adam Slabon. NiO/Poly(4-alkylthiazole) Hybrid Interface for Promoting Spatial Charge Separation in Photoelectrochemical Water Reduction. ACS Applied Materials & Interfaces 2020, 12 (26) , 29173-29180. https://doi.org/10.1021/acsami.0c03975
    12. Shababa Selim, Ernest Pastor, Miguel García-Tecedor, Madeleine R. Morris, Laia Francàs, Michael Sachs, Benjamin Moss, Sacha Corby, Camilo A. Mesa, Sixto Gimenez, Andreas Kafizas, Artem A. Bakulin, James R. Durrant. Impact of Oxygen Vacancy Occupancy on Charge Carrier Dynamics in BiVO4 Photoanodes. Journal of the American Chemical Society 2019, 141 (47) , 18791-18798. https://doi.org/10.1021/jacs.9b09056
    13. Shima Kashani, Hamid Reza Madaah Hosseini. Aluminum titanate-based nanocomposite layers in photoelectrochemical water splitting under visible light. Materials Chemistry and Physics 2025, 339 , 130652. https://doi.org/10.1016/j.matchemphys.2025.130652
    14. Aswathi K. Sivan, Alejandro Galán‐González. Exploring Ultrafast Carrier Dynamics in Photoelectrochemical Water Splitting Using Transient Absorption Spectroscopy. Particle & Particle Systems Characterization 2025, 42 (4) https://doi.org/10.1002/ppsc.202400164
    15. Kai‐An Tsai, Jui‐Cheng Chang, Ying‐Chih Pu. Charge Carrier Dynamics at Heterojunction of Semiconductor Nanoheterostructures for Photocatalytic Solar Fuel Generation. Advanced Energy and Sustainability Research 2025, 15 https://doi.org/10.1002/aesr.202400329
    16. Fizza Siddique, Amara Nasir, Karolina Syrek, Grzegorz D. Sulka, Sergio Gonzalez-Cortes, Chuanbo Li, Xiaoming Zhang, Ewa Wierzbicka. Novel synthesis of reduced PdO-WO3 hybrids for enhanced photoelectrochemical water splitting. Journal of Alloys and Compounds 2025, 1010 , 177615. https://doi.org/10.1016/j.jallcom.2024.177615
    17. Conor Reddick, Carlos Sotelo-Vazquez, Brian Tam, Andreas Kafizas, Ken Reynolds, Simon Stanley, George Creasey, Anna Hankin, Cristina Pablos, Javier Marugán. Photoelectrochemical disinfection efficiency of WO3-based photoanodes: Development of multifunctional photoelectrocatalytic materials. Catalysis Today 2024, 437 , 114783. https://doi.org/10.1016/j.cattod.2024.114783
    18. Rana Basit Ali, Young Jae Lee, Qadeer Akbar Sial, Le Thai Duy, Hyungtak Seo. A new insight into vacancy modulation in lead-doped tungsten oxide nonarchitect for photoelectrochemical water splitting: An experimental and density functional theory approach. Journal of Colloid and Interface Science 2024, 665 , 19-31. https://doi.org/10.1016/j.jcis.2024.03.069
    19. Chaoqian Han, Lin Zhang, Yuanze Meng, Liying Wang, Xijia Yang, Xuesong Li, Yang Gao, Wei Lü. Solid–liquid heterojunction UV photoelectrochemical photodetector based on WO3 nanosheets and acidic electrolyte. Journal of Applied Physics 2024, 135 (21) https://doi.org/10.1063/5.0206333
    20. Kwanruthai Butsriruk, Chaval Sriwong, Chesta Ruttanapan. Effecting on electrical performance of Methylammonium Lead Chloride Iodide perovskite films composited by reduced graphene oxide for controlling double Schottky barrier. Materials Science and Engineering: B 2024, 304 , 117343. https://doi.org/10.1016/j.mseb.2024.117343
    21. Yanhong Lyu, Jianyun Zheng, Shuangyin Wang. Photoelectrochemical Lithium Extraction from Waste Batteries. ChemSusChem 2024, 2 https://doi.org/10.1002/cssc.202301526
    22. Ernest Pastor, Zan Lian, Lu Xia, David Ecija, José Ramón Galán-Mascarós, Sara Barja, Sixto Giménez, Jordi Arbiol, Núria López, F. Pelayo García de Arquer. Complementary probes for the electrochemical interface. Nature Reviews Chemistry 2024, 8 (3) , 159-178. https://doi.org/10.1038/s41570-024-00575-5
    23. Elif Öykü Alagöz, Hadi Jahangiri, Sarp Kaya. Profound influence of surface trap states on the utilization of charge carriers in CdS photoanodes. Materials Advances 2024, 5 (4) , 1513-1522. https://doi.org/10.1039/D3MA00847A
    24. James Johnston, Christopher O’Rourke, Andrew Mills. Photoinduced absorption spectroscopy (PIAS) study of water and chloride oxidation by a WO 3 photoanode in acidic solution. Physical Chemistry Chemical Physics 2023, 25 (46) , 31825-31835. https://doi.org/10.1039/D3CP03167E
    25. Mohammad Z. Rahman, Fazal Raziq, Huabin Zhang, Jorge Gascon. Key Strategies for Enhancing H 2 Production in Transition Metal Oxide Based Photocatalysts. Angewandte Chemie 2023, 135 (48) https://doi.org/10.1002/ange.202305385
    26. Mohammad Z. Rahman, Fazal Raziq, Huabin Zhang, Jorge Gascon. Key Strategies for Enhancing H 2 Production in Transition Metal Oxide Based Photocatalysts. Angewandte Chemie International Edition 2023, 62 (48) https://doi.org/10.1002/anie.202305385
    27. In-Seon Hwang, Mahadeo A. Mahadik, Min Seok Song, Se-Won Lee, Byung-Taek Oh, Hyun Hwi Lee, Weon-Sik Chae, Sun Hee Choi, Jum Suk Jang. Influence of ultrafast microwave deposition on morphology and growth mechanism of WO3 nanosheet photoanode for efficient bacterial inactivation and decomposition of organic pollutants. Journal of Environmental Chemical Engineering 2023, 11 (3) , 109985. https://doi.org/10.1016/j.jece.2023.109985
    28. Bradley Gibbons, Daniel R. Cairnie, Benjamin Thomas, Xiaozhou Yang, Stefan Ilic, Amanda J. Morris. Photoelectrochemical water oxidation by a MOF/semiconductor composite. Chemical Science 2023, 14 (18) , 4672-4680. https://doi.org/10.1039/D2SC06361A
    29. Xu Guo, Xing Liu, Menglong Wang, Junqing Yan, Yubin Chen, Shengzhong Liu. Unveiling the Origin of Co 3 O 4 Quantum Dots for Photocatalytic Overall Water Splitting. Small 2023, 19 (19) https://doi.org/10.1002/smll.202206695
    30. Rongchen Shen, Xiuzhi Li, Chaochao Qin, Peng Zhang, Xin Li. Efficient Photocatalytic Hydrogen Evolution by Modulating Excitonic Effects in Ni‐Intercalated Covalent Organic Frameworks. Advanced Energy Materials 2023, 13 (13) https://doi.org/10.1002/aenm.202203695
    31. Hee Yeong Kim, Heejung Kong, Jong Hwa Kim, Won-Geun Yang, Hyein Lee, Seonmi Ko, Hee Jin Lee, Guangxia Piao, Hyunwoong Park, Weon-Sik Chae, Junyeob Yeo. Laser-induced deposition of Ni, Co-doped FeOOH cocatalysts on WO 3 photoanodes and elucidating their roles in water oxidation in terms of carrier dynamics. Journal of Materials Chemistry A 2023, 11 (9) , 4598-4607. https://doi.org/10.1039/D2TA07004A
    32. In-Seon Hwang, Mahadeo A. Mahadik, Hyun Hwi Lee, Sun Hee Choi, Jum Suk Jang. Synchronized surface oxygen states and electron-hole passage in microwave-assisted tungsten oxide for photocatalytic organic decomposition and antibacterial activity. Journal of Environmental Chemical Engineering 2022, 10 (6) , 108695. https://doi.org/10.1016/j.jece.2022.108695
    33. Ernest Pastor, Laura Montañés, Ana Gutiérrez-Blanco, Franziska S. Hegner, Camilo A. Mesa, Núria López, Sixto Giménez. The role of crystal facets and disorder on photo-electrosynthesis. Nanoscale 2022, 14 (42) , 15596-15606. https://doi.org/10.1039/D2NR03609F
    34. Camilo A. Mesa, Ernest Pastor, Laia Francàs. UV–Vis operando spectroelectrochemistry for (photo)electrocatalysis: Principles and guidelines. Current Opinion in Electrochemistry 2022, 35 , 101098. https://doi.org/10.1016/j.coelec.2022.101098
    35. Heejung Kong, Haechang Yang, Ji‐Sang Park, Weon‐Sik Chae, Hee Yeong Kim, Jucheol Park, Jong Hoon Lee, Seung Yo Choi, Miok Park, Hyeonwoo Kim, Youbin Song, Hyunwoong Park, Junyeob Yeo. Spatial Control of Oxygen Vacancy Concentration in Monoclinic WO 3 Photoanodes for Enhanced Solar Water Splitting. Advanced Functional Materials 2022, 32 (36) https://doi.org/10.1002/adfm.202204106
    36. Xinwei Wang, Jundie Hu, Jiafu Qu, Guangming Cao, Jiaqi Jin, Xiaogang Yang. Chemical Kinetics of Parallel Consuming Processes for Photogenerated Charges at the Semiconductor Surfaces: A Theoretical Classical Calculation. Catalysis Letters 2022, 152 (8) , 2470-2479. https://doi.org/10.1007/s10562-021-03832-0
    37. Ernest Pastor, Michael Sachs, Shababa Selim, James R. Durrant, Artem A. Bakulin, Aron Walsh. Electronic defects in metal oxide photocatalysts. Nature Reviews Materials 2022, 7 (7) , 503-521. https://doi.org/10.1038/s41578-022-00433-0
    38. Shankara S. Kalanur, Hyungtak Seo. Work function tuned, surface Cs intercalated BiVO4 for enhanced photoelectrochemical water splitting reactions. Journal of Energy Chemistry 2022, 68 , 612-623. https://doi.org/10.1016/j.jechem.2021.12.039
    39. Mirabbos Hojamberdiev, Bożena Czech, Anna Wasilewska, Anna Boguszewska-Czubara, Kunio Yubuta, Hajime Wagata, Shahlo S. Daminova, Zukhra C. Kadirova, Ronald Vargas. Detoxifying SARS-CoV-2 antiviral drugs from model and real wastewaters by industrial waste-derived multiphase photocatalysts. Journal of Hazardous Materials 2022, 429 , 128300. https://doi.org/10.1016/j.jhazmat.2022.128300
    40. Abuzar Khan, Nouf Al-Muhaish, A.K. Mohamedkhair, Mohd Yusuf Khan, Mohammad Qamar, Z.H. Yamani, Q.A. Drmosh. Oxygen-deficient non-crystalline tungsten oxide thin films for solar-driven water oxidation. Journal of Non-Crystalline Solids 2022, 580 , 121409. https://doi.org/10.1016/j.jnoncrysol.2022.121409
    41. Ernest Pastor, David Moreno-Mencía, Maurizio Monti, Allan S. Johnson, Nina Fleischmann, Cuixiang Wang, Youguo Shi, Xuerong Liu, Daniel G. Mazzone, Mark P. M. Dean, Simon Wall. Nonthermal breaking of magnetic order via photogenerated spin defects in the spin-orbit coupled insulator Sr 3 Ir 2 O 7 . Physical Review B 2022, 105 (6) https://doi.org/10.1103/PhysRevB.105.064409
    42. Sacha Corby, Reshma R. Rao, Ludmilla Steier, James R. Durrant. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nature Reviews Materials 2021, 6 (12) , 1136-1155. https://doi.org/10.1038/s41578-021-00343-7
    43. Shankara S. Kalanur, Ranveer Singh, Hyungtak Seo. Enhanced solar water splitting of an ideally doped and work function tuned {002} oriented one-dimensional WO3 with nanoscale surface charge mapping insights. Applied Catalysis B: Environmental 2021, 295 , 120269. https://doi.org/10.1016/j.apcatb.2021.120269
    44. Saulo A. Carminati, Ingrid Rodríguez-Gutiérrez, Andreia de Morais, Bruno L. da Silva, Mauricio A. Melo, Flavio L. Souza, Ana F. Nogueira. Challenges and prospects about the graphene role in the design of photoelectrodes for sunlight-driven water splitting. RSC Advances 2021, 11 (24) , 14374-14398. https://doi.org/10.1039/D0RA10176A
    45. Zhen Wei, Wenchao Wang, Wenlu Li, Xueqin Bai, Jianfeng Zhao, Edmund C. M. Tse, David Lee Phillips, Yongfa Zhu. Steering Electron–Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. Angewandte Chemie 2021, 133 (15) , 8317-8323. https://doi.org/10.1002/ange.202016170
    46. Zhen Wei, Wenchao Wang, Wenlu Li, Xueqin Bai, Jianfeng Zhao, Edmund C. M. Tse, David Lee Phillips, Yongfa Zhu. Steering Electron–Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. Angewandte Chemie International Edition 2021, 60 (15) , 8236-8242. https://doi.org/10.1002/anie.202016170
    47. Anna A. Wilson, Sacha Corby, Laia Francàs, James R. Durrant, Andreas Kafizas. The effect of nanoparticulate PdO co-catalysts on the faradaic and light conversion efficiency of WO 3 photoanodes for water oxidation. Physical Chemistry Chemical Physics 2021, 23 (2) , 1285-1291. https://doi.org/10.1039/D0CP06124G
    48. Melis Özge Alaş, Rükan Genç. Carbon nanodot integrated solar energy devices. 2021, 497-535. https://doi.org/10.1016/B978-0-12-821592-0.00017-0
    49. Mark Forster, Daniel W. F. Cheung, Adrian M. Gardner, Alexander J. Cowan. Potential and pitfalls: On the use of transient absorption spectroscopy for in situ and operando studies of photoelectrodes. The Journal of Chemical Physics 2020, 153 (15) https://doi.org/10.1063/5.0022138
    50. Bappi Paul, Nilesh Manwar, Piyali Bhanja, S. Sellaiyan, Sachin K. Sharma, Rubina Khatun, Suman Jain, Rajaram Bal. Morphology controlled synthesis of 2D heterostructure Ag/WO3 nanocomposites for enhanced photoelectrochemical CO2 reduction performance. Journal of CO2 Utilization 2020, 41 , 101284. https://doi.org/10.1016/j.jcou.2020.101284
    51. Naruki Hayashi, Kosaku Kato, Akira Yamakata. Enhancement of photoelectrochemical activity of TiO2 electrode by particulate/dense double-layer formation. The Journal of Chemical Physics 2020, 152 (24) https://doi.org/10.1063/5.0010121
    52. Sacha Corby, Laia Francàs, Andreas Kafizas, James R. Durrant. Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO 3 for water oxidation. Chemical Science 2020, 11 (11) , 2907-2914. https://doi.org/10.1039/C9SC06325K
    53. Fumiaki Amano, Shinichiro Koga. Influence of light intensity on the steady-state kinetics in tungsten trioxide particulate photoanode studied by intensity-modulated photocurrent spectroscopy. Journal of Electroanalytical Chemistry 2020, 860 , 113891. https://doi.org/10.1016/j.jelechem.2020.113891
    54. Can Lu, Palani R. Jothi, Thomas Thersleff, Tetyana M. Budnyak, Anna Rokicinska, Kunio Yubuta, Richard Dronskowski, Piotr Kuśtrowski, Boniface P. T. Fokwa, Adam Slabon. Nanostructured core–shell metal borides–oxides as highly efficient electrocatalysts for photoelectrochemical water oxidation. Nanoscale 2020, 12 (5) , 3121-3128. https://doi.org/10.1039/C9NR09818F

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2019, 10, 18, 5395–5401
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.9b01935
    Published August 16, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    2576

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.