ACS Publications. Most Trusted. Most Cited. Most Read
Quantum Chemistry in the Age of Machine Learning
My Activity

Figure 1Loading Img
    Perspective

    Quantum Chemistry in the Age of Machine Learning
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2020, 11, 6, 2336–2347
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.9b03664
    Published March 3, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    As the quantum chemistry (QC) community embraces machine learning (ML), the number of new methods and applications based on the combination of QC and ML is surging. In this Perspective, a view of the current state of affairs in this new and exciting research field is offered, challenges of using machine learning in quantum chemistry applications are described, and potential future developments are outlined. Specifically, examples of how machine learning is used to improve the accuracy and accelerate quantum chemical research are shown. Generalization and classification of existing techniques are provided to ease the navigation in the sea of literature and to guide researchers entering the field. The emphasis of this Perspective is on supervised machine learning.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 301 publications.

    1. Vivin Vinod, Peter Zaspel. Investigating Data Hierarchies in Multifidelity Machine Learning for Excitation Energies. Journal of Chemical Theory and Computation 2025, Article ASAP.
    2. Alexandre Boucher, Cameron Beevers, Bertrand Gauthier, Alberto Roldan. Machine Learning Force Field for Optimization of Isolated and Supported Transition Metal Particles. Journal of Chemical Theory and Computation 2025, 21 (5) , 2626-2637. https://doi.org/10.1021/acs.jctc.4c01606
    3. Jonathan A. Semelak, Ignacio Pickering, Kate Huddleston, Justo Olmos, Juan Santiago Grassano, Camila Mara Clemente, Salvador I. Drusin, Marcelo Marti, Mariano Camilo Gonzalez Lebrero, Adrian E. Roitberg, Dario A. Estrin. Advancing Multiscale Molecular Modeling with Machine Learning-Derived Electrostatics. Journal of Chemical Theory and Computation 2025, Article ASAP.
    4. Amir Omranpour, Jan Elsner, K. Nikolas Lausch, Jörg Behler. Machine Learning Potentials for Heterogeneous Catalysis. ACS Catalysis 2025, 15 (3) , 1616-1634. https://doi.org/10.1021/acscatal.4c06717
    5. Chaoqiang Feng, Yaolong Zhang, Bin Jiang. Efficient Sampling for Machine Learning Electron Density and Its Response in Real Space. Journal of Chemical Theory and Computation 2025, 21 (2) , 691-702. https://doi.org/10.1021/acs.jctc.4c01355
    6. Johannes Karwounopoulos, Mateusz Bieniek, Zhiyi Wu, Adam L. Baskerville, Gerhard König, Benjamin P. Cossins, Geoffrey P. F. Wood. Evaluation of Machine Learning/Molecular Mechanics End-State Corrections with Mechanical Embedding to Calculate Relative Protein–Ligand Binding Free Energies. Journal of Chemical Theory and Computation 2025, 21 (2) , 967-977. https://doi.org/10.1021/acs.jctc.4c01427
    7. Kyle Acheson, Scott Habershon. Exploring New Algorithms for Molecular Vibrational Spectroscopy Using Physics-Informed Program Synthesis. Journal of Chemical Theory and Computation 2025, 21 (1) , 307-320. https://doi.org/10.1021/acs.jctc.4c01312
    8. Jingheng Deng, Jiayi Liang, Shuming Bai. Learning Intermolecular Electronic Coupling with Molecular-Orbital-Based Descriptors. The Journal of Physical Chemistry Letters 2024, 15 (51) , 12551-12560. https://doi.org/10.1021/acs.jpclett.4c03080
    9. Hyuntae Lim, YounJoon Jung. Synergistic Modeling of Liquid Properties: Integrating Neural Network-Derived Molecular Features with Modified Kernel Models. Journal of Chemical Theory and Computation 2024, 20 (22) , 9849-9856. https://doi.org/10.1021/acs.jctc.4c00961
    10. Imran Chaudhry, Gaohe Hu, Hepeng Ye, Lasse Jensen. Toward Modeling the Complexity of the Chemical Mechanism in SERS. ACS Nano 2024, 18 (32) , 20835-20850. https://doi.org/10.1021/acsnano.4c07198
    11. Ignacio Migliaro, Thomas R. Cundari. Integrated Study on Methane Activation: Exploring Main Group Frustrated Lewis Pairs through Density Functional Theory, Machine Learning, and Machine-Learned Force Fields. Journal of Chemical Theory and Computation 2024, 20 (14) , 6388-6401. https://doi.org/10.1021/acs.jctc.4c00354
    12. Armen G. Beck, Matthew Muhoberac, Caitlin E. Randolph, Connor H. Beveridge, Prageeth R. Wijewardhane, Hilkka I. Kenttämaa, Gaurav Chopra. Recent Developments in Machine Learning for Mass Spectrometry. ACS Measurement Science Au 2024, 4 (3) , 233-246. https://doi.org/10.1021/acsmeasuresciau.3c00060
    13. Kirill Zinovjev, Lester Hedges, Rubén Montagud Andreu, Christopher Woods, Iñaki Tuñón, Marc W. van der Kamp. emle-engine: A Flexible Electrostatic Machine Learning Embedding Package for Multiscale Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2024, 20 (11) , 4514-4522. https://doi.org/10.1021/acs.jctc.4c00248
    14. Juan S. Grassano, Ignacio Pickering, Adrian E. Roitberg, Mariano C. González Lebrero, Dario A. Estrin, Jonathan A. Semelak. Assessment of Embedding Schemes in a Hybrid Machine Learning/Classical Potentials (ML/MM) Approach. Journal of Chemical Information and Modeling 2024, 64 (10) , 4047-4058. https://doi.org/10.1021/acs.jcim.4c00478
    15. Kirill P. Larionov, Vasilii Yu. Evtushok. From Synthesis Conditions to UiO-66 Properties: Machine Learning Approach. Chemistry of Materials 2024, 36 (9) , 4291-4302. https://doi.org/10.1021/acs.chemmater.3c03180
    16. Maksim Kuznetsov, Fedor Ryabov, Roman Schutski, Rim Shayakhmetov, Yen-Chu Lin, Alex Aliper, Daniil Polykovskiy. COSMIC: Molecular Conformation Space Modeling in Internal Coordinates with an Adversarial Framework. Journal of Chemical Information and Modeling 2024, 64 (9) , 3610-3620. https://doi.org/10.1021/acs.jcim.3c00989
    17. Mohammad Shakiba, Alexey V. Akimov. Machine-Learned Kohn–Sham Hamiltonian Mapping for Nonadiabatic Molecular Dynamics. Journal of Chemical Theory and Computation 2024, 20 (8) , 2992-3007. https://doi.org/10.1021/acs.jctc.4c00008
    18. Yendrek Velásquez-López, Andrea Ruiz-Escudero, Sonia Arrasate, Humberto González-Díaz. Implementation of IFPTML Computational Models in Drug Discovery Against Flaviviridae Family. Journal of Chemical Information and Modeling 2024, 64 (6) , 1841-1852. https://doi.org/10.1021/acs.jcim.3c01796
    19. P. D. Varuna S. Pathirage, Justin T. Phillips, Konstantinos D. Vogiatzis. Exploration of the Two-Electron Excitation Space with Data-Driven Coupled Cluster. The Journal of Physical Chemistry A 2024, 128 (10) , 1938-1947. https://doi.org/10.1021/acs.jpca.3c06600
    20. Alec J. Sanchez, Sarah Maier, Krishnan Raghavachari. Leveraging DFT and Molecular Fragmentation for Chemically Accurate pKa Prediction Using Machine Learning. Journal of Chemical Information and Modeling 2024, 64 (3) , 712-723. https://doi.org/10.1021/acs.jcim.3c01923
    21. Xiang Xu, Luis Soriano-Agueda, Xabier López, Eloy Ramos-Cordoba, Eduard Matito. All-Purpose Measure of Electron Correlation for Multireference Diagnostics. Journal of Chemical Theory and Computation 2024, 20 (2) , 721-727. https://doi.org/10.1021/acs.jctc.3c01073
    22. Hung-Hsuan Lin, Chun-I Wang, Chou-Hsun Yang, Muhammad Khari Secario, Chao-Ping Hsu. Two-Step Machine Learning Approach for Charge-Transfer Coupling with Structurally Diverse Data. The Journal of Physical Chemistry A 2024, 128 (1) , 271-280. https://doi.org/10.1021/acs.jpca.3c04524
    23. Eirill Hauge, Håkon Emil Kristiansen, Lukas Konecny, Marius Kadek, Michal Repisky, Thomas Bondo Pedersen. Cost-Efficient High-Resolution Linear Absorption Spectra through Extrapolating the Dipole Moment from Real-Time Time-Dependent Electronic-Structure Theory. Journal of Chemical Theory and Computation 2023, 19 (21) , 7764-7775. https://doi.org/10.1021/acs.jctc.3c00727
    24. Song Xia, Eric Chen, Yingkai Zhang. Integrated Molecular Modeling and Machine Learning for Drug Design. Journal of Chemical Theory and Computation 2023, 19 (21) , 7478-7495. https://doi.org/10.1021/acs.jctc.3c00814
    25. Vivin Vinod, Sayan Maity, Peter Zaspel, Ulrich Kleinekathöfer. Multifidelity Machine Learning for Molecular Excitation Energies. Journal of Chemical Theory and Computation 2023, 19 (21) , 7658-7670. https://doi.org/10.1021/acs.jctc.3c00882
    26. Rosa Di Felice, Maricris L. Mayes, Ryan M. Richard, David B. Williams-Young, Garnet Kin-Lic Chan, Wibe A. de Jong, Niranjan Govind, Martin Head-Gordon, Matthew R. Hermes, Karol Kowalski, Xiaosong Li, Hans Lischka, Karl T. Mueller, Erdal Mutlu, Anders M. N. Niklasson, Mark R. Pederson, Bo Peng, Ron Shepard, Edward F. Valeev, Mark van Schilfgaarde, Bess Vlaisavljevich, Theresa L. Windus, Sotiris S. Xantheas, Xing Zhang, Paul M. Zimmerman. A Perspective on Sustainable Computational Chemistry Software Development and Integration. Journal of Chemical Theory and Computation 2023, 19 (20) , 7056-7076. https://doi.org/10.1021/acs.jctc.3c00419
    27. Krystof Brezina, Hubert Beck, Ondrej Marsalek. Reducing the Cost of Neural Network Potential Generation for Reactive Molecular Systems. Journal of Chemical Theory and Computation 2023, 19 (19) , 6589-6604. https://doi.org/10.1021/acs.jctc.3c00391
    28. Kevin M. Lefrancois-Gagnon, Robert C. Mawhinney. Toward Universal Substituent Constants: Relating QTAIM Functional Group Descriptors to Substituent Effect Proxies. Journal of Chemical Information and Modeling 2023, 63 (19) , 6068-6080. https://doi.org/10.1021/acs.jcim.3c00987
    29. Bipeng Wang, Yifan Wu, Dongyu Liu, Andrey S. Vasenko, David Casanova, Oleg V. Prezhdo. Efficient Modeling of Quantum Dynamics of Charge Carriers in Materials Using Short Nonequilibrium Molecular Dynamics. The Journal of Physical Chemistry Letters 2023, 14 (37) , 8289-8295. https://doi.org/10.1021/acs.jpclett.3c02187
    30. Luis Cesar de Azevedo, Ronaldo C. Prati. Effect of Flattened Structures of Molecules and Materials on Machine Learning Model Training. Journal of Chemical Information and Modeling 2023, 63 (17) , 5446-5456. https://doi.org/10.1021/acs.jcim.3c00242
    31. Henrik Seckler, Janusz Szwabiński, Ralf Metzler. Machine-Learning Solutions for the Analysis of Single-Particle Diffusion Trajectories. The Journal of Physical Chemistry Letters 2023, 14 (35) , 7910-7923. https://doi.org/10.1021/acs.jpclett.3c01351
    32. Tzu Yu Wang, Simon P. Neville, Michael S. Schuurman. Machine Learning Seams of Conical Intersection: A Characteristic Polynomial Approach. The Journal of Physical Chemistry Letters 2023, 14 (35) , 7780-7786. https://doi.org/10.1021/acs.jpclett.3c01649
    33. Fuchun Ge, Lina Zhang, Yi-Fan Hou, Yuxinxin Chen, Arif Ullah, Pavlo O. Dral. Four-Dimensional-Spacetime Atomistic Artificial Intelligence Models. The Journal of Physical Chemistry Letters 2023, 14 (34) , 7732-7743. https://doi.org/10.1021/acs.jpclett.3c01592
    34. Alexander Hagg, Karl N. Kirschner. Open-Source Machine Learning in Computational Chemistry. Journal of Chemical Information and Modeling 2023, 63 (15) , 4505-4532. https://doi.org/10.1021/acs.jcim.3c00643
    35. Thorren Kirschbaum, Börries von Seggern, Joachim Dzubiella, Annika Bande, Frank Noé. Machine Learning Frontier Orbital Energies of Nanodiamonds. Journal of Chemical Theory and Computation 2023, 19 (14) , 4461-4473. https://doi.org/10.1021/acs.jctc.2c01275
    36. Bozheng Dou, Zailiang Zhu, Ekaterina Merkurjev, Lu Ke, Long Chen, Jian Jiang, Yueying Zhu, Jie Liu, Bengong Zhang, Guo-Wei Wei. Machine Learning Methods for Small Data Challenges in Molecular Science. Chemical Reviews 2023, 123 (13) , 8736-8780. https://doi.org/10.1021/acs.chemrev.3c00189
    37. Chao Sun, Jiafu Xing, Yajuan Qu, Yanli Zhang, Peizhe Cui, Yinglong Wang, Jun Gao. Liquid–Liquid Equilibrium Measurements and Interaction Explorations for Separation of Dimethyl Carbonate and Isopropyl Alcohol Using ChCl-Based Deep Eutectic Solvents. Industrial & Engineering Chemistry Research 2023, 62 (23) , 9302-9312. https://doi.org/10.1021/acs.iecr.3c01045
    38. Yi-Fan Hou, Fuchun Ge, Pavlo O. Dral. Explicit Learning of Derivatives with the KREG and pKREG Models on the Example of Accurate Representation of Molecular Potential Energy Surfaces. Journal of Chemical Theory and Computation 2023, 19 (8) , 2369-2379. https://doi.org/10.1021/acs.jctc.2c01038
    39. Cheng-Han Li, Daniel P. Tabor. Reorganization Energy Predictions with Graph Neural Networks Informed by Low-Cost Conformers. The Journal of Physical Chemistry A 2023, 127 (15) , 3484-3489. https://doi.org/10.1021/acs.jpca.2c09030
    40. Kirill Zinovjev. Electrostatic Embedding of Machine Learning Potentials. Journal of Chemical Theory and Computation 2023, 19 (6) , 1888-1897. https://doi.org/10.1021/acs.jctc.2c00914
    41. Mahesh K. Sit, Subhasish Das, Kousik Samanta. Semiclassical Dynamics on Machine-Learned Coupled Multireference Potential Energy Surfaces: Application to the Photodissociation of the Simplest Criegee Intermediate. The Journal of Physical Chemistry A 2023, 127 (10) , 2376-2387. https://doi.org/10.1021/acs.jpca.2c07229
    42. You Li, Yu Zhai, Hui Li. MLRNet: Combining the Physics-Motivated Potential Models with Neural Networks for Intermolecular Potential Energy Surface Construction. Journal of Chemical Theory and Computation 2023, 19 (5) , 1421-1431. https://doi.org/10.1021/acs.jctc.2c01049
    43. Chenru Duan, Aditya Nandy, Gianmarco G. Terrones, David W. Kastner, Heather J. Kulik. Active Learning Exploration of Transition-Metal Complexes to Discover Method-Insensitive and Synthetically Accessible Chromophores. JACS Au 2023, 3 (2) , 391-401. https://doi.org/10.1021/jacsau.2c00547
    44. Zhan-Yun Zhang, Ding Peng, Lihong Liu, Lin Shen, Wei-Hai Fang. Machine Learning Prediction of Hydration Free Energy with Physically Inspired Descriptors. The Journal of Physical Chemistry Letters 2023, 14 (7) , 1877-1884. https://doi.org/10.1021/acs.jpclett.2c03858
    45. Michael Deffner, Marc Philipp Weise, Haitao Zhang, Maike Mücke, Jonny Proppe, Ignacio Franco, Carmen Herrmann. Learning Conductance: Gaussian Process Regression for Molecular Electronics. Journal of Chemical Theory and Computation 2023, 19 (3) , 992-1002. https://doi.org/10.1021/acs.jctc.2c00648
    46. Barry K. Carpenter. Prediction of Kinetic Product Ratios: Investigation of a Dynamically Controlled Case. The Journal of Physical Chemistry A 2023, 127 (1) , 224-239. https://doi.org/10.1021/acs.jpca.2c08301
    47. Diandong Tang, Luyang Jia, Lin Shen, Wei-Hai Fang. Fewest-Switches Surface Hopping with Long Short-Term Memory Networks. The Journal of Physical Chemistry Letters 2022, 13 (44) , 10377-10387. https://doi.org/10.1021/acs.jpclett.2c02299
    48. TanemuraKiyoto AramisGraduate StudentSierra-CostaDiegoGraduate StudentMerzKenneth M.Jr.University Distinguished Professor & Joseph Zichis Chair in ChemistryAlathea Davies, PhD student, Cornell University, Paul A. Craig, Professor of Biochemistry & Bioinformatics, Rochester Institute of Technology. Python for Chemists. 2022https://doi.org/10.1021/acsinfocus.7e5030
    49. Armando de Rezende, Mahdi Malmali, Pavlo O. Dral, Hans Lischka, Daniel Tunega, Adelia J. A. Aquino. Machine Learning for Designing Mixed Metal Halides for Efficient Ammonia Separation and Storage. The Journal of Physical Chemistry C 2022, 126 (29) , 12184-12196. https://doi.org/10.1021/acs.jpcc.2c02586
    50. Pengju Wang, Jianpei Xing, Xue Jiang, Jijun Zhao. Transition-Metal Interlink Neural Network: Machine Learning of 2D Metal–Organic Frameworks with High Magnetic Anisotropy. ACS Applied Materials & Interfaces 2022, 14 (29) , 33726-33733. https://doi.org/10.1021/acsami.2c08991
    51. Kanishka Singh, Jannes Münchmeyer, Leon Weber, Ulf Leser, Annika Bande. Graph Neural Networks for Learning Molecular Excitation Spectra. Journal of Chemical Theory and Computation 2022, 18 (7) , 4408-4417. https://doi.org/10.1021/acs.jctc.2c00255
    52. Chenru Duan, Aditya Nandy, Husain Adamji, Yuriy Roman-Leshkov, Heather J. Kulik. Machine Learning Models Predict Calculation Outcomes with the Transferability Necessary for Computational Catalysis. Journal of Chemical Theory and Computation 2022, 18 (7) , 4282-4292. https://doi.org/10.1021/acs.jctc.2c00331
    53. Nan Yao, Xiang Chen, Zhong-Heng Fu, Qiang Zhang. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews 2022, 122 (12) , 10970-11021. https://doi.org/10.1021/acs.chemrev.1c00904
    54. Eita Nakanishi, Ryosuke Nishikubo, Fumitaka Ishiwari, Tomoya Nakamura, Atsushi Wakamiya, Akinori Saeki. Multivariate Analysis of Mixed Ternary and Quaternary A-Site Organic Cations in Tin Iodide Perovskite Solar Cells. ACS Materials Letters 2022, 4 (6) , 1124-1131. https://doi.org/10.1021/acsmaterialslett.2c00229
    55. Linggang Zhu, Jian Zhou, Zhimei Sun. Materials Data toward Machine Learning: Advances and Challenges. The Journal of Physical Chemistry Letters 2022, 13 (18) , 3965-3977. https://doi.org/10.1021/acs.jpclett.2c00576
    56. Peikun Zheng, Wudi Yang, Wei Wu, Olexandr Isayev, Pavlo O. Dral. Toward Chemical Accuracy in Predicting Enthalpies of Formation with General-Purpose Data-Driven Methods. The Journal of Physical Chemistry Letters 2022, 13 (15) , 3479-3491. https://doi.org/10.1021/acs.jpclett.2c00734
    57. Scott Habershon. Program Synthesis of Sparse Algorithms for Wave Function and Energy Prediction in Grid-Based Quantum Simulations. Journal of Chemical Theory and Computation 2022, 18 (4) , 2462-2478. https://doi.org/10.1021/acs.jctc.2c00035
    58. Deming Xia, Jingwen Chen, Zhiqiang Fu, Tong Xu, Zhongyu Wang, Wenjia Liu, Hong-bin Xie, Willie J. G. M. Peijnenburg. Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry. Environmental Science & Technology 2022, 56 (4) , 2115-2123. https://doi.org/10.1021/acs.est.1c05970
    59. Xiaoyu Shi, Pratteek Das, Zhong-Shuai Wu. Digital Microscale Electrochemical Energy Storage Devices for a Fully Connected and Intelligent World. ACS Energy Letters 2022, 7 (1) , 267-281. https://doi.org/10.1021/acsenergylett.1c01854
    60. Viktor Zaverkin, Julia Netz, Fabian Zills, Andreas Köhn, Johannes Kästner. Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments. Journal of Chemical Theory and Computation 2022, 18 (1) , 1-12. https://doi.org/10.1021/acs.jctc.1c00853
    61. WooSeok Jeong, Carlo Alberto Gaggioli, Laura Gagliardi. Active Learning Configuration Interaction for Excited-State Calculations of Polycyclic Aromatic Hydrocarbons. Journal of Chemical Theory and Computation 2021, 17 (12) , 7518-7530. https://doi.org/10.1021/acs.jctc.1c00769
    62. Oleg V. Prezhdo. Modeling Non-adiabatic Dynamics in Nanoscale and Condensed Matter Systems. Accounts of Chemical Research 2021, 54 (23) , 4239-4249. https://doi.org/10.1021/acs.accounts.1c00525
    63. Zhan-Yun Zhang, Xin Liu, Lin Shen, Ling Chen, Wei-Hai Fang. Machine Learning with Multilevel Descriptors for Screening of Inorganic Nonlinear Optical Crystals. The Journal of Physical Chemistry C 2021, 125 (45) , 25175-25188. https://doi.org/10.1021/acs.jpcc.1c06049
    64. Hui Ding, Hongfei Liu, Wangsheng Chu, Changzheng Wu, Yi Xie. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews 2021, 121 (21) , 13174-13212. https://doi.org/10.1021/acs.chemrev.1c00234
    65. J. Patrick Zobel, Moritz Heindl, Felix Plasser, Sebastian Mai, Leticia González. Surface Hopping Dynamics on Vibronic Coupling Models. Accounts of Chemical Research 2021, 54 (20) , 3760-3771. https://doi.org/10.1021/acs.accounts.1c00485
    66. Lihong Chai, Huanni Zhang, Runqian Song, Haohan Yang, Haiying Yu, Piotr Paneth, Kasper P. Kepp, Miki Akamatsu, Li Ji. Precision Biotransformation of Emerging Pollutants by Human Cytochrome P450 Using Computational–Experimental Synergy: A Case Study of Tris(1,3-dichloro-2-propyl) Phosphate. Environmental Science & Technology 2021, 55 (20) , 14037-14050. https://doi.org/10.1021/acs.est.1c03036
    67. Jérôme Rey, Sarah Blanck, Paul Clabaut, Sophie Loehlé, Stephan N. Steinmann, Carine Michel. Transferable Gaussian Attractive Potentials for Organic/Oxide Interfaces. The Journal of Physical Chemistry B 2021, 125 (38) , 10843-10853. https://doi.org/10.1021/acs.jpcb.1c05156
    68. Luis Cesar de Azevedo, Gabriel A. Pinheiro, Marcos G. Quiles, Juarez L. F. Da Silva, Ronaldo C. Prati. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling 2021, 61 (9) , 4210-4223. https://doi.org/10.1021/acs.jcim.1c00503
    69. Joshua J. Goings, Hang Hu, Chao Yang, Xiaosong Li. Reinforcement Learning Configuration Interaction. Journal of Chemical Theory and Computation 2021, 17 (9) , 5482-5491. https://doi.org/10.1021/acs.jctc.1c00010
    70. Sergei Manzhos, Tucker Carrington, Jr.. Neural Network Potential Energy Surfaces for Small Molecules and Reactions. Chemical Reviews 2021, 121 (16) , 10187-10217. https://doi.org/10.1021/acs.chemrev.0c00665
    71. Julia Westermayr, Philipp Marquetand. Machine Learning for Electronically Excited States of Molecules. Chemical Reviews 2021, 121 (16) , 9873-9926. https://doi.org/10.1021/acs.chemrev.0c00749
    72. Jörg Behler. Four Generations of High-Dimensional Neural Network Potentials. Chemical Reviews 2021, 121 (16) , 10037-10072. https://doi.org/10.1021/acs.chemrev.0c00868
    73. Bing Huang, O. Anatole von Lilienfeld. Ab Initio Machine Learning in Chemical Compound Space. Chemical Reviews 2021, 121 (16) , 10001-10036. https://doi.org/10.1021/acs.chemrev.0c01303
    74. Volker L. Deringer, Albert P. Bartók, Noam Bernstein, David M. Wilkins, Michele Ceriotti, Gábor Csányi. Gaussian Process Regression for Materials and Molecules. Chemical Reviews 2021, 121 (16) , 10073-10141. https://doi.org/10.1021/acs.chemrev.1c00022
    75. J. Patrick Zobel, Leticia González. The Quest to Simulate Excited-State Dynamics of Transition Metal Complexes. JACS Au 2021, 1 (8) , 1116-1140. https://doi.org/10.1021/jacsau.1c00252
    76. Shachar Fite, Omri Nitecki, Zeev Gross. Custom Tokenization Dictionary, CUSTODI: A General, Fast, and Reversible Data-Driven Representation and Regressor. Journal of Chemical Information and Modeling 2021, 61 (7) , 3285-3291. https://doi.org/10.1021/acs.jcim.1c00563
    77. Maksim Kulichenko, Justin S. Smith, Benjamin Nebgen, Ying Wai Li, Nikita Fedik, Alexander I. Boldyrev, Nicholas Lubbers, Kipton Barros, Sergei Tretiak. The Rise of Neural Networks for Materials and Chemical Dynamics. The Journal of Physical Chemistry Letters 2021, 12 (26) , 6227-6243. https://doi.org/10.1021/acs.jpclett.1c01357
    78. Bruno Cuevas-Zuviría, Luis F. Pacios. Machine Learning of Analytical Electron Density in Large Molecules Through Message-Passing. Journal of Chemical Information and Modeling 2021, 61 (6) , 2658-2666. https://doi.org/10.1021/acs.jcim.1c00227
    79. Jinxiao Zhang, Sheng Ye, Kai Zhong, Yaolong Zhang, Yuanyuan Chong, Luyuan Zhao, Huiting Zhou, Sibei Guo, Guozhen Zhang, Bin Jiang, Shaul Mukamel, Jun Jiang. A Machine-Learning Protocol for Ultraviolet Protein-Backbone Absorption Spectroscopy under Environmental Fluctuations. The Journal of Physical Chemistry B 2021, 125 (23) , 6171-6178. https://doi.org/10.1021/acs.jpcb.1c03296
    80. C. D. Rankine, T. J. Penfold. Progress in the Theory of X-ray Spectroscopy: From Quantum Chemistry to Machine Learning and Ultrafast Dynamics. The Journal of Physical Chemistry A 2021, 125 (20) , 4276-4293. https://doi.org/10.1021/acs.jpca.0c11267
    81. Chenru Duan, Fang Liu, Aditya Nandy, Heather J. Kulik. Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery. The Journal of Physical Chemistry Letters 2021, 12 (19) , 4628-4637. https://doi.org/10.1021/acs.jpclett.1c00631
    82. Qidong Lin, Liang Zhang, Yaolong Zhang, Bin Jiang. Searching Configurations in Uncertainty Space: Active Learning of High-Dimensional Neural Network Reactive Potentials. Journal of Chemical Theory and Computation 2021, 17 (5) , 2691-2701. https://doi.org/10.1021/acs.jctc.1c00166
    83. Tetiana Zubatiuk, Olexandr Isayev. Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence. Accounts of Chemical Research 2021, 54 (7) , 1575-1585. https://doi.org/10.1021/acs.accounts.0c00868
    84. Ziteng Liu, Liqiang Lin, Qingqing Jia, Zheng Cheng, Yanyan Jiang, Yanwen Guo, Jing Ma. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning. Journal of Chemical Information and Modeling 2021, 61 (3) , 1066-1082. https://doi.org/10.1021/acs.jcim.0c01224
    85. Dakota L. Folmsbee, David R. Koes, Geoffrey R. Hutchison. Evaluation of Thermochemical Machine Learning for Potential Energy Curves and Geometry Optimization. The Journal of Physical Chemistry A 2021, 125 (9) , 1987-1993. https://doi.org/10.1021/acs.jpca.0c10147
    86. Pablo A. Unzueta, Chandler S. Greenwell, Gregory J. O. Beran. Predicting Density Functional Theory-Quality Nuclear Magnetic Resonance Chemical Shifts via Δ-Machine Learning. Journal of Chemical Theory and Computation 2021, 17 (2) , 826-840. https://doi.org/10.1021/acs.jctc.0c00979
    87. Jong-Kwon Ha, Kicheol Kim, Seung Kyu Min. Machine Learning-Assisted Excited State Molecular Dynamics with the State-Interaction State-Averaged Spin-Restricted Ensemble-Referenced Kohn–Sham Approach. Journal of Chemical Theory and Computation 2021, 17 (2) , 694-702. https://doi.org/10.1021/acs.jctc.0c01261
    88. Jonas Elm. Toward a Holistic Understanding of the Formation and Growth of Atmospheric Molecular Clusters: A Quantum Machine Learning Perspective. The Journal of Physical Chemistry A 2021, 125 (4) , 895-902. https://doi.org/10.1021/acs.jpca.0c09762
    89. Martin Sebastian Zöllner, Aida Saghatchi, Vladimiro Mujica, Carmen Herrmann. Influence of Electronic Structure Modeling and Junction Structure on First-Principles Chiral Induced Spin Selectivity. Journal of Chemical Theory and Computation 2020, 16 (12) , 7357-7371. https://doi.org/10.1021/acs.jctc.0c00621
    90. Jacob Townsend, Konstantinos D. Vogiatzis. Transferable MP2-Based Machine Learning for Accurate Coupled-Cluster Energies. Journal of Chemical Theory and Computation 2020, 16 (12) , 7453-7461. https://doi.org/10.1021/acs.jctc.0c00927
    91. Oleg V. Prezhdo (Executive Editor, The Journal of Physical Chemistry Letters). Advancing Physical Chemistry with Machine Learning. The Journal of Physical Chemistry Letters 2020, 11 (22) , 9656-9658. https://doi.org/10.1021/acs.jpclett.0c03130
    92. Muhammad Ardiansyah, Kurt R. Brorsen. Mixed Quantum–Classical Dynamics with Machine Learning-Based Potentials via Wigner Sampling. The Journal of Physical Chemistry A 2020, 124 (44) , 9326-9331. https://doi.org/10.1021/acs.jpca.0c07376
    93. Marc Philipp Bahlke, Natnael Mogos, Jonny Proppe, Carmen Herrmann. Exchange Spin Coupling from Gaussian Process Regression. The Journal of Physical Chemistry A 2020, 124 (42) , 8708-8723. https://doi.org/10.1021/acs.jpca.0c05983
    94. Bao-Xin Xue, Mario Barbatti, Pavlo O. Dral. Machine Learning for Absorption Cross Sections. The Journal of Physical Chemistry A 2020, 124 (35) , 7199-7210. https://doi.org/10.1021/acs.jpca.0c05310
    95. Joshua Schrier. Can One Hear the Shape of a Molecule (from its Coulomb Matrix Eigenvalues)?. Journal of Chemical Information and Modeling 2020, 60 (8) , 3804-3811. https://doi.org/10.1021/acs.jcim.0c00631
    96. C. D. Rankine, M. M. M. Madkhali, T. J. Penfold. A Deep Neural Network for the Rapid Prediction of X-ray Absorption Spectra. The Journal of Physical Chemistry A 2020, 124 (21) , 4263-4270. https://doi.org/10.1021/acs.jpca.0c03723
    97. Vivin Vinod, Peter Zaspel. QeMFi: A Multifidelity Dataset of Quantum Chemical Properties of Diverse Molecules. Scientific Data 2025, 12 (1) https://doi.org/10.1038/s41597-024-04247-3
    98. Vivin Vinod, Dongyu Lyu, Marcel Ruth, Peter R. Schreiner, Ulrich Kleinekathöfer, Peter Zaspel. Predicting Molecular Energies of Small Organic Molecules With Multi‐Fidelity Methods. Journal of Computational Chemistry 2025, 46 (6) https://doi.org/10.1002/jcc.70056
    99. BeiWei Yu, LiQin Zhang, Xiaoxia Ye, JunQi Wu, HuaYong Ying, Wei Zhu, ZhongYi Yu, XiaoMing Wu. State-of-the-art review on various applications of machine learning techniques in materials science and engineering. Chemical Engineering Science 2025, 306 , 121147. https://doi.org/10.1016/j.ces.2024.121147
    100. Márta Gődény, Christian Schröder. Reactive Molecular Dynamics in Ionic Liquids: A Review of Simulation Techniques and Applications. Liquids 2025, 5 (1) , 8. https://doi.org/10.3390/liquids5010008
    Load more citations

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2020, 11, 6, 2336–2347
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpclett.9b03664
    Published March 3, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    17k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.