Quantum Chemistry in the Age of Machine LearningClick to copy article linkArticle link copied!
- Pavlo O. Dral*Pavlo O. Dral*Email: [email protected]State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, ChinaMore by Pavlo O. Dral
Abstract

As the quantum chemistry (QC) community embraces machine learning (ML), the number of new methods and applications based on the combination of QC and ML is surging. In this Perspective, a view of the current state of affairs in this new and exciting research field is offered, challenges of using machine learning in quantum chemistry applications are described, and potential future developments are outlined. Specifically, examples of how machine learning is used to improve the accuracy and accelerate quantum chemical research are shown. Generalization and classification of existing techniques are provided to ease the navigation in the sea of literature and to guide researchers entering the field. The emphasis of this Perspective is on supervised machine learning.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 301 publications.
- Vivin Vinod, Peter Zaspel. Investigating Data Hierarchies in Multifidelity Machine Learning for Excitation Energies. Journal of Chemical Theory and Computation 2025, Article ASAP.
- Alexandre Boucher, Cameron Beevers, Bertrand Gauthier, Alberto Roldan. Machine Learning Force Field for Optimization of Isolated and Supported Transition Metal Particles. Journal of Chemical Theory and Computation 2025, 21
(5)
, 2626-2637. https://doi.org/10.1021/acs.jctc.4c01606
- Jonathan A. Semelak, Ignacio Pickering, Kate Huddleston, Justo Olmos, Juan Santiago Grassano, Camila Mara Clemente, Salvador I. Drusin, Marcelo Marti, Mariano Camilo Gonzalez Lebrero, Adrian E. Roitberg, Dario A. Estrin. Advancing Multiscale Molecular Modeling with Machine Learning-Derived Electrostatics. Journal of Chemical Theory and Computation 2025, Article ASAP.
- Amir Omranpour, Jan Elsner, K. Nikolas Lausch, Jörg Behler. Machine Learning Potentials for Heterogeneous Catalysis. ACS Catalysis 2025, 15
(3)
, 1616-1634. https://doi.org/10.1021/acscatal.4c06717
- Chaoqiang Feng, Yaolong Zhang, Bin Jiang. Efficient Sampling for Machine Learning Electron Density and Its Response in Real Space. Journal of Chemical Theory and Computation 2025, 21
(2)
, 691-702. https://doi.org/10.1021/acs.jctc.4c01355
- Johannes Karwounopoulos, Mateusz Bieniek, Zhiyi Wu, Adam L. Baskerville, Gerhard König, Benjamin P. Cossins, Geoffrey P. F. Wood. Evaluation of Machine Learning/Molecular Mechanics End-State Corrections with Mechanical Embedding to Calculate Relative Protein–Ligand Binding Free Energies. Journal of Chemical Theory and Computation 2025, 21
(2)
, 967-977. https://doi.org/10.1021/acs.jctc.4c01427
- Kyle Acheson, Scott Habershon. Exploring New Algorithms for Molecular Vibrational Spectroscopy Using Physics-Informed Program Synthesis. Journal of Chemical Theory and Computation 2025, 21
(1)
, 307-320. https://doi.org/10.1021/acs.jctc.4c01312
- Jingheng Deng, Jiayi Liang, Shuming Bai. Learning Intermolecular Electronic Coupling with Molecular-Orbital-Based Descriptors. The Journal of Physical Chemistry Letters 2024, 15
(51)
, 12551-12560. https://doi.org/10.1021/acs.jpclett.4c03080
- Hyuntae Lim, YounJoon Jung. Synergistic Modeling of Liquid Properties: Integrating Neural Network-Derived Molecular Features with Modified Kernel Models. Journal of Chemical Theory and Computation 2024, 20
(22)
, 9849-9856. https://doi.org/10.1021/acs.jctc.4c00961
- Imran Chaudhry, Gaohe Hu, Hepeng Ye, Lasse Jensen. Toward Modeling the Complexity of the Chemical Mechanism in SERS. ACS Nano 2024, 18
(32)
, 20835-20850. https://doi.org/10.1021/acsnano.4c07198
- Ignacio Migliaro, Thomas R. Cundari. Integrated Study on Methane Activation: Exploring Main Group Frustrated Lewis Pairs through Density Functional Theory, Machine Learning, and Machine-Learned Force Fields. Journal of Chemical Theory and Computation 2024, 20
(14)
, 6388-6401. https://doi.org/10.1021/acs.jctc.4c00354
- Armen G. Beck, Matthew Muhoberac, Caitlin E. Randolph, Connor H. Beveridge, Prageeth R. Wijewardhane, Hilkka I. Kenttämaa, Gaurav Chopra. Recent Developments in Machine Learning for Mass Spectrometry. ACS Measurement Science Au 2024, 4
(3)
, 233-246. https://doi.org/10.1021/acsmeasuresciau.3c00060
- Kirill Zinovjev, Lester Hedges, Rubén Montagud Andreu, Christopher Woods, Iñaki Tuñón, Marc W. van der Kamp. emle-engine: A Flexible Electrostatic Machine Learning Embedding Package for Multiscale Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2024, 20
(11)
, 4514-4522. https://doi.org/10.1021/acs.jctc.4c00248
- Juan S. Grassano, Ignacio Pickering, Adrian E. Roitberg, Mariano C. González Lebrero, Dario A. Estrin, Jonathan A. Semelak. Assessment of Embedding Schemes in a Hybrid Machine Learning/Classical Potentials (ML/MM) Approach. Journal of Chemical Information and Modeling 2024, 64
(10)
, 4047-4058. https://doi.org/10.1021/acs.jcim.4c00478
- Kirill P. Larionov, Vasilii Yu. Evtushok. From Synthesis Conditions to UiO-66 Properties: Machine Learning Approach. Chemistry of Materials 2024, 36
(9)
, 4291-4302. https://doi.org/10.1021/acs.chemmater.3c03180
- Maksim Kuznetsov, Fedor Ryabov, Roman Schutski, Rim Shayakhmetov, Yen-Chu Lin, Alex Aliper, Daniil Polykovskiy. COSMIC: Molecular Conformation Space Modeling in Internal Coordinates with an Adversarial Framework. Journal of Chemical Information and Modeling 2024, 64
(9)
, 3610-3620. https://doi.org/10.1021/acs.jcim.3c00989
- Mohammad Shakiba, Alexey V. Akimov. Machine-Learned Kohn–Sham Hamiltonian Mapping for Nonadiabatic Molecular Dynamics. Journal of Chemical Theory and Computation 2024, 20
(8)
, 2992-3007. https://doi.org/10.1021/acs.jctc.4c00008
- Yendrek Velásquez-López, Andrea Ruiz-Escudero, Sonia Arrasate, Humberto González-Díaz. Implementation of IFPTML Computational Models in Drug Discovery Against Flaviviridae Family. Journal of Chemical Information and Modeling 2024, 64
(6)
, 1841-1852. https://doi.org/10.1021/acs.jcim.3c01796
- P. D. Varuna S. Pathirage, Justin T. Phillips, Konstantinos D. Vogiatzis. Exploration of the Two-Electron Excitation Space with Data-Driven Coupled Cluster. The Journal of Physical Chemistry A 2024, 128
(10)
, 1938-1947. https://doi.org/10.1021/acs.jpca.3c06600
- Alec J. Sanchez, Sarah Maier, Krishnan Raghavachari. Leveraging DFT and Molecular Fragmentation for Chemically Accurate pKa Prediction Using Machine Learning. Journal of Chemical Information and Modeling 2024, 64
(3)
, 712-723. https://doi.org/10.1021/acs.jcim.3c01923
- Xiang Xu, Luis Soriano-Agueda, Xabier López, Eloy Ramos-Cordoba, Eduard Matito. All-Purpose Measure of Electron Correlation for Multireference Diagnostics. Journal of Chemical Theory and Computation 2024, 20
(2)
, 721-727. https://doi.org/10.1021/acs.jctc.3c01073
- Hung-Hsuan Lin, Chun-I Wang, Chou-Hsun Yang, Muhammad Khari Secario, Chao-Ping Hsu. Two-Step Machine Learning Approach for Charge-Transfer Coupling with Structurally Diverse Data. The Journal of Physical Chemistry A 2024, 128
(1)
, 271-280. https://doi.org/10.1021/acs.jpca.3c04524
- Eirill Hauge, Håkon Emil Kristiansen, Lukas Konecny, Marius Kadek, Michal Repisky, Thomas Bondo Pedersen. Cost-Efficient High-Resolution Linear Absorption Spectra through Extrapolating the Dipole Moment from Real-Time Time-Dependent Electronic-Structure Theory. Journal of Chemical Theory and Computation 2023, 19
(21)
, 7764-7775. https://doi.org/10.1021/acs.jctc.3c00727
- Song Xia, Eric Chen, Yingkai Zhang. Integrated Molecular Modeling and Machine Learning for Drug Design. Journal of Chemical Theory and Computation 2023, 19
(21)
, 7478-7495. https://doi.org/10.1021/acs.jctc.3c00814
- Vivin Vinod, Sayan Maity, Peter Zaspel, Ulrich Kleinekathöfer. Multifidelity Machine Learning for Molecular Excitation Energies. Journal of Chemical Theory and Computation 2023, 19
(21)
, 7658-7670. https://doi.org/10.1021/acs.jctc.3c00882
- Rosa Di Felice, Maricris L. Mayes, Ryan M. Richard, David B. Williams-Young, Garnet Kin-Lic Chan, Wibe A. de Jong, Niranjan Govind, Martin Head-Gordon, Matthew R. Hermes, Karol Kowalski, Xiaosong Li, Hans Lischka, Karl T. Mueller, Erdal Mutlu, Anders M. N. Niklasson, Mark R. Pederson, Bo Peng, Ron Shepard, Edward F. Valeev, Mark van Schilfgaarde, Bess Vlaisavljevich, Theresa L. Windus, Sotiris S. Xantheas, Xing Zhang, Paul M. Zimmerman. A Perspective on Sustainable Computational Chemistry Software Development and Integration. Journal of Chemical Theory and Computation 2023, 19
(20)
, 7056-7076. https://doi.org/10.1021/acs.jctc.3c00419
- Krystof Brezina, Hubert Beck, Ondrej Marsalek. Reducing the Cost of Neural Network Potential Generation for Reactive Molecular Systems. Journal of Chemical Theory and Computation 2023, 19
(19)
, 6589-6604. https://doi.org/10.1021/acs.jctc.3c00391
- Kevin M. Lefrancois-Gagnon, Robert C. Mawhinney. Toward Universal Substituent Constants: Relating QTAIM Functional Group Descriptors to Substituent Effect Proxies. Journal of Chemical Information and Modeling 2023, 63
(19)
, 6068-6080. https://doi.org/10.1021/acs.jcim.3c00987
- Bipeng Wang, Yifan Wu, Dongyu Liu, Andrey S. Vasenko, David Casanova, Oleg V. Prezhdo. Efficient Modeling of Quantum Dynamics of Charge Carriers in Materials Using Short Nonequilibrium Molecular Dynamics. The Journal of Physical Chemistry Letters 2023, 14
(37)
, 8289-8295. https://doi.org/10.1021/acs.jpclett.3c02187
- Luis Cesar de Azevedo, Ronaldo C. Prati. Effect of Flattened Structures of Molecules and Materials on Machine Learning Model Training. Journal of Chemical Information and Modeling 2023, 63
(17)
, 5446-5456. https://doi.org/10.1021/acs.jcim.3c00242
- Henrik Seckler, Janusz Szwabiński, Ralf Metzler. Machine-Learning Solutions for the Analysis of Single-Particle Diffusion Trajectories. The Journal of Physical Chemistry Letters 2023, 14
(35)
, 7910-7923. https://doi.org/10.1021/acs.jpclett.3c01351
- Tzu Yu Wang, Simon P. Neville, Michael S. Schuurman. Machine Learning Seams of Conical Intersection: A Characteristic Polynomial Approach. The Journal of Physical Chemistry Letters 2023, 14
(35)
, 7780-7786. https://doi.org/10.1021/acs.jpclett.3c01649
- Fuchun Ge, Lina Zhang, Yi-Fan Hou, Yuxinxin Chen, Arif Ullah, Pavlo O. Dral. Four-Dimensional-Spacetime Atomistic Artificial Intelligence Models. The Journal of Physical Chemistry Letters 2023, 14
(34)
, 7732-7743. https://doi.org/10.1021/acs.jpclett.3c01592
- Alexander Hagg, Karl N. Kirschner. Open-Source Machine Learning in Computational Chemistry. Journal of Chemical Information and Modeling 2023, 63
(15)
, 4505-4532. https://doi.org/10.1021/acs.jcim.3c00643
- Thorren Kirschbaum, Börries von Seggern, Joachim Dzubiella, Annika Bande, Frank Noé. Machine Learning Frontier Orbital Energies of Nanodiamonds. Journal of Chemical Theory and Computation 2023, 19
(14)
, 4461-4473. https://doi.org/10.1021/acs.jctc.2c01275
- Bozheng Dou, Zailiang Zhu, Ekaterina Merkurjev, Lu Ke, Long Chen, Jian Jiang, Yueying Zhu, Jie Liu, Bengong Zhang, Guo-Wei Wei. Machine Learning Methods for Small Data Challenges in Molecular Science. Chemical Reviews 2023, 123
(13)
, 8736-8780. https://doi.org/10.1021/acs.chemrev.3c00189
- Chao Sun, Jiafu Xing, Yajuan Qu, Yanli Zhang, Peizhe Cui, Yinglong Wang, Jun Gao. Liquid–Liquid Equilibrium Measurements and Interaction Explorations for Separation of Dimethyl Carbonate and Isopropyl Alcohol Using ChCl-Based Deep Eutectic Solvents. Industrial & Engineering Chemistry Research 2023, 62
(23)
, 9302-9312. https://doi.org/10.1021/acs.iecr.3c01045
- Yi-Fan Hou, Fuchun Ge, Pavlo O. Dral. Explicit Learning of Derivatives with the KREG and pKREG Models on the Example of Accurate Representation of Molecular Potential Energy Surfaces. Journal of Chemical Theory and Computation 2023, 19
(8)
, 2369-2379. https://doi.org/10.1021/acs.jctc.2c01038
- Cheng-Han Li, Daniel P. Tabor. Reorganization Energy Predictions with Graph Neural Networks Informed by Low-Cost Conformers. The Journal of Physical Chemistry A 2023, 127
(15)
, 3484-3489. https://doi.org/10.1021/acs.jpca.2c09030
- Kirill Zinovjev. Electrostatic Embedding of Machine Learning Potentials. Journal of Chemical Theory and Computation 2023, 19
(6)
, 1888-1897. https://doi.org/10.1021/acs.jctc.2c00914
- Mahesh K. Sit, Subhasish Das, Kousik Samanta. Semiclassical Dynamics on Machine-Learned Coupled Multireference Potential Energy Surfaces: Application to the Photodissociation of the Simplest Criegee Intermediate. The Journal of Physical Chemistry A 2023, 127
(10)
, 2376-2387. https://doi.org/10.1021/acs.jpca.2c07229
- You Li, Yu Zhai, Hui Li. MLRNet: Combining the Physics-Motivated Potential Models with Neural Networks for Intermolecular Potential Energy Surface Construction. Journal of Chemical Theory and Computation 2023, 19
(5)
, 1421-1431. https://doi.org/10.1021/acs.jctc.2c01049
- Chenru Duan, Aditya Nandy, Gianmarco G. Terrones, David W. Kastner, Heather J. Kulik. Active Learning Exploration of Transition-Metal Complexes to Discover Method-Insensitive and Synthetically Accessible Chromophores. JACS Au 2023, 3
(2)
, 391-401. https://doi.org/10.1021/jacsau.2c00547
- Zhan-Yun Zhang, Ding Peng, Lihong Liu, Lin Shen, Wei-Hai Fang. Machine Learning Prediction of Hydration Free Energy with Physically Inspired Descriptors. The Journal of Physical Chemistry Letters 2023, 14
(7)
, 1877-1884. https://doi.org/10.1021/acs.jpclett.2c03858
- Michael Deffner, Marc Philipp Weise, Haitao Zhang, Maike Mücke, Jonny Proppe, Ignacio Franco, Carmen Herrmann. Learning Conductance: Gaussian Process Regression for Molecular Electronics. Journal of Chemical Theory and Computation 2023, 19
(3)
, 992-1002. https://doi.org/10.1021/acs.jctc.2c00648
- Barry K. Carpenter. Prediction of Kinetic Product Ratios: Investigation of a Dynamically Controlled Case. The Journal of Physical Chemistry A 2023, 127
(1)
, 224-239. https://doi.org/10.1021/acs.jpca.2c08301
- Diandong Tang, Luyang Jia, Lin Shen, Wei-Hai Fang. Fewest-Switches Surface Hopping with Long Short-Term Memory Networks. The Journal of Physical Chemistry Letters 2022, 13
(44)
, 10377-10387. https://doi.org/10.1021/acs.jpclett.2c02299
- TanemuraKiyoto AramisGraduate Studenttanemur1@chemistry.
msu. eduSierra-CostaDiegoGraduate Studentsierraco@chemistry. msu. eduMerzKenneth M.Jr.University Distinguished Professor & Joseph Zichis Chair in Chemistrymerz@chemistry. msu. eduAlathea Davies, PhD student, Cornell University, Paul A. Craig, Professor of Biochemistry & Bioinformatics, Rochester Institute of Technology. Python for Chemists. 2022https://doi.org/10.1021/acsinfocus.7e5030 - Armando de Rezende, Mahdi Malmali, Pavlo O. Dral, Hans Lischka, Daniel Tunega, Adelia J. A. Aquino. Machine Learning for Designing Mixed Metal Halides for Efficient Ammonia Separation and Storage. The Journal of Physical Chemistry C 2022, 126
(29)
, 12184-12196. https://doi.org/10.1021/acs.jpcc.2c02586
- Pengju Wang, Jianpei Xing, Xue Jiang, Jijun Zhao. Transition-Metal Interlink Neural Network: Machine Learning of 2D Metal–Organic Frameworks with High Magnetic Anisotropy. ACS Applied Materials & Interfaces 2022, 14
(29)
, 33726-33733. https://doi.org/10.1021/acsami.2c08991
- Kanishka Singh, Jannes Münchmeyer, Leon Weber, Ulf Leser, Annika Bande. Graph Neural Networks for Learning Molecular Excitation Spectra. Journal of Chemical Theory and Computation 2022, 18
(7)
, 4408-4417. https://doi.org/10.1021/acs.jctc.2c00255
- Chenru Duan, Aditya Nandy, Husain Adamji, Yuriy Roman-Leshkov, Heather J. Kulik. Machine Learning Models Predict Calculation Outcomes with the Transferability Necessary for Computational Catalysis. Journal of Chemical Theory and Computation 2022, 18
(7)
, 4282-4292. https://doi.org/10.1021/acs.jctc.2c00331
- Nan Yao, Xiang Chen, Zhong-Heng Fu, Qiang Zhang. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews 2022, 122
(12)
, 10970-11021. https://doi.org/10.1021/acs.chemrev.1c00904
- Eita Nakanishi, Ryosuke Nishikubo, Fumitaka Ishiwari, Tomoya Nakamura, Atsushi Wakamiya, Akinori Saeki. Multivariate Analysis of Mixed Ternary and Quaternary A-Site Organic Cations in Tin Iodide Perovskite Solar Cells. ACS Materials Letters 2022, 4
(6)
, 1124-1131. https://doi.org/10.1021/acsmaterialslett.2c00229
- Linggang Zhu, Jian Zhou, Zhimei Sun. Materials Data toward Machine Learning: Advances and Challenges. The Journal of Physical Chemistry Letters 2022, 13
(18)
, 3965-3977. https://doi.org/10.1021/acs.jpclett.2c00576
- Peikun Zheng, Wudi Yang, Wei Wu, Olexandr Isayev, Pavlo O. Dral. Toward Chemical Accuracy in Predicting Enthalpies of Formation with General-Purpose Data-Driven Methods. The Journal of Physical Chemistry Letters 2022, 13
(15)
, 3479-3491. https://doi.org/10.1021/acs.jpclett.2c00734
- Scott Habershon. Program Synthesis of Sparse Algorithms for Wave Function and Energy Prediction in Grid-Based Quantum Simulations. Journal of Chemical Theory and Computation 2022, 18
(4)
, 2462-2478. https://doi.org/10.1021/acs.jctc.2c00035
- Deming Xia, Jingwen Chen, Zhiqiang Fu, Tong Xu, Zhongyu Wang, Wenjia Liu, Hong-bin Xie, Willie J. G. M. Peijnenburg. Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry. Environmental Science & Technology 2022, 56
(4)
, 2115-2123. https://doi.org/10.1021/acs.est.1c05970
- Xiaoyu Shi, Pratteek Das, Zhong-Shuai Wu. Digital Microscale Electrochemical Energy Storage Devices for a Fully Connected and Intelligent World. ACS Energy Letters 2022, 7
(1)
, 267-281. https://doi.org/10.1021/acsenergylett.1c01854
- Viktor Zaverkin, Julia Netz, Fabian Zills, Andreas Köhn, Johannes Kästner. Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments. Journal of Chemical Theory and Computation 2022, 18
(1)
, 1-12. https://doi.org/10.1021/acs.jctc.1c00853
- WooSeok Jeong, Carlo Alberto Gaggioli, Laura Gagliardi. Active Learning Configuration Interaction for Excited-State Calculations of Polycyclic Aromatic Hydrocarbons. Journal of Chemical Theory and Computation 2021, 17
(12)
, 7518-7530. https://doi.org/10.1021/acs.jctc.1c00769
- Oleg V. Prezhdo. Modeling Non-adiabatic Dynamics in Nanoscale and Condensed Matter Systems. Accounts of Chemical Research 2021, 54
(23)
, 4239-4249. https://doi.org/10.1021/acs.accounts.1c00525
- Zhan-Yun Zhang, Xin Liu, Lin Shen, Ling Chen, Wei-Hai Fang. Machine Learning with Multilevel Descriptors for Screening of Inorganic Nonlinear Optical Crystals. The Journal of Physical Chemistry C 2021, 125
(45)
, 25175-25188. https://doi.org/10.1021/acs.jpcc.1c06049
- Hui Ding, Hongfei Liu, Wangsheng Chu, Changzheng Wu, Yi Xie. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews 2021, 121
(21)
, 13174-13212. https://doi.org/10.1021/acs.chemrev.1c00234
- J. Patrick Zobel, Moritz Heindl, Felix Plasser, Sebastian Mai, Leticia González. Surface Hopping Dynamics on Vibronic Coupling Models. Accounts of Chemical Research 2021, 54
(20)
, 3760-3771. https://doi.org/10.1021/acs.accounts.1c00485
- Lihong Chai, Huanni Zhang, Runqian Song, Haohan Yang, Haiying Yu, Piotr Paneth, Kasper P. Kepp, Miki Akamatsu, Li Ji. Precision Biotransformation of Emerging Pollutants by Human Cytochrome P450 Using Computational–Experimental Synergy: A Case Study of Tris(1,3-dichloro-2-propyl) Phosphate. Environmental Science & Technology 2021, 55
(20)
, 14037-14050. https://doi.org/10.1021/acs.est.1c03036
- Jérôme Rey, Sarah Blanck, Paul Clabaut, Sophie Loehlé, Stephan N. Steinmann, Carine Michel. Transferable Gaussian Attractive Potentials for Organic/Oxide Interfaces. The Journal of Physical Chemistry B 2021, 125
(38)
, 10843-10853. https://doi.org/10.1021/acs.jpcb.1c05156
- Luis Cesar de Azevedo, Gabriel A. Pinheiro, Marcos G. Quiles, Juarez L. F. Da Silva, Ronaldo C. Prati. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling 2021, 61
(9)
, 4210-4223. https://doi.org/10.1021/acs.jcim.1c00503
- Joshua J. Goings, Hang Hu, Chao Yang, Xiaosong Li. Reinforcement Learning Configuration Interaction. Journal of Chemical Theory and Computation 2021, 17
(9)
, 5482-5491. https://doi.org/10.1021/acs.jctc.1c00010
- Sergei Manzhos, Tucker Carrington, Jr.. Neural Network Potential Energy Surfaces for Small Molecules and Reactions. Chemical Reviews 2021, 121
(16)
, 10187-10217. https://doi.org/10.1021/acs.chemrev.0c00665
- Julia Westermayr, Philipp Marquetand. Machine Learning for Electronically Excited States of Molecules. Chemical Reviews 2021, 121
(16)
, 9873-9926. https://doi.org/10.1021/acs.chemrev.0c00749
- Jörg Behler. Four Generations of High-Dimensional Neural Network Potentials. Chemical Reviews 2021, 121
(16)
, 10037-10072. https://doi.org/10.1021/acs.chemrev.0c00868
- Bing Huang, O. Anatole von Lilienfeld. Ab Initio Machine Learning in Chemical Compound Space. Chemical Reviews 2021, 121
(16)
, 10001-10036. https://doi.org/10.1021/acs.chemrev.0c01303
- Volker L. Deringer, Albert P. Bartók, Noam Bernstein, David M. Wilkins, Michele Ceriotti, Gábor Csányi. Gaussian Process Regression for Materials and Molecules. Chemical Reviews 2021, 121
(16)
, 10073-10141. https://doi.org/10.1021/acs.chemrev.1c00022
- J. Patrick Zobel, Leticia González. The Quest to Simulate Excited-State Dynamics of Transition Metal Complexes. JACS Au 2021, 1
(8)
, 1116-1140. https://doi.org/10.1021/jacsau.1c00252
- Shachar Fite, Omri Nitecki, Zeev Gross. Custom Tokenization Dictionary, CUSTODI: A General, Fast, and Reversible Data-Driven Representation and Regressor. Journal of Chemical Information and Modeling 2021, 61
(7)
, 3285-3291. https://doi.org/10.1021/acs.jcim.1c00563
- Maksim Kulichenko, Justin S. Smith, Benjamin Nebgen, Ying Wai Li, Nikita Fedik, Alexander I. Boldyrev, Nicholas Lubbers, Kipton Barros, Sergei Tretiak. The Rise of Neural Networks for Materials and Chemical Dynamics. The Journal of Physical Chemistry Letters 2021, 12
(26)
, 6227-6243. https://doi.org/10.1021/acs.jpclett.1c01357
- Bruno Cuevas-Zuviría, Luis F. Pacios. Machine Learning of Analytical Electron Density in Large Molecules Through Message-Passing. Journal of Chemical Information and Modeling 2021, 61
(6)
, 2658-2666. https://doi.org/10.1021/acs.jcim.1c00227
- Jinxiao Zhang, Sheng Ye, Kai Zhong, Yaolong Zhang, Yuanyuan Chong, Luyuan Zhao, Huiting Zhou, Sibei Guo, Guozhen Zhang, Bin Jiang, Shaul Mukamel, Jun Jiang. A Machine-Learning Protocol for Ultraviolet Protein-Backbone Absorption Spectroscopy under Environmental Fluctuations. The Journal of Physical Chemistry B 2021, 125
(23)
, 6171-6178. https://doi.org/10.1021/acs.jpcb.1c03296
- C. D. Rankine, T. J. Penfold. Progress in the Theory of X-ray Spectroscopy: From Quantum Chemistry to Machine Learning and Ultrafast Dynamics. The Journal of Physical Chemistry A 2021, 125
(20)
, 4276-4293. https://doi.org/10.1021/acs.jpca.0c11267
- Chenru Duan, Fang Liu, Aditya Nandy, Heather J. Kulik. Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery. The Journal of Physical Chemistry Letters 2021, 12
(19)
, 4628-4637. https://doi.org/10.1021/acs.jpclett.1c00631
- Qidong Lin, Liang Zhang, Yaolong Zhang, Bin Jiang. Searching Configurations in Uncertainty Space: Active Learning of High-Dimensional Neural Network Reactive Potentials. Journal of Chemical Theory and Computation 2021, 17
(5)
, 2691-2701. https://doi.org/10.1021/acs.jctc.1c00166
- Tetiana Zubatiuk, Olexandr Isayev. Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence. Accounts of Chemical Research 2021, 54
(7)
, 1575-1585. https://doi.org/10.1021/acs.accounts.0c00868
- Ziteng Liu, Liqiang Lin, Qingqing Jia, Zheng Cheng, Yanyan Jiang, Yanwen Guo, Jing Ma. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning. Journal of Chemical Information and Modeling 2021, 61
(3)
, 1066-1082. https://doi.org/10.1021/acs.jcim.0c01224
- Dakota L. Folmsbee, David R. Koes, Geoffrey R. Hutchison. Evaluation of Thermochemical Machine Learning for Potential Energy Curves and Geometry Optimization. The Journal of Physical Chemistry A 2021, 125
(9)
, 1987-1993. https://doi.org/10.1021/acs.jpca.0c10147
- Pablo A. Unzueta, Chandler S. Greenwell, Gregory J. O. Beran. Predicting Density Functional Theory-Quality Nuclear Magnetic Resonance Chemical Shifts via Δ-Machine Learning. Journal of Chemical Theory and Computation 2021, 17
(2)
, 826-840. https://doi.org/10.1021/acs.jctc.0c00979
- Jong-Kwon Ha, Kicheol Kim, Seung Kyu Min. Machine Learning-Assisted Excited State Molecular Dynamics with the State-Interaction State-Averaged Spin-Restricted Ensemble-Referenced Kohn–Sham Approach. Journal of Chemical Theory and Computation 2021, 17
(2)
, 694-702. https://doi.org/10.1021/acs.jctc.0c01261
- Jonas Elm. Toward a Holistic Understanding of the Formation and Growth of Atmospheric Molecular Clusters: A Quantum Machine Learning Perspective. The Journal of Physical Chemistry A 2021, 125
(4)
, 895-902. https://doi.org/10.1021/acs.jpca.0c09762
- Martin Sebastian Zöllner, Aida Saghatchi, Vladimiro Mujica, Carmen Herrmann. Influence of Electronic Structure Modeling and Junction Structure on First-Principles Chiral Induced Spin Selectivity. Journal of Chemical Theory and Computation 2020, 16
(12)
, 7357-7371. https://doi.org/10.1021/acs.jctc.0c00621
- Jacob Townsend, Konstantinos D. Vogiatzis. Transferable MP2-Based Machine Learning for Accurate Coupled-Cluster Energies. Journal of Chemical Theory and Computation 2020, 16
(12)
, 7453-7461. https://doi.org/10.1021/acs.jctc.0c00927
- Oleg V. Prezhdo (Executive Editor, The Journal of Physical Chemistry Letters). Advancing Physical Chemistry with Machine Learning. The Journal of Physical Chemistry Letters 2020, 11
(22)
, 9656-9658. https://doi.org/10.1021/acs.jpclett.0c03130
- Muhammad Ardiansyah, Kurt R. Brorsen. Mixed Quantum–Classical Dynamics with Machine Learning-Based Potentials via Wigner Sampling. The Journal of Physical Chemistry A 2020, 124
(44)
, 9326-9331. https://doi.org/10.1021/acs.jpca.0c07376
- Marc Philipp Bahlke, Natnael Mogos, Jonny Proppe, Carmen Herrmann. Exchange Spin Coupling from Gaussian Process Regression. The Journal of Physical Chemistry A 2020, 124
(42)
, 8708-8723. https://doi.org/10.1021/acs.jpca.0c05983
- Bao-Xin Xue, Mario Barbatti, Pavlo O. Dral. Machine Learning for Absorption Cross Sections. The Journal of Physical Chemistry A 2020, 124
(35)
, 7199-7210. https://doi.org/10.1021/acs.jpca.0c05310
- Joshua Schrier. Can One Hear the Shape of a Molecule (from its Coulomb Matrix Eigenvalues)?. Journal of Chemical Information and Modeling 2020, 60
(8)
, 3804-3811. https://doi.org/10.1021/acs.jcim.0c00631
- C. D. Rankine, M. M. M. Madkhali, T. J. Penfold. A Deep Neural Network for the Rapid Prediction of X-ray Absorption Spectra. The Journal of Physical Chemistry A 2020, 124
(21)
, 4263-4270. https://doi.org/10.1021/acs.jpca.0c03723
- Vivin Vinod, Peter Zaspel. QeMFi: A Multifidelity Dataset of Quantum Chemical Properties of Diverse Molecules. Scientific Data 2025, 12
(1)
https://doi.org/10.1038/s41597-024-04247-3
- Vivin Vinod, Dongyu Lyu, Marcel Ruth, Peter R. Schreiner, Ulrich Kleinekathöfer, Peter Zaspel. Predicting Molecular Energies of Small Organic Molecules With Multi‐Fidelity Methods. Journal of Computational Chemistry 2025, 46
(6)
https://doi.org/10.1002/jcc.70056
- BeiWei Yu, LiQin Zhang, Xiaoxia Ye, JunQi Wu, HuaYong Ying, Wei Zhu, ZhongYi Yu, XiaoMing Wu. State-of-the-art review on various applications of machine learning techniques in materials science and engineering. Chemical Engineering Science 2025, 306 , 121147. https://doi.org/10.1016/j.ces.2024.121147
- Márta Gődény, Christian Schröder. Reactive Molecular Dynamics in Ionic Liquids: A Review of Simulation Techniques and Applications. Liquids 2025, 5
(1)
, 8. https://doi.org/10.3390/liquids5010008
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.