Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Proteomics and Metabolomics Reveal that an Abundant α-Glucosidase Drives Sorghum Fermentability for Beer Brewing

Cite this: J. Proteome Res. 2023, 22, 11, 3596–3606
Publication Date (Web):October 11, 2023
https://doi.org/10.1021/acs.jproteome.3c00436
Copyright © 2023 American Chemical Society

    Article Views

    620

    Altmetric

    -

    Citations

    -
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Sorghum (Sorghum bicolor), a grass native to Africa, is a popular alternative to barley for brewing beer. The importance of sorghum to beer brewing is increasing because it is a naturally gluten-free cereal, and climate change is expected to cause a reduction in the production of barley over the coming decades. However, there are challenges associated with the use of sorghum instead of barley in beer brewing. Here, we used proteomics and metabolomics to gain insights into the sorghum brewing process to advise processes for efficient beer production from sorghum. We found that during malting, sorghum synthesizes the amylases and proteases necessary for brewing. Proteomics revealed that mashing with sorghum malt required higher temperatures than barley malt for efficient protein solubilization. Both α- and β-amylase were considerably less abundant in sorghum wort than in barley wort, correlating with lower maltose concentrations in sorghum wort. However, metabolomics revealed higher glucose concentrations in sorghum wort than in barley wort, consistent with the presence of an abundant α-glucosidase detected by proteomics in sorghum malt. Our results indicate that sorghum can be a viable grain for industrial fermented beverage production, but that its use requires careful process optimization for efficient production of fermentable wort and high-quality beer.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00436.

    • Figure S1. Abundance of malting related proteins in sorghum seeds and sorghum malt (PDF)

    • Table S1. Sorghum Identification; Table S2. Sorghum protein abundance; Table S3. Sorghum malting MSstats; Table S4. Sorghum malting GOstats; Table S5. Barley identification; Table S6. Barley protein abundances; Table S7. Sorghum proteolysis; Table S8. Barley proteolysis; Table S9. Amino acids and sugar; Table S10. Fermentation (XLSX)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article has not yet been cited by other publications.